

Lecture Notes in Computer Science 3436
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bruno Bouyssounouse Joseph Sifakis (Eds.)

Embedded Systems
Design

The ARTIST Roadmap
for Research and Development

13

Volume Editors

Bruno Bouyssounouse
ARTIST Technical Coordinator
Joseph Sifakis
ARTIST Scientific Coordinator
Verimag Laboratory
Centre Equation, 2 avenue de Vignate, 38610 Gieres, France
E-mail: {Bruno.Bouyssounouse,Joseph.Sifakis}@imag.fr

Library of Congress Control Number: 2005921510

CR Subject Classification (1998): C.3, C.2, D.2, D.3, D.4, K.6

ISSN 0302-9743
ISBN 3-540-25107-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11400707 06/3142 5 4 3 2 1 0

Preface

Embedded systems now include a very large proportion of the advanced products
designed in the world, spanning transport (avionics, space, automotive, trains),
electrical and electronic appliances (cameras, toys, televisions, home appliances,
audio systems, and cellular phones), process control (energy production and
distribution, factory automation and optimization), telecommunications (satellites,
mobile phones and telecom networks), and security (e-commerce, smart cards), etc.
The extensive and increasing use of embedded systems and their integration in
everyday products marks a significant evolution in information science and
technology. We expect that within a short timeframe embedded systems will be a part
of nearly all equipment designed or manufactured in Europe, the USA, and Asia.

There is now a strategic shift in emphasis for embedded systems designers: from
simply achieving feasibility, to achieving optimality. Optimal design of embedded
systems means targeting a given market segment at the lowest cost and delivery time
possible. Optimality implies seamless integration with the physical and electronic
environment while respecting real-world constraints such as hard deadlines, reliability,
availability, robustness, power consumption, and cost. In our view, optimality can only
be achieved through the emergence of embedded systems as a discipline in its own right.

Embedded systems are of strategic importance in modern economies. They are used
in mass-market products and services, where value is created by supplying either
functionality or quality. Europe currently has a strong position in sectors where
embedded technologies play a central role. It has a lead in civil avionics where fly-by-
wire technology provides an overwhelming competitive advantage in the cost of
operating aircraft. Europe is also well positioned in the space sector, specifically for
launch vehicles and satellites. In the automotive industry, European manufacturers
and their suppliers enjoy a leading technological advantage for engine control, and
emerging technologies such as brake-by-wire and drive-by-wire. Railway signalling
in Europe relies on embedded systems, and allows faster, safer, and heavier traffic.
Embedded applications will be extensively used to make energy distribution more
flexible, especially in view of the coming market liberalization. Embedded
technologies are strategic for the European telecommunications sector. Finally,
Europe is also well positioned for e-services (e-banking, e-health, e-training), based
on the leading edge in smart-card related technologies.

Embedded systems design raises challenging problems for research, including:

Security
Economic, citizenship, and societal activities in Europe rely increasingly on
embedded applications. Widespread acceptance and reliance on these will depend
on the availability of seamless solutions for securing rights and privacy.
Reliable, mobile, embedded services
Electronic commerce and e-services in a wireless world will need provably correct
foundations to ensure further growth.

VI Preface

Large-scale heterogeneous distributed systems
Applications such as automated highways, advanced air traffic control, or next-
generation factory automation require full-scale, industry-ready paradigms,
methodologies, and advanced prototypes. These need to integrate heterogeneous
elements from different, perhaps competing providers, in evolving embedded
environments.
Adaptive embedded systems
Tomorrow’s resource-constrained applications, such as image processing,
telecommunications, and industrial automation, are expected to see drastic
advances in performance and dependability, with the ability to adapt to dynamic
changes in resource needs, including power/energy, bandwidth, memory, and
computing power.
Component-based design, validation, and tool-based certification
Development costs and time-to-market could be vastly reduced, by enabling the
incremental design and formal validation of arbitrarily complex systems.

This roadmap was written by the IST-2001-34820 ARTIST FP5 Accompanying
Measure on Advanced Real-Time Systems, funded by the European Commission, and
which started April 1st, 2002 and ended March 31st 2005.

The ARTIST FP5 workplan includes, in addition to providing this roadmap,
advancing the state of the art and structuring research on embedded systems in
Europe. It gathered together 28 leading European research institutions, as well as
many top researchers in the area.

The aim of ARTIST FP5 was to coordinate the R&D effort in the area, to improve
awareness of academics and industry, especially about existing innovative results and
technologies, standards, and regulations, and to define innovative and relevant work
directions, identify obstacles to scientific and technological progress, and propose
adequate strategies for circumventing them.

ARTIST FP5 was implemented as a set of four coordinated actions, each centred on a
high-priority thematic area of research on embedded systems. Correspondingly, the
roadmap is organised into four parts.

Action 1: Hard Real Time. This action was led by Professor Albert Benveniste of
INRIA (France), and focused on aspects of hard real-time applications, bringing
together competencies from synchronous languages, time-triggered systems, and
schedulers.

Action 2: Component-Based Design and Development. This action was led by
Professor Bengt Jonsson of Uppsala University (Sweden), and focused on both
theoretical and practical aspects of modelling complex systems with emphasis on
methods (compositionality, composability) and standards (e.g. UML).

Action 3: Adaptive Real-Time Systems for QoS Management. This action was led
by Professor Giorgio Buttazzo of the University of Pavia (Italy), and focused on soft
real-time approaches and technology for telecommunications, large open systems, and
networks. It gathered together teams with expertise in real-time operating systems and
middleware.

Action 4: Execution Platforms. This action was led by Professor Lothar Thiele of
the Swiss Federal Institute of Technology (ETHZ), and focused on issues at the
frontier between hardware and software – and their implications for embedded
systems design.

 Preface VII

To enhance readability, each of the four parts of the roadmap follows a similar
structure, although there are domain-related specificities. Also, inevitably, some
topics may be treated in more than one part of the document, but the index should
help the reader find the different relevant texts for a given topic.

Oversight for ARTIST FP5 was provided by the Artist Industrial Advisory Board
(IAB), which reviewed the roadmap. The ARTIST IAB is chaired by Dr. Dominique
Potier, Scientific Director for Software Technologies, Thalès.

We would like to thank all the contributors to the roadmap, including the engineers
and researchers who participated in the various technical meetings and workshops, as
well as the industrial leaders who granted interviews and/or provided information in
the questionnaire. Special thanks also go to the Artist FP5 reviewers and the project
officer, for constructive and stimulating comments.

The elaboration of this roadmap provided the opportunity for fertile interaction
between key players in the area of embedded systems, and proved to be useful for
structuring the area.

The work and the strategic orientations and conclusions of ARTIST FP5 led to the
creation of the ARTIST2 FP6 Network of Excellence on Embedded Systems Design.
Information about ARTIST2 is available on the web-site: http://www.artist-
embedded.org/FP6.

This roadmap usefully complements other existing roadmapping work from ITEA
and MEDEA+. We hope that it will be useful for both research and industry and that
it will serve to advance awareness about the state of the art and provide insights on
possible avenues for R&D.

Grenoble, January 2005 Bruno Bouyssounouse
 ARTIST Technical Coordinator

Verimag Laboratory, France

 Joseph Sifakis
 ARTIST Scientific Coordinator

Verimag Laboratory, France

Editors

Bruno Bouyssounouse
ARTIST Technical Coordinator

Verimag Laboratory, France

Joseph Sifakis
ARTIST Scientific Coordinator

Verimag Laboratory, France

Contributors

Part I: Hard Real-Time Development Environments
Coordinator: Albert Benveniste INRIA, France

Jos Baeten Eindhoven Technical University, The Netherlands
Philippe Baufreton Hispano-Suiza, France
Albert Benveniste INRIA, France
Samuel Boutin Renault, France
Bruno Bouyssounouse Verimag Laboratory, France
Dominique Brière Airbus, France
Paul Caspi Verimag Laboratory, France
Werner Damm OFFIS, Germany
Emmerich Fuchs Vienna Technical University, Austria
Vered Gafni Israel Aircraft Industries, Israel
Thierry Gautier INRIA, France
Drora Goshen Israel Aircraft Industries, Israel
Guenter Gruensteidl Alcatel, Austria
Nicolas Halbwachs Verimag Laboratory, France
Hermann Kopetz Vienna Technical University, Austria
Kim Larsen Aalborg University, Denmark
Hervé Le Berre Airbus, France
Rainer Leupers RWTH Aachen, Germany
Brian Nielsen Aalborg University, Denmark
Ernst-Rüdiger Olderog OFFIS, Germany
Yiannis Papadopoulos University of York, UK
Philipp Peti Vienna Technical University, Austria
Manfred Pisecky TTTech, France
Peter Puschner Vienna Technical University, Austria
Jörn Rennhack Airbus, Germany
Alberto Sangiovanni-Vincentelli PARADES, Italy
Christian Scheidler DaimlerChrysler, Germany
Arne Skou Aalborg University, Denmark
Yves Sorel INRIA, France
Ulrich Virnich Siemens, Germany
Birgit Vogel-Heuser University of Wuppertal, Germany
Reinhard Wilhelm Saarland University, Germany
Tim Willemse Eindhoven Technical University, The Netherlands

 Organization IX

Part II: Component-Based Design and Integration Platforms
Coordinator: Bengt Jonsson University of Uppsala, Sweden

Ed Brinksma University of Twente, The Netherlands
Geoff Coulson Lancaster University, UK
Ivica Crnkovic Mälardalen University, Sweden
Andy Evans University of York, UK
Sébastien Gérard CEA, France
Susanne Graf Verimag Laboratory, France
Holger Hermanns Saarland University, Germany
Jean-Marc Jézéquel INRIA, France
Bengt Jonsson University of Uppsala, Sweden
Noël Plouzeau INRIA, France
Anders Ravn Aalborg University, Denmark
Philippe Schnoebelen LSV Laboratory, France
Francois Terrier CEA, France
Angelika Votintseva OFFIS, Germany

Part III: Adaptive Real-Time Systems for Quality of
Service Management

Coordinator: Giorgio Buttazzo University of Pavia, Italy

Luis Almeida University of Aveiro, Portugal
Alejandro Alonso Technical University of Madrid, Spain
Guillem Bernat University of York, UK
Alan Burns University of York, UK
Giorgio Buttazzo University of Pavia, Italy
Antonio Casimiro University of Lisbon, Portugal
Carlos Delgado Kloos University Carlos III de Madrid, Spain
Johan Eker Ericsson, Sweden
Joaquim Ferreira Polytechnic Institute of Castelo Branco, Portugal
Gerhard Fohler Mälardalen University, Sweden
José Alberto Fonseca University of Aveiro, Portugal
Josep Fuertes Technical University of Catalonia, Spain
Marisol Garcia Valls University Carlos III de Madrid, Spain
Michael Gonzalez Harbour University of Cantabria, Spain
Giuseppe Lipari Scuola Superiore S. Anna of Pisa, Italy
Lucia Lo Bello University of Catania, Italy
Evangelos Markatos ICS Forth, Greece
Pau Marti Technical University of Catalonia, Spain
Ernesto Martins University of Aveiro, Portugal
Miguel de Miguel Technical University of Madrid, Spain
Laurent Pautet Telecom Paris, France
Paulo Pedreiras University of Aveiro, Portugal
Julian Proenza University of Balearic Islands, Spain
Juan Antonio de la Puente Technical University of Madrid, Spain

X Organization

Daniel Simon INRIA, France
Liesbeth Steffens Philips Research, The Netherlands
Paulo Verissimo University of Lisbon, Portugal
Andy Wellings University of York, UK
Sergio Yovine Verimag Laboratory, France

Part IV: Execution Platforms
Coordinator: Lothar Thiele ETHZ, Switzerland

Luca Benini University of Bologna, Italy
Geert Deconinck K.U.Leuven, Belgium
Petru Eles Linköping University, Sweden
Rolf Ernst Technical University of Braunschweig, Germany
Murali Jayapala K.U.Leuven, Belgium
Jan Madsen Technical University of Denmark, Denmark
Zebo Peng Linköping University, Sweden
Marco Platzner ETHZ, Switzerland
Paul Pop Linköping University, Sweden
Lothar Thiele ETHZ, Switzerland
Tom Vander Aa K.U.Leuven, Belgium
Kashif Virk Technical University of Denmark
Fabian Wolf Volkswagen AG, Germany

Table of Contents

Part I: Hard Real-Time Development Environments

1 Executive Overview on Hard Real-Time Development Environments.............1
1.1 Motivation and Objectives ...1
1.2 Essential Characteristics...2
1.3 Role in Future Embedded Systems ..3
1.4 Overall Challenges and Work Directions...4
1.5 Document Structure ...9

2 Hard Real-Time System Development..10
2.1 Brief Discussion of Current Practice: The V-Shaped Lifecycle...........10
2.2 An Emerging Approach: Platform-Based Design11

3 Current Design Practice and Needs in Selected Industrial Sectors..................15
3.1 Automotive Systems ..15
3.2 Aeronautics: A Case Study ..24
3.3 Consumer Electronics: A Case Study ..31
3.4 Automation Applications ...35

4 Tools for Requirements Capture and Exploration ...39
4.1 Definitions of Hard Real-Time Dependability Features.......................39
4.2 Scientific Engineering Tools and Physical Systems Modellers45
4.3 State-Based Design: Dealing with Complex Discrete Control.............50

5 Tools for Architecture Design and Capture...54

6 Tools for Programming, Code Generation, and Design63
6.1 Structure ...63
6.2 Code Generation from Synchronous Languages63
6.3 Back-End Code Generation – Below C..68

7 Tools for Verification and Validation ...72
7.1 Building Blocks for Verification and Validation72
7.2 Model Checking ...72
7.3 Static Program Analysis ...76
7.4 Testing Embedded Systems ...80

8 Middleware for Implementing Hard Real-Time Systems................................85

XII Table of Contents

9 Review of Some Advanced Methodologies ..92
9.1 The Setta Project ..92
9.2 The SafeAir Project..96

Part II: Component-Based Design and Integration Platforms

10 Executive Overview on Component-Based Design and Integration
Platforms ...103
10.1 Motivation and Objectives ...104
10.2 Essential Characteristics...105
10.3 Role in Future Embedded Systems ..108
10.4 Overall Challenges and Work Directions...109
10.5 Document Structure ...112

11 Component-Based System Development ..114
11.1 Lifecycle of Component-Based Systems..114
11.2 Lifecycle of Components ...117
11.3 Issues Specific for Embedded Systems ..117
11.4 Summary and Conclusions...118

12 Current Design Practice and Needs in Selected Industrial Sectors................120
12.1 Automotive...120
12.2 Industrial Automation ..124
12.3 Consumer Electronics ..129
12.4 Telecommunication Software Infrastructure......................................131
12.5 Avionics and Aerospace...134
12.6 Summary and Challenges...136

13 Components and Contracts..139
13.1 Introduction..139
13.2 Level 1 – Syntactic Interfaces ..140
13.3 Level 2 – Functional Properties..143
13.4 Level 3 – Functional Properties..145
13.5 Level 4a – Timing Properties ...147
13.6 Level 4b – Quality of Service ..153
13.7 Specifying and Reasoning About Contracts: Summary and

Analysis..158

14 Component Models and Integration Platforms: Landscape...........................160
14.1 Widely Used Component Models ..160
14.2 Component Models for Embedded System Design............................172

 Table of Contents XIII

14.3 Integration Platforms for Heterogeneous System Design181
14.4 Hardware/Software Modelling Languages...186
14.5 Component Models and Integration Platforms: Summary and

Conclusions..187
14.6 Component Libraries: Approaches to Component Retrieval..............189

15 Standardization Efforts..194
15.1 Specification Standards ..194
15.2 Implementation Technology Standards..202
15.3 Conclusions and Challenges...203

16 References ...204

Part III: Adaptive Real-Time Systems for Quality of Service Management

17 Executive Overview on Adaptive Real-Time Systems for Quality of
Service Management ...216
17.1 Motivation and Objectives ...216
17.2 Essential Characteristics...217
17.3 Role in Future Embedded Systems ..218
17.4 Overall Challenges and Work Directions...220
17.5 Document Structure ...225

18 Adaptive Real-Time System Development ...227

19 Current Design Practice and Needs in Selected Industrial Sectors................229
19.1 Industrial Sector 1: Consumer Electronics in Philips.........................229
19.2 Industrial Sector 2: Industrial Automation ...232
19.3 Industrial Sector 3: Consumer Electonics: Ericsson Mobile

Platforms ..237
19.4 Industrial Sector 4: Telecommunications – The PT-Inovação

Case Study..240

20 Real-Time Scheduling ...242
20.1 Landscape...242
20.2 Assessment...248
20.3 Trends...248
20.4 Recommendations for Research...252
20.5 References..254

21 Real-Time Operating Systems...258
21.1 Landscape...259
21.2 Assessment...275

XIV Table of Contents

21.3 Trends...279
21.4 Recommendations for Research...282
21.5 References..283

22 QoS Management ..287
22.1 Landscape...287
22.2 Assessment...294
22.3 Trends...295
22.4 Recommendations for Research...299
22.5 References..300

23 Real-Time Middleware..305
23.1 Landscape...306
23.2 Assessment...310
23.3 Trends...311
23.4 Recommendations for Research...313
23.5 References..314

24 Networks ...316
24.1 Landscape...316
24.2 Assessment...325
24.3 Trends...326
24.4 Recommendations for Research...333
24.5 References..335

25 Programming Languages for Real-Time Systems ...338
25.1 Landscape...338
25.2 Assessment...344
25.3 Trends...346
25.4 Recommendations for Research...347
25.5 References..349

26 Other Issues ...352
26.1 Power Awareness ...352
26.2 Media-Processing Applications..358
26.3 Integrating Real-Time and Control Theory..358
26.4 Probabilistic Time Analysis ...365
26.5 Hardware Trends..369

 Table of Contents XV

Part IV: Execution Platforms

27 Executive Overview on Execution Platforms..373
27.1 Motivation and Objectives ...373
27.2 Essential Characteristics...374
27.3 Role in Future Embedded Systems ..374
27.4 Overall Challenges and Work Directions...374
27.5 Document Structure ...375

28 Current Design Practice and Needs in Selected Sectors................................377
28.1 Automotive Industry ..377
28.2 Mechatronics Industry..383

29 Computing Platforms ..388
29.1 Multiprocessor Systems – Modelling and Simulation........................388
29.2 Distributed Embedded Real-Time Systems – Analysis and

Exploration...406
29.3 Reconfigurable Hardware Platforms ..423
29.4 Software Integration – Automotive Applications...............................440

30 Low Power Engineering ..450
30.1 Power-Aware and Energy Efficient Middleware450
30.2 Memory Hierarchy and Low Power Embedded Processors464

Index ...479

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 1 – 9, 2005.
© Springer-Verlag Berlin Heidelberg 2005

1 Executive Overview on Hard Real-Time
Development Environments

1.1 Motivation and Objectives

This is a roadmap for research in hard real-time systems. We intend it to be a roadmap
for research, rather than for R&D in general. As such, it takes a longer view and has a
more speculative approach than a typical industrial roadmap. Moreover, it shifts its
focus from the topics traditionally referred to by hard real-time to topics that we be-
lieve carry the strongest research needs.

Traditionally, hard real-time includes task scheduling, real-time OS and executa-
bles, and “meeting deadlines” as the ultimate objective. These topics are indeed cov-
ered in part III of this document, but as the background for the OS needed to support
Quality of Service (QoS) requirements in future real-time systems. The argument can
be made that research on task scheduling should shift to adaptivity and QoS issues.

Is Research on Hard Real-Time Systems Still Needed?

We believe research on pure hard real-time systems is still needed, but that it now
needs to focus on issues other than RTOS and deadlines. Hard real-time systems de-
sign has become part of a larger engineering activity: designing embedded systems
for control or information processing. Said differently, Hard real-time systems are just
part of intelligent devices that cannot work without being controlled and supervised
by computers. Research on hard real-time must therefore shift from a single-
technology research to the broader perspective of systems design.

Therefore, this Part I of the roadmap is about hard real-time and related issues aris-
ing in embedded systems design. It focuses on the entire design flow and the theories,
methods, and tools needed to support it.

A number of theories are available: scientific engineering modelling for physical
systems and their control, theories supporting verification and validation, theories
supporting timing and other extra-functional analyses, theories supporting code gen-
eration, and theories supporting testing. Related tools and paradigms are also numer-
ous and the resulting set of technologies is surprisingly rich. As we shall see, there are
many subjects for difficult and relevant research in hard real-time systems design.

Who Should Read This Document?

Venture capitalists may prefer gather their data from other sources, better documented
in terms of Return on Investment (RoI). However, we believe that anyone interested
in future technological trends and emerging research issues in this area will benefit
from this document. The reader should be warned that we have favoured depth and
novelty of the information as opposed to comprehensive and balanced coverage. We
have not included existing technologies that are relevant and would have found their
place here. But we hope – and we do believe – that we did not miss what will be the
important ideas for the next 10 years.

2 1 Executive Overview on Hard Real-Time Development Environments

How Should This Document Be Read?

Browsing the document can bring sources of inspiration and directions for research.
The sections on advanced technologies are well documented, and provide a number of
useful web links. A list of contributors is provided in the roman pages. We encourage
the reader to address questions and comments to the contributors.

1.2 Essential Characteristics

There is no clear-cut definition for Embedded Systems. We will refer to Embedded
Systems as electronic programmable sub-systems that are generally an integral part of
a larger heterogeneous system. Embedded systems play an increasingly important role
in the added value of advanced products that are designed and manufactured in
Europe.

The following general statements are quoted from the Embedded Systems Road-
map 2002, published by the Technology Foundation of the Netherlands (STW),
(http://www.artist-embedded.org/Intranet/Roadmaps/STW-roadmap.pdf).

The importance of embedded systems is undisputed. Their market size is about 100
times the desktop market. Hardly any new product reaches the market without em-
bedded systems any more. The number of embedded systems in a product ranges
from one to tens in consumer products and to hundreds in large professional sys-
tems. […] This will grow at least one order of magnitude in this decade. […]

The strong increasing penetration of embedded systems in products and services
creates huge opportunities for all kinds of enterprises and institutions. At the same
time, the fast pace of penetration poses an immense threat for most of them. It con-
cerns enterprises and institutions in such diverse areas as agriculture, health care,
environment, road construction, security, mechanics, shipbuilding, medical appli-
ances, language products, consumer electronics, etc.

Because they are applied in a wide variety of industrial sectors, embedded systems
require a large number of different skills, including principally: Skills for their design:
application domain expertise, architectural design, application software, middleware,
hardware design, fault tolerant design, safety techniques, verification and testing, just
to name the most important areas. Embedded systems have been available for many
years, yet there is a lack of a well-identified technical or academic discipline to sup-
port their design as they become more complex. The near absence of curricula in
Europe dedicated to embedded systems is significant. There is indeed a strong need to
establish the foundations of an engineering discipline that makes integration and
multi-disciplinarily its flagship.

The increasing dependency on software is an essential characteristic of modern
embedded systems and as such, it is the main focus of the Artist Roadmap.

Real-time embedded systems are of particular interest to the European community.
Real-time embedded systems interact continuously with the environment and have
constraints on the speed with which they react to the environment stimuli. Examples
are power-train controllers for vehicles, embedded controllers for aircrafts, health
monitoring systems and industrial plant controllers. Timing constraints introduce

 1.3 Role in Future Embedded Systems 3

difficulties that make the design of embedded systems particularly challenging. We
classify as hard real-time (HRT) the embedded systems that have tight timing con-
straints, i.e., they are difficult to achieve and they may not be violated, with respect to
the capability of the hardware platforms used. HRT constraints challenges the way in
which software is designed at its roots. Standard software development practices do
not deal with physical properties of the system as a paradigm. We need a new system
science where functionality is married to physical aspects. The roadmap presented
here focuses on the design of distributed hard real-time embedded systems with par-
ticular emphasis on software.

We intend it to be a Roadmap for research, rather than for R&D in general and as
such, it takes a longer view and has a more speculative approach than a typical indus-
trial roadmap.

1.3 Role in Future Embedded Systems

The general trend for the future is that more systems and objects will contain com-
puter-controlled components. The increasing role of embedded electronics in systems
such as automobiles, trains, planes, power systems, military systems, consumer elec-
tronics, and other telecommunication systems is discussed in detail throughout this
document. However, the set of applications that use embedded systems will continue
to grow exponentially.

Emerging sensor systems technologies, often distributed and autonomous, will call
for more embedded signal and information processing power. Most of it will consist
in adaptive (not hard) real-time processing, however. Autonomy, adaptivity, commu-
nicating ability, and higher number crunching capability, will be the main issues. We
do not expect issues of hard real-time to be central for such distributed, autonomous,
sensor systems.

However, there is a trend to design more devices that will require an associated
computer control system. Perhaps the most well-known such systems are aircraft:
they simply could not fly without computer control, because they have inherently
unstable flight modes. This trend is increasing significantly, as designing systems that
would be naturally unstable opens up new possibilities and increases opportunities for
better performance. Consumer electronics products including disk drives, or remote
manipulators used in surgery also involves such technology. The joint design of de-
vices with their closed-loop control will be a domain of increasing importance.
Clearly, this is an area where hard real-time is central, since the computer system is
responsible for the reflex capabilities of the system.

Perhaps the ultimate and most challenging domain for hard real-time in the future
will be in Micro Electro-Mechanical Systems (MEMS). MEMS are considered to be a
key technology for the future. MEMS devices may be able to explore blood vessels
and find their path inside the human’s body. As they tightly combine mechanics and
electronics in both analogue and digital forms, closed loop control is an important part
of their design. Therefore hard real-time aspects are also central. However, it is our
opinion that most of the classical hard real-time technology will not be relevant to
MEMS. Task scheduling will probably not be used. Instead, the direct mapping from
specifications involving functional aspects as well as non-functional aspects related to

4 1 Executive Overview on Hard Real-Time Development Environments

power consumption, heat dissipation, and electro-mechanical characteristics will be
likely to prevail. Methods, techniques, and tools jointly addressing these different
facets of the design will be needed.

Fortunately, research efforts toward these directions are underway in both commu-
nities of EDA (with the hybrid extensions of RTL-level or system-level formalisms)
and embedded control systems design (with the need to address functional specifica-
tion, as well as architecture and software generation with power optimization).

1.4 Overall Challenges and Work Directions

The challenges described below point out that there is a need for a revolutionary ap-
proach to embedded software design.

Increasing Complexity of the Application Space

Overview
In the (recent) past, an embedded system would be either small or simple, or the com-
position of almost non-interacting imported and assembled components. The trend is
that the number and complexity of functions will increase drastically. Increasing
complexity is making the present design methodologies rapidly obsolete. Productivity
of the order of six (or less!) lines of embedded code per day per person is common in
HRT embedded systems. If we do not have a breakthrough in design methodology
and tools, the inefficiency of the embedded software development process will pre-
vent novel technology to enter the market in time. The cost of developing a new plane
(of the order of several billions of Euros) is about ½ related to embedded software and
electronics subsystems.

Work Directions
Research is needed to raise the levels of abstraction at which a design is entered.
There is almost no hope of improving productivity substantially without this step
since productivity problems originate from a number of difficulties, including verifi-
cation and testing. For embedded controllers, the name of the game is to keep the
control requirements orthogonal with respect to implementation. Then the strategic
aspect of design is the development of control algorithms.

For low-level continuous systems or components, a rich body of theory and tools
has been developed for control design. This means that control laws can be automati-
cally synthesized from higher levels specifications related to the bandwidth of the
system for control, its stability margin and its robustness margin (how much the real
system is expected to deviate from the model used to synthesize control). Although
mainly developed for linear systems, these techniques have been and are successfully
used for nonlinear systems, by using robust control design techniques. Still, some
“truly” nonlinear systems require ad-hoc designs for which existing tools provide
strong assistance, not synthesis. The situation is not satisfactory for the control of
more complex subsystems involving several modes of operation and switching poli-
cies between them, i.e., hybrid systems. While modellers such as Simulink/Stateflow
allow for the description of such subsystems and their simulation, no synthesis tech-
nique is available yet.

 1.4 Overall Challenges and Work Directions 5

From the algorithm design to implementation, we need to develop a suite of auto-
matic synthesis tools where the implementation process is fast and at the same time
highly optimized. Today, automatic code generation is available only for small parts
of the design flow, mostly for embedded code generation for single components.
Furthermore, even when available, this technique is not widely used in practice. Re-
search is needed to enlarge the target of code generation to distributed architectures.
Solving this problem requires the development of specification languages based on
rigorous semantics, which are accepted in both the control and the software engineer-
ing communities, which unambiguously represent the behaviour of the embedded
system. The semantics of Matlab/Simulink descriptions is not formally defined: the
behaviour of a system is determined by the execution of the simulators! In addition,
we need to develop models and methods to assess whether the performance of the
final implementation meets the constraints.

Interaction with the Physical World

Overview
Hard real-time embedded systems are mostly controllers, i.e., they act on physical
plants to make them behave according to a prescribed reference. This is the case for
example, for industrial system control, power-train control, flight control, and envi-
ronment control. The interaction with physical plants is the source of the hard real-
time constraints. The interaction with the physical world also comes from the imple-
mentation side of HRT systems: the physical parameters of the implementation, e.g.,
timing, power, and size, are essential for fulfilling performance and cost requirements.
This is what makes writing embedded software a substantially different task than
“standard” software.

Work Directions
Apart from the increase in complexity, the needs for the design of embedded systems
have broadened to encompass not only the functional aspects of systems, but also to
capture and analyze the extra-functional ones, such as timing and energy consump-
tion. Often the physical parameters are subject to variation. Hence, there is a link
between such extra-functional aspects of systems and hybrid systems and stochastic
systems that needs to be explored. The notion of time has played a fundamental role
in research recently both at abstract levels and at the implementation level. Timing
issues have been tackled at the abstract level introducing synchronous abstractions
(e.g., the ones incorporated into synchronous languages and time-triggered protocols
and architectures) but there is a growing interest in studying with the same mathe-
matical rigor asynchronous paradigms of various sorts. These approaches tend to
establish a formal relation between different levels of abstraction so that certain prop-
erties at lower levels are guaranteed to hold. More research will be needed to offer a
framework where coordination policies can be traded-off and chosen with a theoreti-
cal underpinning.

However, while it is possible to achieve a certain degree of separation of concerns
using theoretical approaches, the selection of implementation architecture (e.g., the
number and type of processing elements, the communication mechanisms) versus
another must be guided by some quantitative measure of performances that have to be

6 1 Executive Overview on Hard Real-Time Development Environments

abstracted at the various steps of the design. In this respect, implementation-aware
control algorithms must be researched carefully. In addition, estimation and profiling
models have to be derived and the appropriate tools to analyze the quality of the im-
plementation architecture have to be further developed to allow evaluation that is
solid and robust with respect to the obvious simplifications needed to obtain estima-
tion and profiling models.

Correct deployment of designs over distributed real-time architectures involves a
combination of theories and viewpoints. Correct deployment of discrete systems (say,
automata or a combination of these) is feasible or will be feasible in the near future,
by using recent or ongoing advances in formal methods. But how continuous control
designs and even worse hybrid systems are perturbed when distributed deployment is
performed is an open issue for research – unless very strict architectures such as TTA
(Time Triggered) are used.

Safety-Critical Nature of Designs

Overview
Many embedded controllers operate on systems that may cause severe damages to
people and property if they malfunction, i.e., they are safety critical. Clearly, the
emergence of X-by-wire technologies in the transportation industry will increase their
number and importance significantly. Safety has a dramatic impact on the design
processes and techniques used. Because of safety concerns, the embedded systems
have to have zero defects. Ideally, the design methodology should guarantee correct-
by-construction implementations of a complete specification. Complete means that no
constraint is left out and that the full functionality is considered. Today, some safety
critical systems, e.g., embedded systems for military applications and for avionic,
have to go through certification. Certification is a very expensive proposition: it re-
quires very extensive testing, and a design and product development process that
satisfy a set of tight rules on the way the development work is organized. There is,
however, no guarantee that certified software is error free. A related issue is fault
diagnosis and fault tolerance. When safety critical systems fail to function properly,
there must be a way of tracing what went wrong (fault diagnosis) and to react accord-
ingly, so that the system may continue to work through the fault albeit in a degraded
mode (fault tolerance).

Work Directions: Diagnosis
The integration of software from different vendors into a single component demands a
new approach towards fault containment, error containment and diagnosis. Hard real-
time aspects raise specific problems, but offers in turn special means to fix these.
Quick detection of a fault can be critical. Transient faults may reveal malfunctioning
that can become fatal. Fault effect propagation requires on-line sophisticated filtering
of alarms. Proper instrumentation, fault-tolerant architecture, and mechanisms for on-
line probing of the system, are needed to account for these special issues. Such
mechanisms can benefit in turn, from using hard real-time as an advantage for several
purposes, including time as a basis for fault isolation and fault containment, and fault
detection with bounded delay reaction time.

 1.4 Overall Challenges and Work Directions 7

Work Directions: Certification
The trend is to move from process-based certification to process-and-tool-based certi-
fication. This calls for new trustable tools and methods. To reduce the cost of certifi-
cation, it would be a great advantage if the certification can proceed in a modular
fashion, i.e., if certification arguments that have been developed for a particular sub-
system can be used in a modular fashion. Modular certification depends very much on
the partitioning properties provided by the distributed architecture, which in turn can
take advantage of the hard real-time nature of the system. So-called formal methods
are an essential enabling factor in support of certification; they need to scale up to
much more complex designs.

Work Directions: Dependability
Safety critical systems must achieve a dependability (a commonly used value is 1
failure in 10^9 hours) which is better than the dependability of any of its constituting
components. Such systems require a safety case that must be based on a combination
of experimental evidence and analytical modelling. In ultra-dependable systems even
a very small correlation of failures of the replicated units can have a significant im-
pact of the overall dependability. New approaches are needed to isolate component
failures and to eliminate even very low probability error propagation. In doing this,
real-time should be taken as an advantage, not as a problem.

Work Directions: Formal Methods
By formal methods, we mean fundamental techniques for analysis, validation, compo-
sition, or transformation of systems or software, in a provably sound way. Formal
methods are enabling technologies for exploring specifications and models, for vali-
dating designs against requirements, for generating code, for deploying designs on
architectures, and are a support for the certification of designs or tools. Formal meth-
ods include numerous technologies such as model checking, automatic test genera-
tion, proofs, automatic code generation from high level specifications, static program
analysis, timing analysis, code validation, theorem proving, and more; the main ones
are detailed hereafter in this document. No safety critical design will be possible in
the future without a significant use of formal methods. New domains have been in-
cluded during the last decade, in the scope of formal verification and validation. This
includes in particular aspects of timing and hybrid systems– i.e., the mixing of dis-
crete and continuous features.

Formal methods have scaled up drastically in the last decade, and this process is
going to continue even faster. In this respect, automatic code generation from high
level specifications now allows to handle quite large components or subsystems. Be-
ing more complex in nature, formal validation or analysis techniques have quite often
stayed behind the needs of real life designs. Still, skilled engineers managed to use
them by properly phrasing or decomposing their validation or analysis problems into
tractable parts. Nevertheless, it is a constant and stringent need that formal methods
and tools scale up to follow the increasing complexity of designs.

By far the most accepted means for analyzing hard real-time systems is by using
automated verification techniques such as model-checking. However, the applicability
of such techniques is restricted due to inherent theoretical limitations. To further im-

8 1 Executive Overview on Hard Real-Time Development Environments

prove the state of practice, existing techniques (such as model checking and symbolic
reasoning) should be combined and extended to yield a common methodology.

Europe has had a leading position in this area, both for specification and program-
ming tools, for verification and validation tools, and for provably safe distributed
architectures. This rich and solid background needs to be further developed to scale
up properly, and to adjust to new design methodologies, such as the ones suggested in
this document.

Complexity of Design Flows and Supply Chains

Overview
Supply chains for electronic systems are changing rapidly. System companies are re-
trenching in core competencies that favour market access and sales channels versus
product development and implementation. The electronics industry is increasingly
disaggregating: new opportunities are now opening up for subsystem and component
suppliers. These dynamics are stressing the interfaces among the supply chain players.
Several quality problems and time-to-market delays can be traced to specification and
system integration difficulties. Among the most challenging supply chains to support
are the automotive and avionics chain.

Work Directions
The complexity of supply chains has several consequences. Firstly, it calls for a de-
sign approach at the level of each component (systematically investigated by the
“components” action roadmap), offering means to specify components to suppliers
and facilitate their subsequent integration. Secondly, the strategy of systems integra-
tors for preserving added value will put virtual prototyping and platform-based design
in the fore (see the landscape on automobile, in this document).

Research performed over the last decade has shown that notations and formalisms
can be developed, that are at the same time familiar to the engineer, and still based on
a solid mathematical basis – examples of such are the synchronous languages with
their associated GUI. Such techniques have naturally offered specification tools asso-
ciated with formal validation methods, and even certifiable code generation. Although
large, the range of applicability of such results still does not encompass the whole
design flow for hard real-time. The scope needs to be enlarged to cover physical sys-
tems modellers and scientific engineering tools, as well as more general system mod-
elling techniques such as UML.

It is the essence of embedded systems design that diverse tools based on different
paradigms coexist within the overall design flow. This situation will continue.

Integrating these tools has become a major concern. Scientific engineering tools
and physical systems modellers, on the one hand, and formal verification, code gen-
eration over distributed architectures on the other hand, will continue to rely on dif-
ferent underlying paradigms. Should UML establish itself as an overall framework for
the entire design process, the issue would still remain in the form of the coherence
among the multi-faceted semantics supporting the different views and profiles. Thus
paradigm integration emerges as the needed mathematical foundation to support the
semantic integration of different tools and frameworks.

 1.5 Document Structure 9

Research must be done on open semantics, to support smooth transitions between
different technologies along the design flow. Paradigm integration emerges as the
necessary mathematical foundation to support the semantic integration of different
tools and frameworks. Paradigm integration is not the exercise of embodying different
paradigms into a “most general” one, since this would require developing tools to
handle this “most general” framework, something not possible due to complexity
issues. The objective is rather to develop approaches that will upgrade existing tools
with semantic adaptors toward tools supported by other paradigms.

1.5 Document Structure

The rest of the document is organized as follows.
Section 2 briefly reviews existing development practices, and introduces the

emerging platform-based approach.
Section 3 analyses the landscape by reporting on current design practices. We have

chosen to focus on selected industrial sectors, which we believe will drive the evolu-
tion of design practices: automobile, aeronautics, mobile telecommunications, and
automation. For each sector, we have tried to be as specific as possible, sometimes by
highlighting the design aspects of particular systems for which hard real-time is an
important factor. We believe this section conveys a rich body of information. It sig-
nificantly influenced the findings and recommendations.

Sections 4 – 8 review the building blocks and technologies that are available to
support the design process. We review established technologies. But we have also
decided to include less mature building blocks, since we believe this is the duty of an
academic roadmap on research. Again, we warn the reader that our list may not be
exhaustive, but we have done our best at reporting the most striking technologies
available. For each building block, we give a description, its rough position in the
design flow, pointers to tools; then – and most importantly – we formulate misses,
needs, and detailed recommendations for research.

Section 9 presents the results from recent projects covering methodology issues.
Our selection is obviously biased: while we are pretty convinced that the projects we
have selected provide added value, we have certainly omitted other projects that could
have been interesting.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 10 – 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Hard Real-Time System Development

2.1 Brief Discussion of Current Practice: The V-Shaped Lifecycle

The traditional hard real-time embedded system development process follows the
standard V-shaped lifecycle, shown below in its simplest format.

Requirements Capture &
Exploration

Programming &
Code Generation

Verification & Validation

Middleware for Execution

Unit Testing

System
Testing

Requirements on
COTS & components

Integrating COTS
& components

Verification & Validation

Figure 2.1. The traditional V-shaped lifecycle

Each phase can be further detailed or refined into several steps. The way the V-cycle
is detailed and implemented varies significantly within the different between teams in
embedded systems.

Key points are the following:

Each phase is now supported by a well-defined methodology and supported by
advanced tools with (mostly) well-accepted notations. Some of these tools and
technologies are reviewed in later sections.
Even today, a very small amount of advanced Verification and Validation (V&V)
is performed. By advanced, we mean supported by formal methods or semanti-
cally-sound model checking or other similar verification techniques. Today, V&V
mainly amounts to code inspection, sometimes assisted by tools, but without the
added value of formal technologies. Of course, the EDA sector is far more ad-
vanced in the use of novel V&V technologies.
The transition between the different stages requires careful manual inspection and
cross-checking, and this is frequently error-prone. This is made even worse by the

 2.2 An Emerging Approach: Platform-Based Design 11

diverse nature of the skills, cultural backgrounds, and associated notations and
tools in use by the different teams that participate in the overall design. For exam-
ple, application domain engineers need to cooperate with software developers and
electronics designers. They all use different tools based on different paradigms.

This situation has some important consequences. The design of unitary devices or
small embedded systems is today reasonably well instrumented and does not require a
strong investment from the research community. In contrast, designing complex sys-
tems where embedded computing plays an important part is still a formidable chal-
lenge. Dealing with the integration of components as well as the unavoidable hetero-
geneity resulting from a multidisciplinary design team requires heavy investment in
research. Elements and guidelines for this are provided in the next sections.

2.2 An Emerging Approach: Platform-Based Design

In this section we present the design methodology that we like to advocate, namely:
platform-based design. In its ultimate form that we discuss here, it originates and
benefits from several sources. First and foremost, platform-based design is already in
use in EDA industry. It has been promoted and advocated in the embedded systems
industry, by A. Sangiovanni-Vincentelli (see references below). To put this design
methodology in perspective with respect to research performed in the last years, we
have collected in section 9 some projects that addressed this issue.

The reader can also refer to the MOBIES (http://www.rl.af.mil/tech/programs/
MoBIES/) project, not discussed here – Model Based Integration of Embedded Soft-
ware. MOBIES is a DARPA-funded US project on application-independent methods
and design tools for embedded systems.

The T-Lifecycle

The metaphor of the “V” was adequate to describe past and current practice, as it
scans the design process, from highest levels down to lowest ones, and backward up
to integration. Moves in the lifecycle have consisted and will consist in automating
some of the steps of the V. Thus we feel that the V-metaphor is no longer adequate
and we like to re-discuss it.

The study of the Setta and SafeAir projects in section 9 reveals that engineers have
placed efforts in shifting the focus of the designer at higher levels of the design flow,
moving towards what we call a T-shaped lifecycle:

In SafeAir, the Y-cycle has been proposed as a metaphor: regard the Y as a
smaller v put on top of the vertical bar of the Y; the v represents the focus on
higher level phases, and the vertical bar indicates (certified) automatic code gen-
eration and automatic code validation.
Setta recommends a VVV-cycle (or 3V-cycle), in which the first V corresponds to
control engineering task with its rapid prototyping, the second V represents sys-
tems rapid prototyping, and the third V addresses system development for the final
target hardware. As seen in the Fig.2 of Setta, information is extracted from ele-
ments involved at second and third V’s, for feeding back as abstract parameters
(e.g., related to timing) to the virtual exploration performed in the first V.

12 2 Hard Real-Time System Development

Thus the SafeAir project introduces the concept of mapping, whereas the Setta project
introduces the concept of platform for virtual exploration, in which (some abstraction
of) the execution infrastructure is reflected at higher levels and earlier phases of the
design flow in support of the exploration.

We feel that this vision should be pushed further, by allowing for a platform-based,
multi-level virtual exploration. There is no reason to require that all parts of the sys-
tem be explored simultaneously with the same level of granularity. For example,
when specifying a subsystem to be provided by a supplier, it is desirable to detail the
considered subsystem while keeping the other subsystems it interacts with at more
abstract levels. Unfortunately, neither the V, nor the 3V, nor the Y, supports the
multi-level aspect as a metaphor.

The concept of the “T”-shaped lifecycle better reflects this. The horizontal bar of
the T refers to the tool assisted exploration of the design space, as described below.
The vertical bar of the T refers to the automatic mapping of the selected design down
to the execution platform.

Platform-Based Methodology

The central principle of this methodology [San02] is a paradigm shift in design, veri-
fication, and test methodology, which has emerged recently.

The platform-based design paradigm is a meet-in-the-middle approach. It leverages
the power of top-down methods and the efficiency of bottom-up styles. The design
process is viewed as a stepwise refinement of a specification into a lower level ab-
straction chosen from a (restricted) library of available components. Components
are “computational” blocks and interconnect. This library is a platform. In this
view, a platform is a family of designs and not a single design. A platform defines
the design space that can be explored. Once a particular collection of components
of the platform is selected, we obtain a platform instance. The choice of the plat-
form instance and the mapping of the components of the specification into the
components of the platform instance represent the top-down process. In this proc-
ess, constraints that accompany the specification are mapped into constraints on
the components of the platform instance. Mapping often involves budgeting, since
a global constraint may have to be distributed over a set of components.
The stepwise refinement continues by defining the selected platform instance as a
specification and using a lower level platform to march towards implementation.
Whenever a component is fully instantiated the stepwise refinement stops since
we have an implementation for that component.
When selecting a platform instance and mapping constraints using budgeting, it is
important to guide the selection with parameters that summarize the characteristics
of the components of the platform. Delay, power consumption, size and cost are
examples of such parameters. When selecting a platform instance it is important to
be able to evaluate quickly and with the appropriate accuracy what the perform-
ance of the design will be. The selection of the parameters to use for guiding the
platform instance selection is one of the critical parts of platform-based design.
The component selection process and the verification of the consistency between
the behaviour of the specification and the one of the platform instance can be car-

 2.2 An Emerging Approach: Platform-Based Design 13

ried out automatically if a common semantic domain is found where the selection
process can be seen as a covering problem. The concepts of platform-based design
can be used to describe the entire design process from specification to algorithms,
from architecture selection to code generation and hardware design even when the
design style chosen is ASIC. The framework is the same. The platforms are differ-
ent. The number and the location of the platforms in the design abstractions, the
number and the type of components that constitute a platform, the choice of pa-
rameters to represent the components are critical aspects of the method.
Platforms form a stack, from design specification to implementation. There are
platforms that demark boundaries that are critical in the electronics supply chain:
these articulation points warrant particular attention. We call an architecture plat-
form the articulation point between system architecture and micro-architecture.
Micro-architecture can be seen as a platform whose components are architectural
elements such as microprocessors, memories, interfaces. This articulation point is
where the application engineer maps his/her design into a “physical” support. To
find the common semantic domain we need to abstract these components via an
operating system, device drivers and communication mechanism. In this domain
the hardware components are seen as supporting the execution of the behaviour of
the specification. Another essential platform is the one that corresponds to the
layer that separates design from manufacturing.

The essence of the method is captured in the figure below where the articulation point
shown as the vertex of the two triangles represents the common semantic domain. In
particular, the figure focuses on the most important level of abstraction for our discus-
sion: the separation between application and implementation platform. The articula-
tion point is effective in decoupling the design of application versus the selection of
architecture and the successive refinements into an implementation. It shows that if
we are given a system platform then several applications can be mapped into it and
the parameters obtained by the design space export can be used to estimate the per-
formance of the application onto the platform of choice. By the same token, if the
application space is known, then the “platform instance” could be optimized accord-
ing to the needs of the application space.

Platform-based methodology sets some significant challenges:

Characterizing complex components such as communication busses or sophisti-
cated microprocessors and DSPs, in terms of their architectural behaviour and
physical parameters (WCET, power consumption, heat dissipation…).
Defining a common semantic domain where the mapping processes can be repre-
sented formally.
Developing a framework where these principles could be effectively used. This
implies also populating the framework with synthesis, formal verification and
simulation tools.
The platform-based design principles at the top-most level of abstraction call for a
semantic platform where models of computation could be integrated and chosen as
the first refinement step towards the final implementation. This implies that re-
search needs to be carried out in novel terms with respect to the most popular de-
sign methods that are based on well-known models of computation and their com-
position.

14 2 Hard Real-Time System Development

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System Platform (HW/SW

The platform-based design approach can serve as an integration back-bone for
particular design flows, tools and methodologies that are particularly suited for
specific application domains.

References

[San02] A. Sangiovanni-Vincentelli, Defining Platform-based Design, EEDesign, March
2002.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 15 – 38, 2005.
© Springer-Verlag Berlin Heidelberg 2005

3 Current Design Practice and Needs in Selected
Industrial Sectors

3.1 Automotive Systems

Industrial Landscape

The overall automotive industry structure is different in the US versus Europe and
Japan that share some similarity. In the US, subsystems manufacturers are the results
of spin-offs from GM (Delphi) and Ford (Visteon) and cannot be considered as inde-
pendent as the European subsystem auto makers. In addition, Ford and Gm have
hardly invested in the recent past to improve substantially their design methods. It is
common belief, and we concur with this assessment, that the European automotive
industry is the most advanced in terms of quality and design approaches.

Today, European car manufacturers provide specifications to subsystem suppliers,
such as Bosch, Siemens and Magneti-Marelli, who design software and hardware
subsystems that may include mechanical parts (e.g. injectors and throttle bodies) [1].
These subsystems are based on Integrated Circuits (IC) that are procured from the
main IC suppliers such as Motorola, TI, Hitachi and ST and on Intellectual Property
(IP) that come from a variety of sources: for example, software companies, such as
WindRiver and ETAS. In general, volumes are large, and cost is a major driving
force. Once the subsystems are provided back to the car manufacturers, they have to
be integrated on the car and then the overall system must be tested. If the car manu-
facturer detects errors during the extensive testing period, which includes driving
under extreme conditions, a chain of engineering changes is initiated that may (and it
often does!) cause major delays in the design. The problems are today due for the
most part to software errors, to incorrect understanding of the specifications and un-
predictable side effects when the subsystems are interconnected. The loop is particu-
larly painful since testing is done when the car is almost ready for its launch on the
market.

Car manufacturers increasingly realize the importance of electronics in their busi-
ness: Daimler-Chrysler stated that more than 90% of innovation (and hence value
added!) in a car will be in electronics. BMW has indicated than more than 30% of the
cost of manufacturing a car resides in the electronic components. There is a trend in
the car manufacturing industry to bring more electronics competence in-house to
capture added value that today is going to subsystem suppliers. The strategy calls for
standards in the software and hardware domains that will allow plug-and-play of
subsystems thus reducing the strategic importance of any single subsystem supplier.
The OSEK [2] operating system requirements are an example of this policy. How-
ever, it is clear that without an overall understanding of the interplay of the subsys-
tems and of the difficulties encountered in integrating very complex parts, system
integration is increasingly becoming a nightmare. In addition, the subsystem suppliers
are trying to enlarge the perimeter of their competence to capture more added value.

16 3 Current Design Practice and Needs in Selected Industrial Sectors

Hard Real-Time Context

Today’s car electronics systems can be classified into the following categories [1]:

Infotainment/Telematics. Electronic subsystems devoted to information process-
ing, communication with outside world and entertainment [22]. The main features
are wide-band, adaptive real-time (ART) constraints, non-critical;
Power train/Chassis. Main features are hard real-time constraints, safety critical,
fault tolerant, low band (e.g. engine, brakes, steering), with subsystems being iso-
lated from one another mostly for historical reasons;
Cabin. Main features are real-time and non-critical (e.g., power windows, air con-
ditioning).

We focus on the second category of applications since it has hard real-time character-
istics.

Today’s car real-time and safety-critical electronics systems are implemented over
distributed architectures that generally include:

Several Electronic Control Units (ECU’s) communicating via:
One or more (for fault tolerant systems) networked broadcast buses controlled by
communication protocols (e.g. CAN [3], TTP [5], LIN [4], and Flex Ray [6])

In turn, each ECU includes:

Application and diagnostic software;
System software (e.g., RTOS and Communication layers);
One or more micro-controllers with local memories and communication control-
ler(s) with one or multiple channels to support redundancy for fault tolerant sys-
tems and complex bus architectures such as constellations and star couplers;
(Optional) Dual ported RAM’s for:
o Communications between bus controllers and micro-controllers within the

same ECU.
o Communications between CPU’s within the same ECU.

Automotive applications (e.g. X-By-Wire for steering and braking) have introduced a
new design dimension – the distributed nature of the system – that provides additional
complexities yet potentials for optimizations such as the reduction of the number of
needed ECUs, fewer mechanical parts, optimal performance, new functionalities
(including safety features). In fact, better use of each ECU may potentially reduce the
number of ECU’s in the distributed architecture. Notice that the re-distribution is not
always possible since in some applications the software is tied to a specific ECU

In a nutshell, the problem, as described, for example, in [7], [8], consists of distrib-
uting a pool of functions over the target architecture with a goal of satisfying the re-
quirements in terms of cost, safety, and real-time. Because of the distributed nature of
these applications, the communication protocol needs also to be accurately modelled.
A by-product of this methodology is that designers can experiment with new protocol
configurations.

 3.1 Automotive Systems 17

State of the Practice

Figure 3.1 below illustrates the typical design flow for distributed systems of a car
manufacturer (source BMW). The manufacturer is responsible for the overall func-
tionality whereas the Tier 1 suppliers deliver the control algorithms and the hardware.
This flow applies to BMW in particular.

In particular, the OEMs define the electrical architecture of the vehicle and the
tasks that each component of the architecture must carry out. The architecture is in-
fluenced by the functionality that the OEMs want to offer the market and the avail-
ability of subsystems. The requirements for the subsystems are then discussed with
Tier 1 suppliers who are responsible for delivering the entire subsystem consisting of
hardware and software parts at the agreed price and performance. Often, OEMs re-
view design practices of the suppliers, recommend (or even impose) the use of par-
ticular components of the subsystem e.g., microprocessors and real-time operating
systems, and may require to include their own software modules in the solution. The
Tier 1 suppliers not only deal with the electronic part of the component but deliver
also mechanical components such as injectors. The integration of the subsystems is
carried out at the physical level with standard communication subsystems such as
CAN busses and at the software level with communication primitives offered by
OSEK compliant operating systems. It is in this phase that problems may arise. Inte-
gration is becoming a nightmare especially when faulty behaviour is hard to isolate.
This causes disputes with suppliers and obviously costly delays and even recalls.

Tier 1 suppliers themselves use other suppliers to deliver their products. Most of
the suppliers rely upon standard parts for the computing part of their products while
they design ASICs and custom chips for the power and analogue components. IC
suppliers work in close collaboration with Tier 1 suppliers to define new computing

ECU-1 ECU-2

ECU-3
CAN BUS

Requirements

f1f1 f2f2

f3f3
ASCETASCET

MatlabMatlab

.c .c .c c .c .c ... ArchitectureArchitecture

I. Analysis
“functional network”

III. System Design
“real world assumption”

IV. Implementation
“automatic target code gen.”

VI. Production & After Sales
“handling at the garage”

II. Specification
“perfect world assumption”

V. Integration & Calibration
“step into a real car”

D
ev

el
op

m
en

t P
ro

ce
ss

Current Design Practices

Figure 3.1. Current Design Practices

18 3 Current Design Practice and Needs in Selected Industrial Sectors

platforms and to make minor modifications to their products. Recently, Tier 1 suppli-
ers requested Tier 2 suppliers to provide software layers (device drivers and BIOS)
that tend to isolate the hardware details of peripheral devices so that application pro-
grammers can develop their software in re-usable fashion.

I. Analysis
The development process starts with the analysis phase, where a functional network (a
functional network is the overall system behaviour) is developed, and continues with
the specification phase, where algorithms for each of the functional components are
defined. The system design phase determines the distribution of the functionality onto
an architectural network. In the next phase, a composition of functional components is
implemented onto the target hardware and finally the system is calibrated in the car.
The design process follows the classical “V” diagram.

II. Specification
The system functionality is specified by the car manufacturer based on an overall
analysis of the car performance and features. This functionality is decomposed into
subsystem specifications that are passed to Tier 1 suppliers. The decomposition is
performed by expert designers based on their experience and sometimes on prototypes
(lab cars). The specifications are usually given in an informal fashion via natural
language in a contract. The Tier 1 suppliers analyze the specifications and negotiate
the terms of the contract. The car manufacturer specifications may include also im-
plementation requirements and not only functional specifications, thus restricting the
design space for Tier 1 suppliers (for example, at times the micro-controllers to use
are listed in the contract). In addition, there is a growing trend for the car manufactur-
ers to require the use of internally developed software instead of relying fully on the
Tier 1 suppliers. To ease the integration problem, standards are being defined for the
communication among subsystems (e.g., TTP and Flex Ray) that have clean seman-
tics and guaranteed behaviour. An OSEK-compliant Operating System eases the inte-
gration problem.

Specifications given at different levels of abstractions are always a problem if a
rigorous design methodology is not in place that can deal with heterogeneity. In the
case of Tier 1 suppliers, the integration of foreign software modules is a severe prob-
lem especially for hard real-time systems.

III. System Design Algorithm Development
For safety-critical applications, the design of control algorithms that satisfy the func-
tional requirements is a critical step. This is common to both car manufacturers and
Tier 1 suppliers. In the recent past, algorithms were developed using pencils and pa-
per and were described using languages such as C or mathematical equations. Typi-
cally, the design of an algorithm requires both abstraction of the behaviour of the
remaining part of the system, and modelling the relevant part of the environment. The
result of this phase is the algorithm itself described as a single block or a hierarchical
sub-network. This phase is carried out either in a top down fashion (authoring) or in a
bottom-up fashion (usage of previously defined IP). Given the same system require-
ments, different algorithms may correctly implement the system functionality. The
exploration of these different solutions is performed during this phase. There is a

 3.1 Automotive Systems 19

growing trend to utilize functional design tools such as the Mathworks tool set (e.g.,
Matlab and Simulink [11]) to capture the algorithms and to perform simulation on a
mathematical model of the plant to control.

IV. Implementation and Software Design
The algorithms are implemented on a selected architecture as software modules or
hardware components. Architecture selection is often an ad hoc process based on
experience and extrapolation of present products. The selection of the integrated cir-
cuits that compose an ECU is the result of a limited search among the IC providers
that are active in the automotive space and often are based on commercial relations
among companies more than on a technical assessment of performance/price ratio.
The architecture may be adjusted during the design phase if it has problems meeting
the constraints. New software needed for novel features is “grown” over existing
modules to limit the risks of malfunctioning. Extensive experimentation on rapid
prototyping systems or on actual cars is the preferred way to verify the correctness of
the system.

Software architectures are often old fashioned and are difficult not to say impossi-
ble to port from one platform to another. The software is not cleanly partitioned into
application code, communication, design drivers, and BIOS. Given the exponentially
growing complexity of the features to be implemented in software, the problem of
software design is becoming a serious obstacle to the development of new cars.

The most advanced Tier 1 suppliers have restructured their code so that porting be-
comes affordable, thus opening up new possibilities for cost reduction and perform-
ance improvement. In addition, automatic code generation from algorithmic specifica-
tions given in structured form using capture tools such as Simulink, State Charts, and
ASCET [13], is becoming a reality. In this domain, several companies offer this kind
of tools.

However, automatic code generation eases the problem of designing software that
represents correctly a given functionality but it does not solve the timing problem.
The timing aspects of the code depend on the definition of the tasks to be handled by
the RTOS, the scheduling policy used and by the performance of the ECU. A number
of companies and tools offers scheduling analysis. The objective of this phase is to
analyze the different scheduling policies (for example cooperative and pre-emptive
vs. pre-emptive only) in order to assess the near-to-optimal software architecture. The
scheduling policy analysis can be carried out off-line and statically, for example via
Rate Monotonic Analysis, or dynamically and on-line via interactive simulations. In
this phase, the analysis relies on time budgets (task periodicity, task execution times,
etc.) provided by the user.

V. Integration and Calibration
Once the Tier 1 suppliers deliver their subsystems, the car manufacturer integrates
them in the car. This step is a most difficult one in absence of tools that help analyz-
ing the behaviour and the performance of the subsystems before a prototype of the car
is available.

Tools in this domain are mainly internal tools. For example, in the BMW flow, the
design data are exported to a proprietary database. For example, BMW has adopted
Boardnet – a customization of the Oracle database. The proprietary database data are

20 3 Current Design Practice and Needs in Selected Industrial Sectors

then used to configure the downstream tools for emulation/measurement of the com-
munication protocols (for example a TTP-Cluster Prototype board). There is a trend
towards the use of communication structures that guarantee interaction patters that
can be verified for correctness and do not have unexpected behaviour. TTP and Flex
Ray are two approaches to this problem. However, while this approach is certainly a
welcome step to improve the integration problems, it is not a panacea. The Autosar
consortium has been recently founded to alleviate the integration problems by speci-
fying appropriate standards for interfaces among different components. The aim is
allowing the OEMs to decouple the tie between hardware and software that Tier 1
suppliers impose on their products making it easier to compose modules and to make
sure that the best architecture for the vehicle is selected. Concerns are rampant in the
automotive industry worldwide in view of recent recalls due to electrical problems in
some high visibility vehicles.

In calibration, a sub-set (calibration set) of the control and regulation parameters
(characteristic values, curves, maps) of the behaviour IP’s (typically control algo-
rithms) is tuned to obtain the required performance of the controlled system. This
phase pertains also to the tuning of the parameters of the overall system functionality.
The designer defines the calibration set selecting the tuneable parameters during the
export phase. Calibration is performed on testing test-cells and on test-tracks and is a
very expensive process. Calibration engineers today are more numerous that designers,
a symptom of the state of the design methodology in use today. Expensive tools are
available to facilitate calibration from companies such as ETAS and dSpace.

The calibration effort is large in OEMs and Tier 1 suppliers alike. This activity is
heuristic and can benefit greatly from a more structured approach. For example, the
parameters to set are many and they are not independent from each other. Often, cali-
brating a parameter to fix a problem ends up causing another problem to show up. It
will be most desirable to select a set of parameters and a calibration sequence that
guarantee that once a problem is corrected, it will stay that way throughout the opera-
tion. In addition, models used in today systems are based on table look-up resulting in
a parameter per point in the tables. Hence, there is a strong correlation between design
choices and calibration efforts. Unfortunately, because of the heuristic nature of the
calibration process, it is indeed very difficult to change the methodology and go to-
wards a more rigorous process since any change will result in the need of re-training a
set of artisans of the trade.

Integration and calibration is a phase where engineers and technicians need an ex-
tensive re-training and novel skills are badly needed. We see a strong correlation
between this situation and the training and education mission of the ARTIST2 Net-
work of Excellence (http:/www.artist-embedded.org/FP6/).

Challenges and Work Directions

This design flow poses several problems [1]:

Lack of continuity: e.g. there exists a big gap between the requirement analysis
and the definition of the functional network, and between the software develop-
ment phase and the overall architecture net-list definition.
Long turnaround time: the validation of the solution can be addressed only on the
car or (at best) with some physical prototyping hardware – very late in the design

 3.1 Automotive Systems 21

cycle; the software development can only start once a hardware prototype is avail-
able and it is addressed on a single ECU.
Suboptimal and overly conservative solutions: since the flow supports a “per-
ECU” design style the design exploration concerns to exploring different schedul-
ing policies and not to the exploration of the overall distributed system including
the communication protocols. Several protocols have been introduced in the past
such as CAN, TTP, LIN, and will be introduced in the future such as FlexRay],
with the goal of providing more dependable and fault tolerant networks enabling
the step towards X-by-Wire technologies.

CADENCE CONFIDENTIAL

Design Flow

Physical Prototyping

Requirement SpecificationRequirement Specification

MappingMapping

Synthesis
Export

Synthesis
Export

Algorithm DesignAlgorithm Design

Performance SimulationPerformance Simulation

Algorithms

Architectural IPs

Algorithm Specifications

Behavioral
Modeling

Architecture
IP

Authoring

Architecture
IP

Authoring

Distributed
Architecture Analysis

Distributed
Architecture Analysis

Algorithm AnalysisAlgorithm Analysis

ECU Scheduling
Analysis

ECU Scheduling
Analysis

SW platform SW tasks Communication
Protocol

Configuration

Behavior IPs

System Model

Architectural ModelingArchitectural Modeling

Compile/Link
/Load

Compile/Link
/Load

Algorithm
Performance
Algorithm

Performance
LoadLoad

Virtual Prototyping

Environment-Test
Bench Modeling

Environment-Test
Bench Modeling

Figure 3.2. A Reference Design Flow

Because of the above issues, the development and production costs are obviously
affected. As stated in [9],

Vehicle manufacturers traditionally focus on production cost rather than on devel-
opment cost – the sensors and the actuators, along with the bare ECU, represent al-
most the entire cost for electronics in the car. However, although software does not
have a “production” cost, it is not for free! The software development costs are sky-
rocketing: today, they are about twice as much as the development costs for hardware.

This investigation is only possible by addressing the integration step at the virtual
level, and not on the car, as it is presently done. Indeed, the entire automotive industry
is trying to move tests from cars to labs, where real conditions can be emulated or
simulated at a much lower cost. The cost for setting up an experiment on a car is
about $120-$500 per hour. The time needed to set it up is about 1 hour. The number
of tests that can be performed every day is 2.

22 3 Current Design Practice and Needs in Selected Industrial Sectors

The use of a virtual environment rather than prototyping hardware for designing
and testing can significantly reduce development and production costs. If designers
were able to simulate the distributed application on their host workstations rather than
in a test track, redundancy and fail-safe system tests could be repeated after every
change in the design. Flexibility is another advantage: derivative designs (variants)
can be supported more easily – there is no need to wait for the next hardware proto-
type to run the application software. Hence, car manufacturer goals, such as better
time-to-market and reduction of development and component costs can be achieved.
As BMW management pointed out:

One of the focuses and values of a system-level design methodology and tool set is
that redundancy and fail-safe system tests can be repeated after every change in the
design. However, a valuable use of any methodology and tool set is only possible if
interfaces to the approved and existing BMW development methods and tool chains
(from specifying functionality to implementing it onto an ECU) are supported by the
flow.

This sentence summarizes well why existing tools that are de-facto standards have
to be considered.

Finding design errors and near-to-optimal functional networks and HW/SW archi-
tectures, as early as possible in the design stage is only possible by applying novel
design methodologies and integrated tool environments that deploy the concept of
virtual integration platforms (see for example [8, 14, 15]). Please note that a func-
tional network includes the overall system functionality with the definition of the
subsystems and their interfaces independent from the target architecture.

A new design methodology is being developed by a number of automotive players
including BMW, Cadence, Etas, dSpace, PARADES, Magneti-Marelli, [1, 10, 19, 15]
including three main steps: algorithm specification, virtual prototyping, and physical
prototyping. We assume the designers, given an informal specification of the (sub)-
systems, are able to specify the requirements in some (semi)-formal way (e.g. UML
[16, 17]). The overall behaviour (functional network) and architecture net-list of the
distributed system constitutes the output of this phase.

The most advanced design systems being put together today (e.g., [15, 18]) can be
summarized as follows:

Use of a virtual platform, for system testing and prototyping (HW/SW architecture)
via simulation.
Use of virtual models of the application software and the target HW/SW architec-
ture (bus controllers, CPUs, RTOS schedulers, communication protocols) to create
a virtual prototype of the entire distributed application. The application software
models are imported from other tools [15], or can be authored within the system.
The architectural models are developed within the tool (e.g. the communication
protocol model is the subject of further chapters) using a standard C++ API.
Use of virtual models of the environment/complex human-machine interac-
tions/test-benches that provide the stimuli to the system under testing – the models
are either imported from other tools such as Mathworks/Simulink or authored
within the system.

 3.1 Automotive Systems 23

The AEE project (http://aee.inria.fr) involving the French car manufacturers and sup-
pliers has targeted the same goal by developing the AIL language. Based on UML, it
allows to specify in the same framework electronic embedded architectures, from the
highest level of abstraction to the lowest level: the Vehicle Project to capture require-
ments in terms of services taking into account vehicle variants, Functional Architec-
ture to decompose service in functions and sub-functions, Software Architecture to
describe functions with reusable software components cooperating through the ICEM
(Inter Component Exchange Manager) middleware, Hardware Architecture to describe
ECU’s, networks, and gateways if several networks are used, and finally Operational
Architecture to describe the mapping of Software Architecture onto Hardware Ar-
chitecture.

This language is used with a proprietary editing tool to create or update vehicle
data-bases. In addition, simulation, mapping, and code generation tools defined in the
project are applied to Vehicle Projects at different architecture levels, extracted from
the data-bases through API. Exchanges between car manufacturers and suppliers are
also modelled in this language to simplify and clarify these complex issues. They may
share parts of data-bases through a XML common format.

We believe that the major advantages of these emerging approaches are the shift from
a “per-ECU” tool-supported design style, where each ECU is considered separately,
the design exploration is limited to one ECU at the time and the integration step is
done later in the design process directly on the car), to:

an integrated design style, where the entire network of ECU’s is modelled along
with the application and base software used to customize the platform for a par-
ticular car series, the integration is done at the virtual level.
automatic configuration of tools for protocol analysis and implementation based
upon the results provided by the simulations of the virtual model. For example,
once the designer has decided how to distribute the pool of functions on each
ECU, a downstream code generation tool can use this information (number of
tasks needed, scheduling policies, etc) to generate the RTOS scheduler. At the
same time, the downstream tools for communication protocol analysis can be con-
figured based upon the configuration data determined at the virtual level (type of
protocol, frame packaging, communication cycle, redundancy management poli-
cies, etc.). Thus, a step that is currently manual or requires intensive user’s inter-
vention (e.g. the designer needs to explicitly specify the messages that are sent
over the network bus) is supported automatically in our flow.
Simplified estimation of temporal performance during earliest design phases even
before implementation. Typical examples are software task execution times and
network communication latencies. The provision of these estimates may consid-
erably shorten algorithm and platform (single ECU or Network) exploration.

References

[1] A. Sangiovanni-Vincentelli, Automotive Electronics: Trends and Challenges,
Convergence 2000, Detroit (MI), USA, October 2000

[2] OSEK, http://www.osek-vdx.org

24 3 Current Design Practice and Needs in Selected Industrial Sectors

[3] Robert Bosch, CAN Specification, Version 2.0, Technical Report ISO 11898,
Robert Bosch GmbH, 1991

[4] LIN, http://www.lin-subbus.org
[5] H. Kopetz and G. Gruensteidl, TTP – A Time-Triggered Protocol for Fault-

Tolerant Real-Time Systems, in Proceedings of the 23rd IEEE International Sym-
posium on Fault-Tolerant Computing (FTCS-23), 1993. Toulouse, France: IEEE
Press

[6] Flex Ray Consortium, http://www.flexray-group.com
[7] T. Demmeler, P. Giusto, A Universal Communication Model for an Automotive

System Integration Platform, Proc. Of DATE 2001, March 2001.
[8] Stefan Poledna, Markus Novak, TTP scheme fuels safer drive-by-wire,

http://www. eetimes.com/story/OEG20010306S0042, March 2001
[9] Ulrich Freund, Alexander Burst, Graphical Programming of ECU Software – An

Interface Based Approach, white paper, ETAS GMBh, 2001.
[10] A. Ferrari, S. Garue, M. Peri, S. Pezzini, L.Valsecchi, F. Andretta, and W. Nesci,

The design and implementation of a dual-core platform for power-train systems,
Convergence 2000, Detroit (MI), USA, October 2000

[11] Mathworks/Simulink, http://www.mathworks.com
[12] Cadence Design Systems, Inc., Virtual Component Co-design (VCC), http://www.

cadence.com
[13] ETAS, Ascet-SD Homepage, http://www.etas.de
[14] Charles J. Murray, Auto Industry faces media revolution, March 2001 http://www.

eetimes.com/story/OEG20010306S0035,
[15] Paolo Giusto, Jean-Yves Brunel, Alberto Ferrari, Eliane Fourgeau, Luciano

Lavagno, and Alberto Sangiovanni-Vincentelli, Automotive virtual integration plat-
forms: why’s, what’s, and how’s, Proc. Of the Int. Conf. on Comp. Des., July 2002.

[16] Automotive UML homepage, http://www.automotive-uml.com/
[17] Grant Martin, Luciano Lavagno, Jean Louis-Guerin, “Embedded UML: a merger

of real-time UML and co-design”, CODES 2001, Denmark, April 2001
[18] Paolo Giusto, Thilo Demmeler, Peter Schiele, Translating Models of Computation

for Design Exploration of Real-Time Distributed Automotive Applications, DATE
2002.

[19] G. Bombarda, G. Gaviani, P. Marceca, Power-train System Design: Functional and
Architectural Specifications, Convergence 2000, Detroit (MI), USA, October 2000

3.2 Aeronautics: A Case Study

This text is the result of a meeting held at Airbus France, in Toulouse, on February 7,
2003. The objective of this meeting was to study and report the practice of embedded
software development for one particular hard real-time system, namely flight control.
This text has been approved by the two participants from Airbus. The discussion
covers also closely related subsystems, e.g., some aspects of autopilot. Participants in
the meeting were:

ARTIST: A. Benveniste, B. Bouyssounouse, P. Caspi.
Airbus France: Hervé Le Berre (flight control), and Dominique Brière (System
senior expert).

 3.2 Aeronautics: A Case Study 25

Industrial Landscape

There are several teams organized by specific skills, which cover the entire flight
control system in manual and automatic control mode. These cover all series of Air-
bus aircraft, over their whole lifecycle, from the upstream preliminary studies (Re-
search) through certification, down to the subsequent upgrades over the aircraft life-
time (new aircraft versions, in service problem analysis…).

The relevant skill areas and corresponding teams are: system architecture, flight
control surfaces, Certification/Validation, flight control laws, quality assurance. All
these teams belong to the same organizational “domain” (EYC) of the System Centre
of Competence (EY).

Flight Control System equipment (pilot controls, actuators, computers, sensors…)
are designed and developed by vendors following specifications issued by the EYC.
Note that flight control computers are now designed, qualified, manufactured by an
internal AIRBUS supplier.

Transversal the teams, there is an organization by programmes (e.g., A380). This is
an organization of integrated groups mixing different skills and focusing on one pro-
ject after the program launch (preliminary studies are performed by the skill depart-
ments); while this has considerable advantages for project development, it causes
difficulties in keeping background and knowledge throughout the different projects.
One responsibility of the skill department is to compensate these difficulties by select-
ing common methods and tools, by organizing exchange of experience, reviews, by
validating program main choices.

An important evolution in the A380 project consists of integrating together – in the
same computer – the flight control and autopilot functions (they were separate be-
fore). Thus, more functions will be integrated together. In A380, non critical functions
use IMA (Integrated Modular Avionics) modules. But critical functions still use spe-
cific hardware modules with their own architecture. There is a tendency to migrate
more functions under IMA.

Problem: there is no single engineer mastering the whole Flight Control computer
subsystem, due its complexity and criticality. This will not change in the future, the
tendency being to introduce new functions.

State of the Practice

High-Level System Requirements
Some new technologies are available from R&D as prototypes, and one important
first step is to decide which new technology to use – for example new data acquisition
principle or a new CPU core, or new communication buses at aircraft level ,or com-
puter level.

When the project is launched, some high level requirements are formulated includ-
ing performance and dependability issues. A key step in the design flow is the analy-
sis of dependability and fault containment. Quantitative dependability studies rely on
dedicated in-house modelling tools. The dependability exploration deals with rela-
tively small configuration faults. System architecture aspects are also set, for ergo-
nomic considerations and communality with other Airbus aircraft series. For instance,

26 3 Current Design Practice and Needs in Selected Industrial Sectors

the layout of the cockpit with side sticks. Energy, mass and power are considered as
well. These considerations lead to design choices for system and computer architec-
tures.

High level requirements are formulated in natural language. Nevertheless, their
traceability of these requirements is finely organized and carefully tracked. Tools
used are only text-and-paper. Cross-reading and cross-checking with some light-
weight in-house tools is performed.

The detailed architecture is then defined, describing the number of computers, and
the type of redundancy. Flight control computer is supplied by an internal airbus
team, for criticality reasons.

This part of the development process takes about one year. This phase iterates until
there is mutual agreement on the requirements between the Airbus and the suppliers.
Requirements may be: the computer shall accept up to 10 analogue inputs of such
type; the computer shall be able to handle a SCADE program of that given complex-
ity; MTBF for the computer is stated; environment condition to sustain are defined
(temperature, EMC, vibration…), requirements of maintainability (avoid that particu-
lar component, use of uploading etc.). Technical expertise for fine-tuning many of the
requirements resides with the suppliers.

Other aspects of the requirements consist in stating which notation or formalism
should be used; e.g., for flight control software specification, SCADE shall be used.
Guidelines of how SCADE should be used are also stated – how variables should be
named, how many boxes in a given diagram, and so on. Also the library of macros
and algorithms for use are specified. These libraries are provided in the form of
graphical notations, together with a set of math formulas (equations). The supplier
would translate this into C (for ex.).

All these requirement are set in documents called PTS (Purchaser Technical Speci-
fication, ~1000 requirements), and 3S (System Software Specification, slightly
shorter). They will become the common contractual documents for the aircraft manu-
facturer and the suppliers over the whole aircraft lifecycle, and are rigorously man-
aged.

Additional validation documents sustain PTS and 3S. (explanation, rationale, justi-
fication…).

Design and Specification of Flight Control Laws
This is a scientific and control engineering activity, developed using Matlab/Simul-
ink, with extended simulators. Flight simulators equipped with these control laws are
run. Again, this Matlab/Simulink specification is accompanied by a functional de-
scription. Multi-level simulations are performed extensively (from a detailed level up
to the encompassing the entire control law). The flight control laws are then translated
into SCADE.

The combination of the different operating modes with their control laws – the hy-
brid systems aspects – is not well supported by automatic control synthesis tech-
niques. Today, this is performed heuristically via extensive know-how and investiga-
tion, using SCADE notations. Other notations such as Stateflow or StateCharts could
be used as well. However, this is only a support for description, not a support for
assisted design (in the sense of “control design”).

 3.2 Aeronautics: A Case Study 27

On the other hand, there is always the generic requirement that mode switching
should be “smooth”, but still it has to occur quickly; a good example is the shifting
from auto to manual pilot. Fine tuning occurs at this stage, and this is the part of early
design that is most important and costly. Overall, this is considered a bottleneck.

Detailed Formal Software Specification
This is launched in parallel with the former phase. There is a textual and informal
description of the software functions (i.e. functions that will be implemented in the
computer software code), in addition to the control laws. Software is mainly dedicated
to monitoring functions (failure detection, reconfiguration) and actuator control. This
is not considered as a specification, since it is regarded informal. Still it is useful to
have it in parallel with the formal specifications. This is called “Functional Descrip-
tion” (not “Requirement” since the latter term has a strict meaning regarding certifica-
tion procedures); this happens before SCADE programming. It is sort of a detailed
course to teach and explain how the flight control software works and it is useful for
validation/verification test writing. It is not desirable that formal traceability between
these informal requirements and the SCADE specifications is granted. The intent is to
help the engineer to understand why and how things work, not to specify what the
software does.

In parallel with the above activity, the detailed SCADE specification is started. A
coarse functional architecture is defined first. The coordination between the different
computers implementing the different control laws is studied at this stage.

The Airplane Definition Document is used to support the certification of the air-
craft. The SCADE specification belongs to this level of definition, it is thus part of
what is identified and strictly managed to allow for the certification of the aircraft.
Not everything is part of the documents supporting certification.

The story leading to the use of SCADE (formerly SAO) is interesting. To work
faster, some teams would capture requirements quickly for subsystems and would
prototype, in parallel with detailed system definition; then the integration of these
partial prototypes turned out to cause a lot of problems. Historically, before the A320
was launched as 1st flight-by-wire transport aircraft, the integration teams spent very
long time in software bug tracking and fixing. Most of the bugs found were due to
incorrect interpretations of the informal specifications forwarded by control and sys-
tems engineers to software engineers. This was the motivation for creating, for the
A320, the graphical notation SAO (less formal ancestor of SCADE) – a language
understood by both system and software engineers. This helped reducing software
bugs drastically by shifting inspection earlier in the design flow.

Airbus engineers are reluctant to create yet another formal notation above SCADE,
since the problem of supporting the correctness of the translation would immediately
appear. They consider that there is little risk in fact that SCADE would become too
low level a notation in the future; the reason is that engineers want to keep proper
understanding of the considered system, which should prevent from an excessive
increase in complexity. Another important aspect is that there is no such thing like a
“draft” modification, every modification is handled like a real and final modification,
i.e., the software development methodology is fully uniform; this approach was taken
for the A320; it slowed down the early phases but reduced the overall design time

28 3 Current Design Practice and Needs in Selected Industrial Sectors

drastically. Afterwards, cross-reading by independent teams is the rule, which con-
tributes to the validation.

When receiving the SCADE specification of the flight control laws from the flight
control law department, very few modifications are performed by the systems engi-
neering department. Modifications are discussed jointly with control engineers. Dis-
tortion between the two types of teams does not seem to be an issue.

Detailed Code
Detailed code is now produced for flight control computers by Airbus internal sup-
plier, who shared SCADE code with system designers. The use of a qualified SCADE
code generator allows to suppress unit testing, and consequently to significantly re-
duce the development cycle and to increase reactivity without impairing software
quality. Only crude sequencers are used for critical parts, not sophisticated RTOS
functionalities.

Suppliers for other control systems – not specified in detail by AIRBUS – are re-
sponsible for their development chain and validation techniques. They are encour-
aged, but not bound, to work with SCADE.

Deploying on Architectures
This is supported by co-simulation. The in-house desktop simulator OCASIM is used
for full virtual exploration of the whole flight control system in combination with the
aircraft flight mechanics’ real-time model with simplified plant, the rigid body modes
and, if necessary, the first flexible modes (this simulator handles only finite difference
equations; time is discrete, not continuous).

Current R&D activity aims at determining appropriate, specific hardware equip-
ment. Today only hardened special purpose machines are considered. But this is
probably not going to continue. Special purpose computers and other hardware are
getting rapidly obsolete. One possible idea is to consider ASICs, and have an in-house
processor in the form of a SW-IP. The SW-IP would be stable, but the actual circuit
could evolve (the lifetime of an aircraft can be as much as 40-50 years!). Engineers
now want to reduce the risks and costs due to re-certification. They want to re-use
software certification, provided it is portable; hardware will evolve to avoid obsoles-
cence.

Dynamic behaviour of architectures is a key issue. For this, advanced methods for
estimating WCET are absolutely crucial. To perform accurate timing analysis, having
dedicated processor with better predictability would be desirable. These types of
processors could be useful for other industries that develop real-time, safety critical
systems (e.g., automotive). If this were the case, the market demand for such proces-
sors would be ensured.

The choice of a specific bus is a global design choice, not under the responsibility
of the flight-control team. A chosen design constraint is that that the total loss of the
AFDX bus should not be critical in the A380. This means that the aircraft may be
difficult to pilot, but there is still a possibility for survival. This means that some vital
functions bypass the AFDX bus (Switch Ethernet).

In flight control, communications are based on point-to-point Arinc 429. For some
aircraft, the Safebus (Honeywell) is considered. The possibility of using TTP busses
is also under study, which may lead to drastic architectural evolutions. Field bus tech-

 3.2 Aeronautics: A Case Study 29

nologies (e.g., CAN) become interesting and are also considered. Today, hydro/servo-
controllers do not communicate through the bus. Nevertheless, new servo-controllers
need power electronics; since there is electronics anyway, it becomes possible to use
numerical busses, not analogue ones; this opens the route to field busses. Field busses
may not be powerful enough to be used between computers. This area could be the
subject for important research.

The long-term driver for R&D has always been to reduce mass, while increasing
security. No new technology will be introduced if proof of improvement in these two
areas is not given. For example, this meant continuing with analogue technology for
large parts of the aircraft, even as the state of the art advanced far beyond this.

For deployment, the OCASIM-SCADE modeller is used for a combined architec-
ture-function simulation, and hardware equipment is considered. Part of the design is
explored in virtual but realistic detail, using a coarsely described environment. This is
done successively for different aspects, e.g., the flight control system with a model of
the aircraft and actual computer, and the real cockpit. In other cases, real equipment is
combined with a virtual aircraft.

The validation of all below-SCADE aspects (OS, etc) is under the responsibility of
the supplier.

Flight control software code is considered to be error-free, i.e. fully conform to the
SCADE specification. No flight tests are scheduled for software debugging.

Integrating Subsystems from Suppliers
Subsystem suppliers provide components. There is no software-only component. The
only components considered are whole equipments comprising plant+device+HW/SW,
and the whole is subject to integration. The use of the current methodology has re-
duced the software problems in this integration phase virtually to zero regarding unit
tests. Multi-equipment simulation is performed with the OCASIM tool; these simula-
tions are not fully accurate, however, thus there can be surprises at this integration
stage. Fine-tuning of some parameters related to the technique used in the deployment
phase can be a cause. Testing is a combination of random testing and deterministic
testing – both are needed. Testing in successively refined environments is performed
– in each case, a mix of random and deterministic exploration is performed.

Adequately covering all possible scenarios is an issue. One sensitive example is
full-scale testing of the start-up phases. Once deployed, the aircraft should start is
dependably as an automobile. Unfortunately, the testing teams are reluctant to test all
possible configurations because it is a lengthy procedure.

In-flight Tests
Next step is the test flights with a real aircraft. Flight tests are dedicated to tuning the
flight control laws and procedures, flight envelope opening etc. System behaviour is
deeply monitored during flight test by recording thousands of SCADE parameters.
Post flight analysis is performed after all test flights. Any suspected misbehaviour is
analyzed, registered, explained, and if necessary corrected by modifying the SCADE
specification. In fact, during test flights, the computers themselves are instrumented.
Dedicated busses are used to continuously emit messages; some internal SCADE
variables are continuously monitored and checked against the expected behaviour in

30 3 Current Design Practice and Needs in Selected Industrial Sectors

the specification. A question is where to put probes in the software to properly assess
the implementation with respect to the SCADE specification.

The instrumented SCADE software is preserved in commercial use; this means
some code is unnecessary, but causes no harm. Removing instrumentation code would
require re-certification. In fact, the bus also preserves the possibility of collecting
specific data on demand.

It is worth noticing that a dedicated in-flight test computer linked to the operational
flight control computers allows online switching between different predefined
branches or gains within the flight control software, thus this flight “tool” allows to
shorten the development cycle. Overall, the goal is to leave fewer burdens on the
flight tests: rely more on simulations. This is in particular true for everything concern-
ing the computer – flight tests should play no role in commercial use.

An important trend is reducing the number of test flights – relying more heavily on
simulation for validating flight control.

In the A380, remote loading of the code will be possible. This will drastically re-
duce the cost of maintenance.

Links Between Airbus and the Research Community

There are four entities for R&D at Airbus. Each Airbus entity is now becoming more
specialized; e.g., Toulouse is responsible for flight control, but there are other groups
working in this subject.

Airbus prefers to establish links with leading laboratories, which are free to dele-
gate as they wish to other teams. Airbus engineers would like to rely on such “refer-
ence laboratories” for carrying out R&D work. For example ONERA and the LEEI on
electronics are such laboratories.

ARTIST could play such a role in its areas of expertise.

Skills and Education for the Future

Is there a need for specific skills and education for embedded software development
in aeronautics? For the moment, Airbus hires specialists of aeronautics or general
systems engineering, who then learn through practice how to develop the systems.
Airbus does not consider hiring embedded software development specialists per se.
They are careful that each newly hired engineer has the minimal skills and know-how
to develop embedded systems.

Courses on “computer engineering” in schools or universities within an aeronautics
curriculum is currently considered to be low level. It is acknowledged that such edu-
cation and training is not sufficient for complex systems.

Nevertheless, there is a need for well trained engineers with specific skill in com-
puter science. For instance, using SCADE Prover is in fact much more difficult than
SCADE programming and requires specific skills. On the other hand, it is important
that specialists of embedded software have a background for understanding the appli-
cation domain specialists.

 3.3 Consumer Electronics: A Case Study 31

As a result of the discussion, we collected the following opinions:
Availability. If embedded software specialists were available, Airbus would con-
sider hiring them, in order to master new methods and tools. Alternately, teaching
more embedded software within a system engineering curriculum could be another
solution.
Scientific Engineering. Overall, Airbus would be happy to hire 10% of their engi-
neers specialized in embedded software. The main reason is their ability to perform
formal proofs of their system designs. This is required for shifting from empirical
engineering-through-practice to scientific engineering. The goal is to design in
such a way as to ease certification and validation.
In-house Skills and Know-how. Training and education related to these skills is

performed by mixing experienced and new personnel in the same teams. No in-house
“school” is organized. Reuse of existing know-how is the major driving force.

A curriculum dedicated to embedded systems in aeronautics would have too lim-
ited an audience. This could make sense only if several similar industries express
similar needs.

Challenges and Work Directions

The biggest issue is to improve the overall combined simulation of architecture +
functions. Today, the in-house tools are considered rigorous and reliable, but they are
purely discrete time, and thus do not capture all desirable aspects. Capturing continu-
ous time with full confidence and accuracy would be important. Later on, covering
partial differential equations, in particular regarding structural and aero elastic dynam-
ics should be considered.

Another important issue is hybrid system development and exploration (discrete
mode switching + continuous systems/control); developing adequate synthesis meth-
ods is an issue for longer term research.

In general, there are powerful know-how and in-house methods; and there is a need
to support/criticize this know-how by the academic community. This requires coop-
eration in confidence and mutual understanding.

3.3 Consumer Electronics: A Case Study

In this section, we provide an overview of current practice within one particular
branch of consumer electronics, namely the development of software for mobile tele-
phones. The study is based on interviews and documentation provided by two large
European manufacturers who do not want their names to be disclosed. This means
that direct quotations have not been possible.

Industrial Landscape

Today’s mobile phones are typically based on three major subsystems, (1) the ana-
logue subsystem, which interfaces to the physical environment (R/F and audio/video),
(2) the codec part, which handles the HRT aspects of the involved protocol standards
– including the digital signal processing, (3) the application part, which handles the
non-HRT parts of the protocol stacks and the end-user functionality of the phone, i.e.

32 3 Current Design Practice and Needs in Selected Industrial Sectors

connection management (audio/video dialogue), user interface, phone books, games,
etc. For 1G and 2G phones, the analogue subsystem and parts of the codec system are
often developed by sub-vendors, whereas parts of the codec system and the core part
of the application subsystem normally is developed by the manufacturers and repre-
sents a major part of their IP. Most manufacturers are outsourcing the assembly of
phones to specialist companies.

The above indicates that the mobile phone companies have strong competences
within HW/SW architecture design, DSP algorithms, GSM/GPRS protocols, static
HRT analysis, and also the development and integration of basic application services.

Hard Real-Time Context

In typical 1G or 2G phones, the analogue subsystem consists of hardware compo-
nents, the codec part is formed by a number of DSPs, and the application part is han-
dled by a single additional processor. This architecture also reflects the partitioning
into major subtasks when a new series is developed:

1) Development of the codec part, i.e. assuring the conformance to current low
level protocol standards and in particular guaranteeing that the HRT protocol re-
quirements are fulfilled. This involves both a schedulability analysis at design
time and a thorough simulation of the implemented DSP algorithms.
2) Development of the non-HRT parts of the protocol stacks – e.g. channel alloca-
tion and connection management.
3) Development of the application part, i.e. providing the specified services and
their coordination.

Roughly speaking, the basics of part (1) and (2) were developed about a decade ago,
and since then, the majority of resources have been applied on new facilities for part
(3). This situation has two important consequences:

The software architecture of the application part can be kept very simple, i.e. it
consists of a simple kernel supporting a few priority levels, a few cyclic (high pri-
ority) tasks doing the time critical parts, and a large number of (low priority) tasks
which implement the fast growing number of new facilities.
The validation of a new release consists of a (simple/static) timing validation and a
(complex/error prone) functional validation to make sure that the new facilities do
not interact with existing features.

This means that the companies have been following a development process which is
focused on the validation of functional properties. Below, we provide a summary of
the method and point out some of challenges for the development of future mobile
phones.

State of the Practice

For both companies, their development process contains more or less the following
sequential phases:

1. System Specification
The general purpose of the system.

 3.3 Consumer Electronics: A Case Study 33

2. Requirements Specification
The requirements to software, project estimates, and the project specifica-
tion with appropriate enclosures.

3. Architectural Specification
This provides the global design, where the overall architecture and behav-
iour is defined. Typically a mixture of MSC’s and ASN.1 definitions is the
applied notation. Interfaces to the environment (normally the GUI) and
other subsystems are also defined in this phase.

4. Module Specification
(or detailed design, which defines the detailed behaviour (e.g. using SDL
notation) and the detailed data structures – e.g. using class diagrams or
concrete programming language notation. In this phase MSC’s are used for
defining test scenarios, and the detailed test environment is also defined.

5. Implementation
Here the detailed design is transformed into actual code. The transforma-
tion may be automated by tool support. Also, may sometimes be auto-
mated. Also, the maintenance documentation is made in this phase.

6. Testing
Where one moves ‘backwards’ through the phases, i.e. first the individual
modules are tested using the previously defined module test scenarios (de-
fined as MSC’s). This part of the testing can sometimes be made automati-
cally using tools. Then the different (tested) components are integrated and
tested by taking the corresponding MSC’s and interface definitions into ac-
count. Finally, the acceptance test is performed based on requirements from
costumers and the experience of the developers.

As seen from the above description, the phases are treated according to the philoso-
phy of the V- model, i.e. each phase results in a refined design and also a definition of
the test scenarios that can be derived (manually) from the design:

As indicated above, work is done on automating the bottom layer of the model, i.e.
turning it into a Y-model.

The companies’ experiences with the above process are generally good – especially
for the ‘downwards’ path and also to some extent for the ‘upwards path’. However,
for the integration test and the system test, there is a lack of tool support for genera-

34 3 Current Design Practice and Needs in Selected Industrial Sectors

tion of tests with appropriate coverage (integration test) and with appropriate load and
timing (stress test/system test). As for the stress test, this has not been a severe prob-
lem until now, because most of the development efforts have been concentrating on
developing new application features which do not destroy the basic (low level) proto-
col performance – as mentioned above. However, for the integration test, this lack of
appropriate tool support has forced the companies to spend a huge part of the total
development costs on integration testing.

Challenges and Work Directions

Clearly, the mobile phone developers are currently faced with the following chal-
lenges:

1. The upcoming 3G and 4G systems will be much more demanding on tim-
ing properties and the signal processing algorithms will be much more
complicated to develop.

2. The number of different applications will grow dramatically due to the pos-
sibilities offered by the increased bandwidth. A large amount of the appli-
cations will be installed directly from open sources.

3. The applications will partly be time critical (e.g. multimedia applications).
4. Resource consumption (speed, space, power) will be a highly competitive

parameter.

This means that the requirements to their future development process will change on a
number of important issues:

1. Co-design. The growing complexity of level1-2 protocols means that the
actual distribution of HW/SW cannot be settled in the very beginning of the
development of a new product line – i.e. co-design techniques are neces-
sary.

2. Simulation for Resource Management. The introduction of power/space as
additional resource parameters implies the need for more advanced system
simulation than the discrete-time simulation seen so far – e.g. by using
tools based on Simulink.

3. QoS. The mixture of hard and adaptive (also called soft) timing properties
implies that the simplistic middleware architecture does not suffice any-
more, and the analysis of quality of service needs to be supported in gen-
eral as opposed to the present situation, where the analysis mostly has to be
made when changes are made to the level 1-2 protocols.

4. Functional and Timing Properties. The validation of a new product needs
to take both functional and timing properties into account. This clearly
makes the system test phase critical (as opposed to the present situation).

5. Component Technologies, Integration. The fast growing number of new
applications makes the need for reuse (i.e. component technologies) indis-
pensable. Also, the demands on time to market will make it impossible to
spend a large amount of development time on integration testing.

Based on the above observations it is clear that the developers of mobile phones have
to reconsider their development process so that future requirements can be handled.

 3.4 Automation Applications 35

Also, the applied middleware must be revised in order to be able to handle both hard
and adaptive timing requirements. This calls for new competences not seen so far in
the mobile phone companies, e.g. HW/SW co-design, development of formal design
models to enable test and verification, middleware platforms supporting quality of
service, and real-time component technologies.

3.4 Automation Applications

Industrial Landscape

The following assessment is adapted from the study [IPA99]. Industrial automation is
applied to control and optimize production processes and to provide high-quality and
reliable products and services by minimizing material, cost and energy waste. Exam-
ples include systems for traffic control, chemical process control, distributed produc-
tion control, machine and plant control (e.g. hydraulic presses, machine tools with
several synchronized axles, coupled robots), and agent-based manufacturing. Many of
these systems exhibit safety critical behaviour and have to observe real-time con-
straints.

Automation technology for the general public and in the service sector covers a
broad spectrum of products and systems, ranging from smart products for everyday
life to modular multipurpose robots for personal and industrial services, service robots
interacting with the environment (e.g. for maintenance or security), or simply robots
for performing an autonomous function (e.g. transport). Trends for future services are
here to entertain, inform, support, and educate the members of our society (e.g. mu-
seum guide robots) and to relieve physical and mental stressing of human beings and
provide assistance in carrying out tasks (e.g. for repair tasks in dangerous environ-
ments or surgery assistants).

Architectures of Automation Systems and Its Hard Real-Time Context

Automation systems rely on smart sensors, actuators and other industrial equipment
like robotic and mechatronics components. Open and standardized communication
networks are employed for the communication as well as configuration and control of
the various automation components. The standard architecture consists of PLCs (Pro-
grammable Logic Controllers) or DCS (Distributed Control Systems), field bus sys-
tems, and PCs as man machine interfaces as well as intelligent sensor and actuators
(e.g. frequency converters). The field bus systems gather the signals from process
level or the sensors/actuators with field bus interfaces and are directly connected to
distributed or centralized control devices (e.g. PLCs). In Europe Siemens is the mar-
ket leader in PLCs (Simatic S7) and an important supplier of DCS systems (PCS7) as
well as CNC (Computerized Numerical Control) equipment. Further on, groups of
independent suppliers of distributed control equipment (e.g. Beckhoff, Moeller Elec-
tric, or the IDA-group [IDA]) strengthen their market share.

36 3 Current Design Practice and Needs in Selected Industrial Sectors

State of the Practice

The standard IEC 61131-3 of the International Electrotechnical Commission provides
a range of programming notations suitable for implementation on PLCs
[IEC93,Lew95]. It comprises basic notations close to those in electrical engineering
like contact plans, instruction lists, and function plans as well as graphical and textual
programming notations called sequential functions charts and structured text. Cur-
rently development of software in automation technology proceeds step by step along
the lifecycle using the notations of IEC 61131-3 and different tools used in the com-
panies and provided by different PLC vendors [FV02]. The design is done function
oriented and component based. The situation is quite similar for DCS in process in-
dustry [AAF03].

A problem is that different PLC vendors use their own variants of the standard with
different syntax, semantics and tool sets [BE02]. The approaches based on IEC
61131-3 are not well suited for the development of distributed applications and appli-
cations with hard real-time requirements. An attempt to overcome this shortcoming is
the standard IEC 61499, which embeds IEC 61131-3 and allows describing distrib-
uted systems. The IEC 61499 architecture allows event-driven function blocks and
may provide a framework to integrate run-time control and diagnosis applications and
simulation for distributed automation frameworks [VH02,VHK02]. However, since
IEC 61499 embeds IEC 61131-3, the semantics remains formally ambiguous [BE02].
This hampers the integration of formal methods and tools for verification.

The standard IEC 61131-3 is implementation oriented and thus lacks of notations
for capturing high level requirements. Requirements engineering as such is not well
established as well as reuse of functional modules (software and hardware) [AAF03].
To cope with distributed (intelligent) systems in this field the description of commu-
nication and configuration of these systems needs to be solved more efficiently
[BV02]. A multi-level-multi-agents architecture which integrates all levels necessary
for a comprehensive diagnosis into a diagnostic system has been developed [KDF02].
The integration of the engineering of safety aspects and aspects of functionality is not
yet solved neither the proceeding, nor modelling concept, nor the tool integration
[Fin02].

Challenges and Work Directions

As the applications of automation become more demanding, guaranteeing the quality
of the control software becomes more and more important. However, software devel-
opment in the area of automation technology is characterized by description tech-
niques (IEC standards) that represent only a low level of abstraction from the underly-
ing PLC hardware. Furthermore, the standards have ambiguous semantics that allows
different a interpretation by each vendor. These two factors have so far hampered the
use of formal techniques to specify and verify that the software meets the required
behavioural properties.

Individual research projects have demonstrated that formal methods are in princi-
ple able to improve the quality of software. Some projects have build formal models
of the existing description techniques of the IEC standards, e.g. of sequential function

 3.4 Automation Applications 37

charts [BH02]. But these formal models are often too large to be checked automati-
cally (via model checking techniques).

To overcome these difficulties we see the following research challenges:

Building faithful and abstract models of the underlying PLC hardware and net-
working structures, to enable formal analysis and bridge the gap between the re-
quirements and the implementation level. (For initial work see e.g.
[BV02][Die01].)
Investigating semantics of existing languages of the IEC standards and relate them
to the abstract models.
Using and adapting existing concepts from software development (e.g. suitable
UML profiles) to the application area of automation technology. (For initial work
see e.g. [K-etal02][KDF02].)
Modularity and reusability of software development in this application area.
Developing tools to support the methods mentioned above.

References

[Alb02] H. Albrecht. On Meta-Modelling for Communication in Operational Process Con-
trol Engineering. Accepted dissertation. VDI Fortschritt-Bericht, Series 8, No. 975,
20 ISBN 3-18-397508-4. VDI-Verlag, Duesseldorf, Germany.

[AAF03] R. Alznauer, K. Auer, and A. Fay. Wiederverwendung von Automatisierungs-
Informationen und -Loesungen, Automatisierungstechnische Praxis 45, Olden-
bourg-Verlag, 2003.

[BE02] N. Bauer and S. Engell. A comparison of sequential function charts and statecharts
and an approach towards integration. Workshop: Integration of Software Specifica-
tion Techniques, pp. 58-69, ETAPS 2002.

[BH02] N. Bauer and R. Huuck. A parametrized semantics sequential function charts. In:
Semantic Foundations of Engineering Design Languages, Satellite Event of
ETPAS 2002.

[BV02] C. Biermann and B. Vogel-Heuser. Requirements of a process control description
language for distributed control systems (DCS) in process industry. In: Proceed-
ings of IECON’02, 28th Annual Conference of the IEEE Industrial Electronics So-
ciety, Sevilla, November 2002

[Buc02] G. Buch, Verteilte Architekturen in heterogenen Umgebungen. Congress Electric
Automation SPS/IPC/Drives, Nuernberg, Germany, November 2002.

[Die01] H. Dierks. PLC-Automata: a new class of implementable real-time automata. TCS,
253:2001, 61--93.

[FV02] K. Fischer and B. Vogel-Heuser. UML for real-time applications in automation, in
German: UML in der automatisierungstechnischen Anwendung -- Staerken und
Schwaechen, Automatisierungstechnische Praxis 44, Oldenbourg-Verlag, 2002.

[IDA] IDA group: see http://www.ida-group.org
[IEC93] IEC International Standard 1131-3, Programmable Controllers, Part 3, Program-

ming Languages, 1993.
[K-etal02] S. Klein, X. Weng, G. Frey, J.-J. Lesage, and L.Litz. Controller design for an FMS

using signal interpreted Petri Nets and SFC (I). American Control Conference,
ACC 2002, Anchorage, Mai 2002.

[KDF02] B. Koeppen-Seliger, S.X. Ding, and P.M. Frank. MAGIC – IFATIS: EC-Research
Projects; IFAC World Congr., Barcelona, Spain (2002).

[Lew95] R.W. Lewis. Programming industrial control systems using IEC 1131-3. The
Institution of Electrical Engineers, 1995.

38 3 Current Design Practice and Needs in Selected Industrial Sectors

[IPA99] J. Neugebauer, M. Hoepf, T. Skordas, and M. Ziegler. The Role of Automation
and Control in the Information Society. Study supported by the EU and conducted
by Fraunhofer Institut Produktionstechnik und Automatisierung (IPA), Stuttgart,
October 1999.

[NDS02] P. Neumann, C. Diedrich, and R. Simon, Engineering of Field Devices using
Descriptions. 15th Triennial World Congress of the International Federation of
Automatic Control (IFAC 2002), Barcelona, Juli 2002.

[Fin02] A. Rink. Entwicklung einer Methode fueur die systemtechnische Auslegung ver-
teilter und sicherheitskritischer Fueuhrungsfunktionen fuer Fahrzeugantriebe. Dis-
sertation, Bergischen Universitaet Wuppertal, Fakultaet Elektrotechnik und Infor-
mationstechnik, Wuppertal, 2002.

[VH02] V. Vyatkin and H.-M. Hanisch. Component design and validation of decentralized
reconfigurable control systems with IEC 61499, Proc. of the International Sympo-
sium on Advanced Control of Industrial Processes, pp. 215-220, June 2002, Ku-
mamoto, Japan.

[VHK02] V. Vyatkin, H.-M. Hanisch, and S. Karras, IEC 61499 as an architectural frame-
work to integrate formal models and methods in practical control engineering,
Congress Electric Automation SPS/IPC/Drives, Nuernberg, Germany, November
2002.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 39 – 53, 2005.
© Springer-Verlag Berlin Heidelberg 2005

4 Tools for Requirements Capture and Exploration

This part covers the tools and technologies which play a role in capturing and exploring
requirements, in both functional and extra-functional aspects, for embedded systems
design, with emphasis on the coupling between the functionalities and the plant for con-
trol. We propose to consider the following methods, and to classify tools accordingly:

1. Overall dependability aspects in support of architecture definition.
2. Scientific engineering tools and physical systems modellers – of course

the central tool here is Matlab/Simulink.
3. System architecture modelling, using UML – and UML tools; extend the

discussion to state-based modelling in general, dedicated to the discrete
part of systems.

4.1 Definitions of Hard Real-Time Dependability Features

A real-time computer system must react to stimuli from the controlled object (or the
operator) within time intervals dictated by its environment. The instant before which a
result must be produced is called a deadline. If a result has utility even after the dead-
line has passed, the deadline is classified as soft, otherwise it is firm. If a catastrophe
could result if a firm deadline is missed, the deadline is called hard. Consider a rail-
way crossing a road with a traffic signal. If the traffic signal does not change to “red”
before the train arrives, a catastrophe could result. A real-time computer system that
must meet at least one hard deadline is called a hard real-time computer system or a
safety-critical real-time computer system. If some portion of the deadlines can be
missed, then the system is called an adaptive real-time computer system.

The design of a hard real-time system is fundamentally different from the design of
an adaptive real-time system. While a hard real-time computer system must sustain a
guaranteed temporal behaviour under all specified load and fault conditions, it is per-
missible for a adaptive real-time computer system to miss a deadline occasionally.

Dependability Requirements

The notion of dependability covers the meta-functional attributes of a computer sys-
tem that relate to the quality of service a system delivers to its users during an ex-
tended interval of time. (A user could be a human or another technical system.) The
following measures of dependability attributes are of importance [Lap92]:

Reliability
The reliability of a system is the probability that a system will provide the specified
service until time t, given that the system was operational at t = to. If a system has a
constant failure rate, then the reliability at time t is given by

R(t) = exp(−λ (t −to)) ,

40 4 Tools for Requirements Capture and Exploration

where t -to is given in hours. The inverse of the failure rate 1/ = MTTF is called the
Mean-Time-To-Failure MTTF (in hours). If the failure rate of a system is required to
be in the order of 10-9 failures/h or lower, then we speak of a system with an ultrahigh
reliability requirement.

Safety
This is reliability regarding critical failure modes. A critical failure mode is said to be
malign, in contrast with a non-critical failure, which is benign. In a malign failure
mode, the cost of a failure can be orders of magnitude higher than the utility of the
system during normal operation. Safety-critical (hard) real-time systems must have a
failure rate with regard to critical failure modes that conforms to the ultrahigh reli-
ability requirement.

Maintainability
It is a measure of the time required to repair a system after the occurrence of a benign
failure. Maintainability is measured by the probability M(d) that the system is restored
within a time interval d after the failure. In keeping with the reliability formalism, a
constant repair rate (repairs per hour) and a Mean-Time to Repair (MTTR) is intro-
duced to define a quantitative maintainability measure.

Availability
It is a measure of the delivery of correct service with respect to the alternation of
correct and incorrect service, and is measured by the fraction of time that the system
is ready to provide the service. In systems with constant failure and repair rates, the
reliability (MTTF), maintainability (MTTR), and availability (A) measures are related
by

A = MTTF/ (MTTF+MTTR).

Security
A fifth important attribute of dependability – the security attribute – is concerned with
the ability of a system to prevent unauthorized access to information or services. Tra-
ditionally, security issues have been associated with large databases, where the con-
cerns are confidentiality, privacy, and authenticity of information. During the last few
years, security issues have also become important in real-time systems, e.g., a crypto-
graphic theft-avoidance system that locks the ignition of a car if the user cannot pre-
sent the specified access code.

Failures, Errors, and Faults

In this section, a short overview of the basic concepts that have been established in
the field of fault-tolerant computing is given. The Working Group 10.4 on Fault-
Tolerant Computing of the International Federation of Information Processing (IFIP)
has published a five-language book [Lap92] where these concepts are explained in
more detail. The core of this document details the three terms: fault, error and failure.

 4.1 Definitions of Hard Real-Time Dependability Features 41

Subsystem under

consideration

Unintended state:

Error

Cause of

error (and failure):

Fault

Deviation of actual service

from intended service:

Failure

Faults and Errors are States, Failures are Events
Computer systems are installed to provide dependable service to system users. A user
can be a human user or another (higher level) system. Whenever the service of a sys-
tem, as seen by the user of the system, deviates from the agreed specification of the
system, the system is said to have failed.

Failures
A failure is an event that denotes a deviation between the actual service and the speci-
fied or intended service, occurring at a particular point in real-time.

Errors
Most computer system failures can be traced to an incorrect internal state of the com-
puter, e.g., a wrong data element in the memory or a register. We call such an incor-
rect internal state an error. An error is thus an unintended state. If the error exists only
for a short interval of time, and disappears without an explicit repair action, it is called
a transient error. If the error persists permanently until an explicit repair action re-
moves it, we call it a permanent error. In a fault-tolerant architecture, every error must
be confined to a particular error containment region to avoid the propagation of the
error throughout the system. The boundaries of the error containment regions must be
protected by error detection interfaces.

Faults
The cause of an error, and thus indirect cause of a failure, is called fault.

Fault-Containment and Error Containment
In any fault-tolerant architecture it is important to distinguish clearly between fault
containment and error containment. Fault containment is concerned with limiting the
immediate impact of a single fault to a defined region, while error containment tries to
avoid the propagation of the consequences of a fault, the error. It must be avoided that
an error in one fault-containment region propagates into another fault-containment
region that has not been directly affected by the original fault.

Fault Containment
The notion of a fault-containment region (FCR) is introduced in order to delimit the
immediate impact of a single fault to a defined subsystem of the overall system. A
fault-containment region is defined as the set of subsystems that share one or more
common resources and may be affected by a single fault. Since the immediate conse-
quences of a fault in any one of the shared resources in an FCR may impact all sub-
systems of the FCR, the subsystems of an FCR cannot be considered to be independ-

42 4 Tools for Requirements Capture and Exploration

ent of each other [Kau00]. The following shared resources can be impacted by a fault:
computing hardware, power supply, timing source, clock synchronization service and
physical space.

For example, if two subsystems depend on a single timing source, e.g., a single os-
cillator or a single clock synchronization algorithm, then these two subsystems are not
considered to be independent and therefore belong to the same FCR. Since this defini-
tion of independence allows that two FCRs can share the same design, e.g., the same
software, design faults in the software or the hardware are not part of this fault-model.

Error Containment
An error that is caused by a fault in the sending FCR can propagate to another FCR
via a message failure, i.e., a sent message that deviates from the specification. A mes-
sage failure can be a message value failure or a message timing failure [Cri85]. A
message value failure implies that a message is either invalid or that the data structure
contained in a valid message is incorrect. A message timing failure implies that the
message send instant or the message receive instant are not in agreement with the
specification. In order to avoid error propagation by way of a sent message error-
detection mechanisms that are in different FCRs than the message sender are needed.
Otherwise, the error detection mechanism may be impacted by the same fault that
caused the message failure.

The 10-9 Challenge

Emerging X-by-wire applications require ultra-high dependability in the order of 10-9
failures/h (115 000 years) or lower. Today’s technology cannot support the manufac-
turing of electronic devices with failure rates low enough to meet the reliability re-
quirements. Thus the reliability of an ultra-dependable system must be higher than the
reliability of each of its components. This can only be achieved by utilizing fault-
tolerant strategies that enable the continued operation of the system in the presence of
component failures [But91].

Since systems can only be tested to dependability in the order of 10-4 failures/h a
combination of experimental evidence and formal reasoning using a reliability model
is needed to construct the safety argument. The safety argument is a set of docu-
mented arguments in order to convince experts in the field that the provided system as
a whole is safe to deploy in a given environment.

The justification for building ultra-reliable systems from replicated resources rests
on an assumption of failure independence among redundant units. For this reason the
independence of Fault-Containment Regions (i.e. subsystems that share one or more
common resources and may be affected by a single fault) is of critical importance.
Thus any dependence of FCR failures must be reflected in the dependability model.
Independence of FCRs can be compromised by

Shared physical resources (hardware, power supply, time base, etc.);
External faults (EMI, heat, shock, spatial proximity);
Design;
Flow of erroneous messages.

 4.1 Definitions of Hard Real-Time Dependability Features 43

From the dependability point of view, the future unit of hardware failure is considered
to be a complete chip. If complex systems constructed from components with interde-
pendencies are modelled, the reliability model can become extremely complex and
the analysis intractable [But91].

Relevant Challenges and Work Directions

Semantic Interface Specification
The behaviour of an interface is characterized by the temporal sequence of messages
it accepts, the messages it produces, the internal state of the interface and the data
transformations and/or actions that are performed by the interface. Whereas at the
syntactic level the message specification can be performed by any type of Interface-
Definition Language, e.g., the IDL of the OMG, and the temporal specification of
temporal-firewall messages can be performed by making use of the global time, the
proper specification of the high-level semantic properties of an interface by an inter-
face model is a very relevant research issue.

Composability of Services
i.e., the constructive construction of complex emergent services out of simple inter-
face services without unintended side effects, is an important property of any distrib-
uted architecture. Composability is a system issue, i.e. it must be supported at all
levels of the architecture, firstly by the elimination of property mismatches at any
level and secondly by the semantic integration of the interface models introduced
above.

Mixed-Criticality Systems
In the future we will see the emergence of many mixed-criticality systems, i.e., sys-
tems where services of different criticalities must be integrated into a single coherent
architecture. For example, in an automotive environment, safety critical drive-by-wire
functions, body electronics and multi-media services for entertainment should be
provided in single coherent architecture. Issues of service separation, integrity and
independence of fault-containment region, and replica determinism for critical ser-
vices under severe cost constraints are important research topics.

Security
Future embedded systems that are connected to the Internet must be concerned about
security. Issues of security intrusions, authentication, denial of service attacks, and the
like may become more relevant for distributed embedded systems than for many other
systems that are connected to the Internet.

Modular Certification
The certification of safety-critical functions is an important cost element in the devel-
opment of safety-critical applications. It would be a great advantage if the certifica-
tion can proceed in a modular fashion, i.e., if certification arguments that have been
developed for a particular subsystem can be used in a modular fashion. Modular certi-
fication depends very much on the partitioning properties provided by the distributed
architecture.

44 4 Tools for Requirements Capture and Exploration

Safety Case Analysis
The effort required for the certification of safety-critical real-time applications could
be significantly reduced, if a standardized procedure for the development of the safety
case is available. The safety process can be enhanced by the provision of a tool-bench
with the relevant tools for safety analysis, such as failure-mode-and effect analysis
(FMEA), dependability modelling, and security analysis.

Middleware Processor
In today’s embedded systems it is common to execute the middleware and the appli-
cation software on the same processor. The frequent interruptions of the application
by middleware processes that normally have only a short execution path makes the
analysis of the WCET of the application very difficult. If a separate processor is dedi-
cated to the middleware and the interface between the middleware and the application
processor is well-defined in the domains of time and value, then a more predictable
node behaviour can be expected.

Dynamic Reflective Systems
Dynamic reflective systems have capability to adapt their internal structure in a way
not foreseen by its developers in order to optimize the service in a dynamically chang-
ing environment. New resources, e.g., sensors and actuators must be dynamically
integrated as the system becomes aware of their existence. Dynamic reflective sys-
tems must have support reflection, i.e., the capability to reason about their own behav-
iour. Dynamic reflective systems are expected to become relevant for the embedded
system domain in the medium to long range.

Massively Parallel Systems
Massively parallel systems are distributed embedded system that consist of multitude
of nodes (can be many thousand) that enter and leave the system dynamically. The
nodes of massively parallel system have a high autonomy, both physical (e.g., power
supply) and behavioural in the sense that they can plan on their own for goal-oriented
behaviour. Research in massively parallel system is exploratory research with a long-
range perspective.

References

[But91] Butler, R.W., & Caldwell, J.L. & Di Vito, B.L. 1991. Design strategy for a for-
mally verified reliable computing platform. In Proceedings of the Sixth Annual
Conference on ‘Systems Integrity, Software Safety and Process Security’,
COMPASS’91, 24-27 Jun 1991, pp. 125 -133

[Cri85] Cristian, F., et al. 1985. Atomic Broadcast: From simple message diffusion to
Byzantine agreement. In Proceedings of the 15th IEEE Int. Symp. on Fault-
Tolerant Computing (FTCS-15). 1985. Ann Arbor, Michigan.

[Kau00] Kaufmann, L.F., and B.W. Johnson. 2000. Modelling of Common-Mode Failures
in Digital Embedded Systems. In Proceedings of the Reliability and Maintainabil-
ity Symposium 2000. Los Angeles, CA, IEEE Press.

[Lap92] Laprie, J.C. (Ed.). 1992. Dependability: Basic Concepts and Terminology – in
English, French, German, and Japanese. Springer-Verlag, Vienna, Austria.

 4.2 Scientific Engineering Tools and Physical Systems Modellers 45

4.2 Scientific Engineering Tools and Physical Systems Modellers

Definition

Embedded software systems are generally attached to some physical system, for its
control, supervision, or for data processing purposes. These include aircraft control
and transport in general, manufacturing, energy production and distribution, robot-
ics. Consideration of embedded software systems, and of the physical processes
they interact with, should not be dissociated. These aspects should be addressed
jointly – by both the methods, the tools, and the education and training made avail-
able to engineers. The present building block is central to address these issues. This
type of technology is now considered central for key European industrial sectors,
such as automobile, aeronautics, transport, energy. “XX_engineering” in general
typically makes extensive use of it. It is less central, but still used, in the telecom-
munications sector.

Position in the Design Flow

This building block sits in the phases of specification and design. It considers the
specification and design of functions in closed-loop with the plant. Related activities
are detailed next.

Modelling Physical Systems
The first task to perform is the joint exploration of physical models of the different
components, subsystems, or of the entire plant. The resulting models are hybrid in
many ways:

They combine models related to the physics of the (sub)system under specifica-
tion, with its different modes of operation.
They combine continuous time models (ordinary differential equations – ODE)
with sampled time models, and with discrete event models (automata…).
For some advanced systems, they involve in addition partial differential equations
(PDE), or very high dimensional models. For example, modelling large, flexible
aircrafts may involve finite element models with a high number of vibration
modes.

In general, the designer would prefer to reuse models and assembly them, for rapid
exploration – note that physical models of components or subsystems are considered
an important Intellectual Property.

Modelling for Control, and Control Design
It is not possible to design control, based on the detailed, physical, model of the plant;
the latter is often too detailed, and generally highly nonlinear, and involves sometimes
PDEs. Therefore, it is advisable to have (possibly several) simplified models, with
qualified information about the approximations or uncertainties. Such simplified
models aimed at control design are again considered an important Intellectual Prop-
erty, and are sometimes patented.

46 4 Tools for Requirements Capture and Exploration

Virtual or Hardware-in-the-Loop Exploration and Testing
Automatic or assisted control design techniques are not comprehensive but only par-
tial, there is a need to test and evaluate in the context of the whole system the combi-
nation of several control functions and their supervision. This can be performed in
two major ways:

Hardware-in-the-loop consists in embedding the entire digital control system on a
prototype hardware, which is put in a closed loop with the real physical system.
This is the solution of choice in automotive industry today, for developing the
chassis or engine control functions. For other industries (e.g., aeronautics) this ap-
proach would require heavy experimental test beds (e.g., huge wind tunnels, not so
much available at least in Europe).
Virtual testing is then preferred, it consists in testing a model of the entire control
system, in closed loop with a realistic physical model of the entire (sub)system.
Virtual testing requires mastering very complex models and their simulation.

Exporting Control Designs
Control designs or models of (possibly closed-loop) control systems need to be ex-
ported, in the following cases:

The physical, continuous time part, of the model can be exported for reuse as
component in more powerful, possibly domain-specific, modellers.
Since models of plants are recognized an important Intellectual Property, export-
ing such models is a useful service to provide. For protecting these IPs, it is often
preferred to export them, not as source model, but in some kind of “compiled
form”, where reverse engineering is made difficult.
Models of plants can be components in a more general system model. By “more
general” system model, we mean general requirements on the overall system that
are not necessarily related to scientific engineering, but can be of much larger
scope. For example, the general documentation on hardware or software compo-
nents requires modelling of this kind.
Digital control specifications need to be exported and transformed into embedded
software.

Description of the Technology

Modelling Physical Systems
As said before, the first task to perform is the joint exploration of physical models of
the different components, subsystems, or of the entire plant. The resulting models are
hybrid in many ways: They combine models related to the physics of the subsystem
under specification, with its different modes of operation; they combine continuous
time models with sampled time models, and with discrete event models (automata…);
for some advanced systems, they involve in addition partial differential equations
(PDE), or very high dimensional models. In general, the designer would prefer to
reuse models and assembly them, for rapid exploration, he would like to design his
control functions via a quick, tool based, exploration and tuning.

Generic scientific software for modelling and simulation (such as Matlab/Simulink
or SystemBuild), have made this ideal methodology possible for the following cases:

 4.2 Scientific Engineering Tools and Physical Systems Modellers 47

Small or medium size physical models, both continuous and discrete time. Model-
ling is performed using a sophisticated and flexible GUI, and simulation is imme-
diate. Models can be calibrated on recorded data sets using statistical learning or
identification techniques. Signal processing and system identification toolboxes
assist the designer. This is the typical state of practice for the physical modelling
of plant components, for each separate mode of operation. This is a major contri-
bution of the past two decades, and progress is still ongoing both in academia and
at vendors.
Small or medium size hybrid models involving continuous/discrete time and dis-
crete events (automata). For this more complex case, modelling and simulation is
again available

The design of larger or more complex systems (e.g., in aeronautics, or even in the
automobile industry for the design of engines with advanced combustion control)
requires mastering much larger models involving both ODEs, PDEs, and DAEs (Dif-
ferential Algebraic Equations, generalized ODEs that are relations and not input-
output functions any more), possibly combined with discrete event systems for
capturing mode changes. Today, only domain specific tools are available for this, no
generic ones.

Modelling for Control, and Control Design
Advanced toolboxes for control design or optimization are available, to assist the
design engineer. This is another major contribution of the past two decades, and pro-
gress is still ongoing both in academia and at vendors.

Virtual or Hardware-in-the-loop Exploration and Testing
Testing and evaluating in the context of the whole system the combination of several
control functions and their supervision can be performed in two ways: hardware-in-
the-loop testing, and virtual testing. Hardware-in-the-loop testing is typically sup-
ported by the present building block. In contrast, virtual testing requires mastering
very complex models and their simulation, and is typically beyond the scope of ge-
neric tools covering the present building block.

Exporting Control Designs
Exporting control designs or models of control systems is more or less supported,
depending on the cases:

Exporting the physical, continuous time part, of the model for reuse as component
in more powerful, possibly domain-specific, modellers. This service is provided
by some tools, it does not seem to require specific research.
Exporting models as IPs, in some kind of “compiled form”, where reverse engi-
neering is made difficult. This service is generally supported.
Exporting models as components in a more general system model. There is a
strong tendency that this type of engineering is supported by UML.
Exporting digital control specifications to embedded software. This involves the
whole chain of software architecture and code generation, and software testing.
This is in part supported today, but this raises some difficulty we discuss below.

48 4 Tools for Requirements Capture and Exploration

Existing Tools

Matlab/Simulink
Matlab/Simulink (http://www.mathworks.com/) is the de facto standard in this area.
The history of its expansion is by itself of interest. Matlab started in the early eighties,
as an interpreted and un-typed language for handling matrices. Everything was de-
scribed as a matrix, and it was not required to declare its dimensions as they would be
evaluated at run time. Matlab was targeted to students, and was a low power/low cost
product. The next evolutionary step came later during the eighties, with the idea of
having third-party toolboxes dedicated to a particular class of problems (system iden-
tification, control synthesis,…). This positioned Matlab as the “lego block” of the
control science community, turning algorithms into software, and made its success.
Modelling came as the next issue, as modellers appeared in academia in the late eight-
ies – Simulink was issued in the early nineties. The nineties turned Matlab/Simulink
to a sophisticated tool for visualization and data handling, and completed the range of
services needed to perform XX_engineering. This decade (and the end of the previous
one) has shown a significant move of Matlab/Simulink toward becoming a central
tool for industry, not academia any more. The percentage of third party products has
reduced drastically. New products addressing hardware-in-the-loop, code generation,
real-time workbench, and the like, are now offered (this is further discussed later in
the document). Perhaps the most interesting lesson from this is the fact that this tool
became central in the whole design process, by starting from a positioning very early
in the design steps. SystemBuild/MATRIXx, formerly from Wind River, is similar to
the above product line, and occupies a similar segment. Due to its current unclear
legal status, we do not discuss it further here.

Other tools exist in this segment, but are of much narrower scope and audience.

Scilab
The SCILAB tool is a free software tool, developed at INRIA http://www-rocq. in-
ria.fr/scilab/ . It offers a core language comparable to Matlab, and an advanced Hy-
brid System modeller called SCICOS http://www-rocq.inria.fr/scilab/doc/ sci-
cos_html. This modeller provides means to specify the synchronization of the digital
part of the model without ambiguity, see below.

Modelica
The object-oriented modelling language Modelica is designed to allow convenient,
component-oriented modelling of complex physical systems, e.g., systems containing
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or proc-
ess-oriented subcomponents. The free Modelica language and free Modelica libraries
are available. The development and promotion of Modelica is organized by the non-
profit Modelica Association http://www.modelica.org/ . Modelica simulation tools are
commercially available as part of Dymola, from Dynasim http://www.Dynasim.se/,
ready-to-use and have been utilized in demanding industrial applications, including
hardware-in-the-loop simulations.

 4.2 Scientific Engineering Tools and Physical Systems Modellers 49

Relevant Challenges and Work Directions

Scientific engineering tools and physical systems modellers are an area in which ma-
jor breakthroughs, including assistance for modelling and simulation and control
design and optimization have occurred in the past decade. This has been such an im-
portant step that scientific engineering tools are now at the centre of the design flow
for several important industrial sectors (in particular automobile). Major challenges
remain, however:

Medium-range physical Modelling Tools. Regarding small or medium size physical
models in both continuous and discrete time, progress is still being made towards
better models, simulators, and system identification and signal processing tech-
niques; improving the corresponding technologies is not considered to be the major
issue for the coming years, however.
Complex Physical Modelling Tools. Regarding models of larger or more complex
systems involving both ODEs, PDEs, and DAEs (Differential Algebraic Equations,
generalized ODEs that are relations and not input-output functions any more), pos-
sibly combined with discrete event systems for capturing mode changes, only do-
main specific tools are available today, not generic ones. In addition, these tools
mainly address static aspects of the design (e.g., design of a mechanical structure),
not their use for control design, where models with dynamics are required. Not
surprisingly, having powerful modelling tools is a major focus of one Integrated
Project proposal in the area of aeronautics for the 6th FP, dealing with the overall
concept and structure of the aircraft. Having generic modelling tools for complex
dynamical systems, industrially supported by a vendor, would be an important pro-
gress. However, this is somewhat beyond the scope of the present roadmap.
Hybrid Systems. Whereas advanced toolboxes for control design or optimization
are available, to assist the design engineer, such tools are generally only effective
for each single mode of operation; there is a lack of support for the design of con-
trol in a Hybrid System context – e.g. designing jointly several control modes and
their switching mechanisms. For that reason, a multi-level hierarchical approach is
taken, starting from a tool-assisted design of low-level closed-loop control for
small components, up to a more heuristic design of the supervision of lower level
functions (e.g., handling mode changes and protection). Studies in Hybrid Systems
are needed to improve the assistance for this part of the design; however, no ge-
neric approach has been found yet in the academia toward getting tools for assisted
modelling and control synthesis for Hybrid Systems.
Virtual Test beds. Virtual testing requires mastering very complex models and their
simulation. Progresses in “virtual test beds” are essential, but this topic is beyond
the scope of the present roadmap.
Model Engineering. There is a strong tendency that so-called Model Engineering is
supported by UML; exporting to UML component models of scientific engineering
type is not yet formally sound and remains a challenge for the future.
Timing and Synchronization Semantics of Hybrid Modelling Tools. In most widely
used hybrid system modelling tools, inadequate means are often provided to spec-
ify precisely how the different discrete times involved in the system should be syn-
chronized. For example, suppose that you specify that signal x has frequency
100Hz and signal y has frequency 150Hz: both signals will start their first step ex-

50 4 Tools for Requirements Capture and Exploration

actly at simulation time zero. But this simulation is not representative of what will
happen in the implementation, where “time zero” has no meaning. Therefore, a
more canonical way of specifying synchronizations is needed. Developing hybrid
system modelling tools in which the specification of discrete time/event system
models is performed rigorously, without ambiguity and without over-specification,
is important; advanced solvers supporting this are now available from research, and
some modelling tools provide this feature.

4.3 State-Based Design: Dealing with Complex Discrete Control

Definition

If the dominant source of complexity of a controller rests in its dependency on a large
set of discrete set of states, then modelling techniques supporting state-based design
are the choice formalism for the specification of controllers. The need to capture
complex state-behaviours for embedded system applications, in particular addressing
their reactive nature, has been discussed in a series of landmark papers by David
Harel, who introduced StateCharts as a succinct visual formalism to capture complex
state-dependent reactive systems. Key ingredients extending the classical concept of
finite state machines are the introduction of hierarchy and concurrency as modulariza-
tion constructs: while states of classical finite state-machines are unstructured, State-
Charts allow for

states to be refined to complete state-machines: such a hierarchical state is typi-
cally used to capture some higher order mode of operation of the controller (such
as “initialization”, “normal operation”, “exception x has occurred”, “failure f has
occurred”), where the detailed reactions of the controller in such a mode are speci-
fied by the state-machine attached to this hierarchical state;
orthogonal states which consist of orthogonal components each being refined by a
state chart, thus providing a direct modelling counterpart to the typical decomposi-
tion of controllers into sub-controllers running in parallel, each responsible for a
particular aspect of the global control task (such as separate state-machines for
monitoring critical sensors, for maintaining knowledge about plant states, for con-
trolling multiple actuators;
communication and synchronization between components of a state chart, by e.g.
using broadcasting of events.

The basic concepts of state-charts have since been enriched by different means, in-
cluding:

using extended state-machines which in addition to explicitly modelled control
states incorporate typed variables, conditions on these as guards, and means of up-
dating variables by some form of action language;
real-time by e.g. allowing to use time-outs as guards in conditions, or setting timers
as part of the action language.

It has also been combined with such diverse modelling methods as:

 4.3 State-Based Design: Dealing with Complex Discrete Control 51

Functional Decomposition where a system is statically decomposed into subsys-
tems and state-charts are used to capture the reactive behaviour of subsystems, as
originally described in the seminal article by Harel et al;
UML where state-charts are used to specify the behaviour of reactive classes, this
again being based on pioneering work of David Harel;
Control Modelling Tools where state-charts are used to capture modes of the con-
trolled plant, and states can be used to select appropriate control laws depending
on the current mode of the plant.

Use and Positioning in Design Flow

Typical usage of state-based specification techniques range from specification of
electronic control units (in combination with modelling tools supporting functional
decomposition or UML tools), or in control-law design for hybrid controllers (in con-
junction with tools for modelling control laws, using a continuous time model, or with
tools for code-generation, working with a discrete time model).

There a range of use-cases based on such specifications in a typical design flow.
The following list follows the downward part of the V development cycle. As any
executable model, state-based specifications support early validation of complex
embedded systems. Of particular relevance are

Simulation: including in particular co-simulation of a state-based controller with a
continuous plant model, to explore and validate the specification model of the
controller. Typically, modelling tools offer a range of animation capabilities sup-
porting the exploration of the design, such as highlighting active states and active
transitions, capturing traces from simulation-runs to allow re-run, generating sce-
narios from simulation runs, using animated panels to instrument simulation in an
application-like setting, etc
Verification against requirements: StateCharts are perhaps one of the best studied
modelling techniques regarding interfaces to model-checkers (see the section on
verification), allowing with varying degrees of richness of modelling features the
verification of requirements against state-based models of reactive systems
Test-case generation: there is a rich theory of test-case generation for simple mod-
els of state-based specifications, with recent extensions covering richer models
Automatic code generation: today’s commercial modelling tools for state-based
design typically offer capabilities for automatic code generation not only for rapid
prototyping but also for production code.

Existing Tools

There are too many tools supporting state-based design to allow a complete survey
within this roadmap. We pick only representative examples from the different forms
of integration with modelling paradigms and elaborate on these.

Functional Decomposition: The StatemateMagnum Product from I-Logix Inc. (see
www.ilogix.com) is widely used in avionics, space, and automotive applications
for capturing system-, subsystem- and ECU specifications. From its original con-
ception (involving with Amir Pnueli and David Harel key academic fathers) it has

52 4 Tools for Requirements Capture and Exploration

evolved to a comprehensive toolset allowing simulation, formal verification, auto-
matic test-case generation, and (in conjunction with Rhapsody in MicroC) produc-
tion quality code generation.
UML: Since StateCharts form part of the UML standard, any UML compliant
modelling tool such as RealTimeStudio Professional from Artisan (www. arti-
sansw.com), Rational RoseRT from Rational (www.rational.com), and Rhapsody
from I-Logix (www.ilogix.com) is supporting StateCharts for modelling the be-
haviour of reactive objects. As an example, the Rhapsody Product family provides
executable UML models with animated simulation, production quality code gen-
eration with support for multiple target languages (C, C++, Java, ADA, multiple
RTOS, and standard middleware layers such as Corba. Animated simulation as
well as scenario based test-case generation support model validation as well as re-
gression testing.
Control Modelling Tools: Most tools for control modelling support variants of
StateCharts in order to allow modelling of hybrid controllers as well as co-
modelling of plants and controllers. As an example, the Matlab-Simulink product
from the Mathworks Corporation (www.mathworks.com) can be enhanced with
the Stateflow product to support state-dependent activation of Simulink blocks in
animated simulation, as well as supporting embedded code generation through the
Stateflow Coder in Combination with the RealTimeEmbeddedCoder. Product
code quality code-generation for directly from Simulink-Stateflow models is also
offered from dSpace (www.dspaceinc.com) with its TargetLink code generation
tool. Esterel Technology (www.esterel.com) has recently acquired the Scade
Product for automatic code generation from discrete-time controller models,
which also includes limited capabilities for modelling state-machines. Similarly,
the ASCET-SD product from ETAS (www.etas.de) allows the integration of state-
machines in discrete-time controller models, offering production code quality code
generation.

Relevant Challenges and Work Directions

State-based modelling techniques as such are a mature and well understood design
paradigm. Research Challenges, however, originate when integrating these into richer
modelling paradigms, in particular, when extending simulation, verification, test-
generation, and code-generation to support this embedding. Challenging research
issues include

Co-verification: Addressing formal verification of models combining state-
machines with plant models: while there is rich body of research on hybrid system
verification (see the section on formal verification), efficient verification methods
scalable to industrial hybrid controllers are not available.

Addressing formal verification of UML models: the challenge here is to extend
the well-studied verification methods for state chart verification to complete UML
models, addressing such issues as inheritance, dynamic object creation and de-
struction, dynamically changing communication topologies, multiple active ob-
jects, etc.

 4.3 State-Based Design: Dealing with Complex Discrete Control 53

Distributed real-time code generation: The challenge is to extend the well under-
stood principles of code generation from state-charts in its integration to richer
modelling paradigms to support distributed implementations using e.g. multiple
ECUs. While the time-triggered approach described in section 4.5.a is providing a
solution applicable for high-integrity components, it must be combined with more
flexible implementation schemes guaranteeing end-to-latencies or other real-time
constraints

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 54 – 62, 2005.
© Springer-Verlag Berlin Heidelberg 2005

5 Tools for Architecture Design and Capture

Although some industries perform architecture design and capture, this is not recog-
nized a standard stage in the traditional design flow. But we believe it is an important
missing piece. Since this is more exploratory, we have taken a different approach, by
focusing on the important topic of architecture modelling and mapping, since it is a
key step toward platform-based design as we advocate.

Definition

The essential difference between embedded software and general software is about
the importance that execution time and other physical metrics bear on the quality of
the design. For embedded software, execution time, power consumption and memory
occupation are of paramount importance since they relate to implementation costs and
performance requirements. Software per se does not carry information about execu-
tion time, memory occupation and power consumption. These quantities depend on
the implementation platform that runs the software.

In traditional design methodologies, the line between functionality to implement
and its software representation is often blurred: designers often think of software both
as a representation of the functionality of their design and as implementation. If in-
tended as a representation of the functionality of a design, software carries an implicit
mathematical model, in general a Turing machine. In this case, the expressive power
of the model is such that little can be said about its properties and yet the model does
not carry any information about the physical properties of the implementation.

Following this line of reasoning, it is then natural to abstract the notion of software
at a higher level. In this case then, software implies that a particular functionality will
be implemented on a platform equipped with a software programmable component
that can run it. Hence, software is to be intended ONLY as an implementation repre-
sentation. In this case then, it is natural to decorate the representation with physical
parameters summarizing the properties of the hardware platform. If we take then the
higher level representation as a starting point of the design, the essential point of the
design process is how to proceed towards implementation, how to trace backward the
implementation against early specification, and how to choose the appropriate imple-
mentation platform.

The consensus of the system design community has evolved towards the so called
Y-chart view: the functionality of the design is associated via a mapping process to
elements of an architecture that is specified side-by-side. This view differs from the
top-down method promoted in the 1980s where the functionality is successively re-
fined into an implementation. In the modern view, an architecture can be defined
independently of the particular functionality to be implemented. In this case then, the
refinement process becomes a mapping process. This approach has become popular
because of the changes in the economics of IC design and manufacturing. The in-
creasing cost of mask making and design has been a forcing function towards the
adoption of platforms that can support a rather wide range of applications to maxi-

 5 Tools for Architecture Design and Capture 55

mize volume. The key to conjugate different applications and single implementation
architecture is the use of programmable or reconfigurable blocks that can be custom-
ized with no need to change the mask set to support different functionality. The exten-
sion of the concept of platform has brought to the limelight platform-based design, a
design methodology that exploits design re-use and formal techniques for representa-
tion and refinement of the design. In this method, a platform is a “library” of compo-
nents including interconnects. Design space exploration is the process of selecting
optimally the elements of the library to support a given functionality. In this view, it is
clearly very important to characterize the capabilities of the elements of the library in
terms of their physical properties, e.g., power consumption, speed of execution, and
size. The library and its characterization is non trivial and represents the bottom-up
component in platform-based design.

If a common semantic domain can be found between the higher level of abstraction
and the collection of components of the lower level platform, the optimal mapping
process and the corresponding selection of a platform instance can be often formal-
ized as a unate or binate covering problem. Then the concurrent mapping and plat-
form selection can be performed automatically, similar to what has been done for
years in the area of logic synthesis, where the higher level of abstraction is repre-
sented by a Boolean network, the common semantic domain as a two-input NAND
gate network and the mapping process as a binate covering problem of the network
with NAND gate sub-networks representing the elements of the library. The discov-
ery of a formal representation of two consecutive platforms and of their common
semantic domain is the essence of this design method. While there are successful
examples of this paradigm, much remains to be done to extend it to a large number of
design problems and levels of abstraction.

Position in the Design Flow

Architecture modelling and exploration would typically occur early in the design
flow, just after the specification and validation of the functions themselves. Architec-
ture exploration should precede code generation and related activities.

Existing Tools

Warning: the reader should be warned that the following list of tools may be biased.
The reason is that architecture modelling and mapping is not an established building
block. Hence there is no common agreement about what it really is, and which tools
are proper representatives.

OCASIM (no web link available)
OCASIM is the in-house tool used at Airbus-France for the co-simulation of
SCADE designs with some abstract models of the plant for control; in performing
this, essential features of the computer architecture and sensor system are captured.
For example, uncertainties in timing due to sampling and delays in the communica-
tions can be handled. OCASIM is a purely discrete time modeller, meaning that
important aspects related to continuous time are abstracted.

56 5 Tools for Architecture Design and Capture

POLIS/VCC http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html
Polis was developed at the University of California, Berkeley, in the early 1990s. It
was a tool intended to help designing automotive safety-critical systems such as
engine controllers. The approach was based on a rigorous separation between func-
tion and architecture and it was the first incarnation of the Y-diagram. The func-
tionality of the system was captured with a network of Co-design Finite State Ma-
chines (CFSM). CFSMs implement a globally asynchronous-locally synchronous
model of computation. The semantics of each CFSM was captured with Esterel
while the interaction was asynchronous with a length one buffer to deposit mes-
sages waiting to be read. Buffer overwriting and consequent loss of information
could not be prevented a priori. This model of computation was adopted to support
the methodology used by automotive subsystem designers that could not afford the
loss of efficiency that would have resulted using a synchronous model of computa-
tion.

The methodology called for mapping of the functionality on a single CPU archi-
tecture. Mapping efficiency was quickly evaluated by running a performance
analysis based on a simple model of the execution of software on the CPU. To do
so, the CFSMs were turned into software for the part of the system to be mapped
on the CPU or into hardware for the parts mapped into ASIC-like logic.

The tool supported automatic and optimized software generation with a method
that was derived from the work on logic synthesis of the Berkeley group. The
method that gave the best results in terms of code execution time and memory oc-
cupation was based on Binary Decision Diagrams (BDD).

Because the structure of the code was highly optimized performance estimation
was quite accurate with respect to final implementation. Interactions among
CFSMs were handled by the RTOS. Polis had the possibility of automatically gen-
erating RTOS code that was tailored for the particular application thus resulting
into small and very efficient code.

To verify the functionality of the entire system a path to an FPGA rapid proto-
type board was provided. Because of the relatively small size of the board, the
functionality could be verified directly in the car, thus eliminating the need of ex-
pensive experiments on test-benches.

The basic ideas of the tool were the basis for a commercial offering by Cadence
called VCC. VCC was built on the same models of computation but extended the
applicability of the tool to multi-CPU systems such as the distributed systems
commonly found in cars. The models for processors were extended to cover a vari-
ety of different computing cores but automatic code generation and optimization
was not offered to the market. Mapped software is of two kinds: black box that
cannot be estimated and white box whose performance could be estimated. Several
architectures could be quickly evaluated by mapping the functionality to different
subsystems. VCC is the basis for SysDesign, a complete environment for automo-
tive system design that several other tools such as Simulink and ASCET-SD from
ETAS to capture the functionality of the design, Mathworks, dSpace and ETAS
tools for code generation and rapid prototyping. In this environment, different bus
and communication schema could be analyzed and compared. In addition, fault
analysis could be carried out at levels of abstraction as different as at the functional
and detailed architectural level.

 5 Tools for Architecture Design and Capture 57

The tool was intended to support the design chain. In fact, it could be used by
software developer to analyze the performance of their code on a virtual prototyp-
ing environment as well as by the platform developer to select the most appropriate
platform for an application domain. The domain of application expanded from
automotive to wireless communication and multi-media.
Virtio (http://www.virtio.com)
According to the technical leaders of the corporation, the mission of the company
is the creation and distribution of virtual platforms – to both applications software
people as well as Hardware-dependent software designers. Virtual prototyping is
an advanced simulation technology combining high-speed instruction-set simula-
tors with memory transaction-level peripheral models. This technology is tuned in
several ways to software developers:

* It offers execution speeds of multi-million instructions per second, allowing to

boot operating systems like Windows CE in about 30 seconds.
* It integrates with industry-standard software development tools, such as Mi-

crosoft Platform Builder and Wind River’s Tornado II.

* It features virtualized physical connections, allowing for example to connect
the platform to a physical network and advanced user interfaces and ‘skin’ capa-
bilities to realistically emulate the system user experience

In addition, it features authoring tools to extend the base platform with user
components, supporting the ‘platform-based’ design flow.

The simulator is instruction set accurate, not cycle accurate. Because of the ab-
straction level supported, can certainly help software designers to understand the
actual performance of their software on the execution platform but it may suffer
some limitation in terms of accuracy.
VaST (http://www.vastsystems.com/)
This tool targets engineering and manufacturing of high performance, real-time
electronic systems integrating software, hardware and other technology compo-
nents. They provide the behavioural models (virtual processor model or VPM) for
the processors, buses and a few basic peripherals (e.g. a basic interrupt); customers
write the behavioural models for most of the peripherals. To be consistent with the
overall performance goals of the toolset, the models must be executable at least at
5-10MIPS.

The VPM is composed of two parts. In the first, which models the instruction
execution behaviour, an analyzer builds a custom virtual processor model (VPM)
based on all or some elective subset of the architectural elements required in the
processor, from the target code. This task seems to be “code dependent”, but it is a
totally automated process. This static analysis is analogous to ‘static timing analy-
sis’ in circuit simulation and the resulting model runs very fast. The code executed
by a VPM may be HLL C/C++ code or assembly/object level code.

The second part models the dynamic parts of the processor; these portions can-
not be determined prior to simulation. This includes the I/O part of the processor
that communicates with the hardware: cache, virtual memory, interrupts, bus sig-
nals, and the like. For obvious reasons, the simulation speed on this portion is lim-
ited by the level of detail modelled, and, where communication with hardware oc-
curs, the speed of the hardware simulator during that communication.

58 5 Tools for Architecture Design and Capture

With a VPM, it is also possible to select the architectural elements and the level
of detail modelled in both the dynamic and static portions of the design. In this
way, processors can be customized for a particular use, or modelled as cores or se-
lectable catalogue components.

The speed of simulation is high and the accuracy good. The balance of these two
factors make it an interesting tool for the development of real-time embedded
software in conjunction with multi-processor architecture exploration and analysis
tools.
AXYS (http://www.AXYSdesign.com/)
AXYS Design envisions that in the not too distant future semiconductor compo-
nents will be offered, evaluated and purchased primarily based on virtual software
prototypes of entire systems. These virtual prototypes, in form of executable, reus-
able models running in real-time on powerful workstations, will represent the func-
tional behaviours and timing of the actual system-on-chip (SoC) devices. The early
interactive communication between IP designers and their clients in the design of
next-generation communication and entertainment devices will become crucial to
their mutual success. The vision of virtual SoC prototyping and IP communication
will enable a substantial reduction in time and cost compared to traditional silicon
prototyping.

AXYS Design’s mission is to provide C/C++ based exploration, modelling and
verification solutions and services enabling designers to efficiently specify, design,
test, protect and deliver “above-RTL” models of their intellectual property and SoC
designs. AXYS Design’s solutions are used by hardware and software designers to
explore the suitability of certain architectures and start software development be-
fore actual silicon becomes available thus reducing overall time to market for com-
plex SoC products.

AXYS addresses platform and hardware-aware software development (MaxSim
Control Centre). AXYS offers multi-debugger support and accurate modelling. It
can support DSPs, where reading and writing from and to memory in the right
phases are essential for performance analysis.

The performance is lower than VaST (and Virtio) due to their use of a compiled-
code model, separate cache model, and very precise hardware timing. On the other
hand, the accuracy they can offer makes its use interesting for hardware designers
who develop platforms to be effective for a particular class of software applica-
tions.
Metropolis http://www.gigascale.org/metropolis/
Metropolis is an environment for design representation, analysis and synthesis un-
der development at the University of California at Berkeley, under the sponsorship
of the MARCO Gigascale System Research Center. The project involves a number
of other Universities such as CMU, MIT, Politecnico di Torino, Politecnico di Mi-
lano, Cataluna Polytechnic, Scuola di Sant’Anna as well as industry such as Intel,
Cypress, ST, Magneti-Marelli, PARADES and Cadence. The environment is not
limited to Architecture modelling and mapping but it deals with all aspects and
phases of design from conception to final implementation.

In particular, Metropolis is designed to provide an infrastructure based on a
model with precise semantics that remain general enough to support existing com-
putation models and accommodate new ones (for this reason it is called meta-

 5 Tools for Architecture Design and Capture 59

model). This meta-model can support not only functionality capture and analysis,
but also architecture description and the mapping of functionality to architectural
elements. Metropolis uses a logic language to capture extra-functional and declara-
tive constraints. Because the model has a precise semantics, it can support several
synthesis and formal analysis tools in addition to simulation. The first design activ-
ity Metropolis supports, communication of design intent and results, focuses on the
interactions between people working at different abstraction levels and between
people working concurrently at the same abstraction level. The meta-model in-
cludes constraints that represent in abstract form requirements not yet implemented
or assumed to be satisfied by the rest of the system and its environment.

The second design activity, analysis, through simulation and formal verification
is designed to determine how well an implementation satisfies the requirements.
Proper use of abstraction can dramatically accelerate verification. The constant use
of detailed representations, on the other hand, can introduce excessive dependen-
cies between developers, reduce the interfacing requirements’ understand ability,
and diminish the efficiency of analysis mechanisms.

Metropolis addresses the third design activity, synthesis, throughout the abstrac-
tion levels used in a design. Setting parameters of architectural elements such as
cache sizes or designing scheduling algorithms and interface blocks are typical
problems, in addition to synthesis of the final implementations in hardware and
software. In Metropolis, a specification may mix declarative and executable con-
structs of the meta-model. This is automatically translated to semantically equiva-
lent mathematical models, to which the synthesis algorithms are applied.

One might argue that application domains and their constraints on attributes
such as cost, energy, performance, design time, and safety are so different that
there is insufficient economy of scale to justify developing tools to automate these
design activities. The Metropolis project, however, seeks to show that this is untrue
for at least a broad class of domains and implementation choices.

The choice of technique or algorithm for analysis and synthesis of a particular
design depends on the application domain and the design phase. For example,
safety-critical applications may need formal verification techniques, which require
significant human skills for use on realistic designs. On the other hand, formal
verification tools can execute simple low-level equivalence checks between various
abstraction levels in hardware design—such as logic versus transistor levels.

Thus, Metropolis is not intended to provide algorithms and tools for all possible
design activities. Instead, it offers syntactic and semantic mechanisms to compactly
store and communicate all relevant design information, and designers can use it to
plug in the required algorithms for a given application domain or design flow.

The model includes a parser that reads meta-model designs and a standard API
that lets developers browse, analyze, modify, and augment additional information
within those designs. For each tool integrated into Metropolis, a back-end uses the
API to generate required input by the tool from the design’s relevant portion. This
unified mechanism makes it easy to incorporate tools developed elsewhere, as
demonstrated by integrating the Spin software verification tool into Metropolis.
TTPMatlink and TTPXX. http://www.tttech.com
MATLAB, Simulink und Stateflow are development and simulation tools well-
established and widely used in the automotive industry. TTPMatlink complements

60 5 Tools for Architecture Design and Capture

these tools by a block set that interprets the time-triggered communication behav-
iour into the simulation model.

TTPMatlink supports the development of distributed control systems. Once the
control application is designed and tasks are assigned to the nodes of the system,
the TTP communication messages that need to be exchanged must be defined. The
designer completes the cluster design process by configuring the communication
system (e.g. TDMA round duration, transmission rate, type of communication con-
troller). TTPMatlink enables the simulation of the distributed system in combina-
tion with the previously developed communication behaviour.

All design data created using TTPMatlink can be exported to TTPlan, the cluster
design tool for TTP-based systems. TTPlan constructs the TDMA communication
schedule and stores it in the MEDL (MEssage Descriptor List). The MEDL, which
includes the entire configuration of the communication schedule, is loaded into the
communication controller in the implementation phase. The node design divides
the application algorithms of the subsystems into tasks and specifies them.

The design data of the tasks can be exchanged in TTPBuild, the TTP node de-
sign tool. TTPBuild calculates the timing of the task for each node and generates
the fault-tolerant layer (FT-COM Layer).

In the next step the designer uses TTPMatlink and the Real-Time Workshop
Embedded Coder to produce code suitable for TTP/OS, the TTP real-time operat-
ing system, and the fault-tolerant layer (FT-COM Layer). For the design of the in-
put-output behaviour Simulink’s so called I/O block library is used in order to pa-
rameterize specific hardware products (TTPBy-Wire Box, TTPSensor Box). Gen-
erating the driver code for these I/O blocks and putting it into the application code
makes the implementation of the input-output behaviour in control units simple.
After the C code has been compiled and linked, the machine code can be loaded
into the distributed system via the application download of TTPLoad. This can be
done directly from the user interface of TTPMatlink.

As evidenced by the above description, the pair of tools {Simulink/Stateflow,
TTPlan} play the role of a platform in this approach.
ModelBuild – now part of Sildex-V6 http://www.tni-world.com/sildex.asp
ModelBuild was developed within the SafeAir project as an architectural descrip-
tion editor. It is built on top of the commercial Sildex product http://www.tni-
valiosys.com/index.html marketed by TNI-Valiosys, based on the Signal synchro-
nous language. ModelBuild provides services to perform the integration of compo-
nents describing both hardware and/or software – currently, these components can
be imported from Sildex, Scade, Simulink, or Statechart descriptions.

To this end, a GALS (Globally Asynchronous Locally Synchronous) library has
been developed. It contains components for use in system descriptions; any wire
can be labelled with a protocol name. The GALS library contains Signal compo-
nents modelling communication protocols (including a FIFO service). New proto-
cols can be added. The following classes of components are distinguished:
* Active (i.e. synchronous) links that carry control along with data; they provide
triggering facility; triggering can be based on time.
* Passive (i.e. asynchronous) links that do not carry control, hence cannot trigger
actions.

 5 Tools for Architecture Design and Capture 61

ModelBuild through so-called “trigger” components allows to explicitly specify
when an action takes place. Complex triggers have been modelled, including pre-
emptive tasks. A task attribute contains information such as task priority, nature
(cyclic, sporadic, background), timing properties like WCET (Worst Case Execu-
tion Time) or average execution time. Timing annotations are used for simulating a
behaviour; in some cases they can even be used to prove its correctness. Execution
time prediction is possible for RTOS-less architectures in cases that go far beyond
fixed-cycle sequencers and include run-time data-dependent decisions that affect
scheduling, not only from state to state, but even inside reactions (like mode
changes and processing of hazardous situations and events). Such dynamic analysis
gives the same level of confidence on systems with complex schedulers than what
was previously achieved by hand on fixed cyclic sequencers; this drastic improve-
ment is due to the automation of the verification process that allows schedulers
with thousands of states to be analyzed exactly. A dedicated library for the indus-
trial aeronautical ARINC653 real-time operating system standard has been pro-
vided as a result of SafeAir project.
Polychrony http://www.irisa.fr/espresso/Polychrony

The Polychrony workbench is an academic platform-based design workbench
which provides a reference implementation of the SIGNAL synchronous language.
The goal of Polychrony is to implement mathematical models and formal methods
suitable for both refinement-based and component-based design of embedded sys-
tems. To this aim, the Polychrony workbench implements the polychronous model
of computation, it is proposed to provide sort of a continuum from synchrony to
asynchrony. Refinement-based design is supported by formal properties of input-
endochrony (controllability of a component by its environment) and flow-
invariance (invariance of flow-equivalence under specification refinement via pro-
tocol insertion), implemented by either static resolution of model checking. Com-
ponent-based design is implemented by the capture of existing designs (real-time
JAVA classes SpecC modules and provides Polychrony with the ability to be em-
ployed as a reference workbench for platform-based design. To allow for a seam-
less, correct-by-construction design of embedded systems and architectures, the
Polychrony workbench implements semantics-preserving model transformations
(hierarchization of control, synthesis of protocols) as well as a general notion of
morphism, which encompasses e.g., WCET analysis, into a generic abstract inter-
pretation framework consisting of the projection of a design model with respect to
a given, functional or extra-functional, behavioural aspect.
SynDEx http://SynDEx.org/
This is system-level CAD software, supporting the AAA (Algorithm Architecture
Adequation) methodology http://SynDEx.org/pub.htm to support the implementa-
tion of real-time embedded applications on distributed architectures. SynDEx is a
graphical interactive software, which offers the following features:
* Functional specification through links to various notations, including the Syn-
chronous Languages, Scicos, AIL, AVS;
* Abstract modelling of a distributed architecture composed of processors of dif-
ferent types and/or dedicated integrated circuits (ASIC, FPGA), all together inter-
connected by different types of network models;

62 5 Tools for Architecture Design and Capture

* Profiling the mapping to architecture in terms of execution time for functions and
for data transfers, memory, surface, power consumption, etc;
* Automatic mapping (adequation) through heuristics for the distribution and the
scheduling of the algorithm onto the architecture taking into account communica-
tions, provided with a timing diagram simulating real-time performances;
* Automatic code generation of dedicated distributed real-time executives, or con-
figuration of general purpose executives like: RT-Linux, OSEK, etc. These execu-
tives are deadlock free and based on off-line scheduling policies. Dedicated execu-
tives which induce minimal over-head are built from processor-dependent execu-
tive kernels. Presently executives kernels are provided for: ADSP216X,
TMS320C4X, TMS320C6X, i80CI96, i80X86, MC68332, MPC555 and Unix/Linux
workstations.

Relevant Challenges and Work Directions

Main problems for research are:

Characterization of complex components such as sophisticated microprocessors
and DSPs in terms of their physical parameters (WCET, power consumption, heat
dissipation…).
Choice of the common semantic domain where the mapping process can be repre-
sented formally.
Performance estimation of software running on microprocessor has been the sub-
ject of intense research over the past few years. Performance estimation belongs to
the general problem of characterization of mapped behaviour as expressed above.
Indeed performance estimation is in our opinion essential to characterize the qual-
ity of a mapping of functionality to a microprocessor, but it has to be understood
that estimation is not and cannot be 100% accurate. Being able to give an upper
bound for the difference between execution time on the final implementation and
its estimation is an open research issue.

From this discussion, it should be clear that mapping is central to embedded system
design. We believe that embedded software design cannot be carried out in a rigorous
fashion without considering mapping as a fundamental step of the methodology.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 63 – 71, 2005.
© Springer-Verlag Berlin Heidelberg 2005

6 Tools for Programming, Code Generation, and
Design

6.1 Structure

Here we consider methods to produce code, or to generate it. We do not consider the
system level, but only the level of components or subsystems. To list the possible
methods, we need a three-dimensional classification:

1. Nature of the targeted subsystems:

a. continuous-dominated, e.g., power train or chassis for automobiles, and
flight control for aeronautics;

b. discrete-dominated, e.g., infotainment for automobile.

2. Considered method:

a. code generation chains associated with requirements capture methods and
tools, as listed in the corresponding section – Real-time workshop from
Mathworks, ASCET, TargetLink from dSpace, Rhapsody in MicroC, UML
tools supporting code generation.

b. synchronous languages and associated code generation.

c. direct programming in C, Ada (Hood, Spark-Ada), Java.

3. Level of code generation:

a. high-level (e.g., from synchronous languages to C);

b. back-end compilation (C to embedded code).

6.2 Code Generation from Synchronous Languages

Definition

Synchronous languages [SP-IEEE,Hal93,SP-IEEE03] are a family of high-level pro-
gramming languages devoted to the design of reactive software. A reactive program is
intended to interact permanently with its environment, at speed determined by this
environment (which cannot wait nor synchronize with the program). Almost all pieces
of software devoted to the control of physical devices are or contain such reactive
programs. In the synchronous paradigm, the execution of a program is a sequence of
atomic reactions to inputs coming from the environment.

The synchronous nature of the languages comes from the fact that they provide a
logical, deterministic, notion of concurrency: basically, all the concurrent processes
participate to each reaction of the program. An atomic reaction may involve a se-
quence of interactions between the concurrent processes. In these languages, concur-

64 6 Tools for Programming, Code Generation, and Design

rency is a powerful way of decomposing program activities, without paying the price
of actual concurrency concerning complexity (non-determinism) and efficiency (run-
time scheduling). Popular synchronous languages can be imperative (Esterel [BG92],
Synccharts [André96]) or declarative (Signal [GLB87], Lustre [HCRP91], Scade).
Although many research topics are still in progress in this area (concerning, e.g., se-
mantics of synchrony, program verification and validation ...), we concentrate here on
the problem of code generation from these languages.

The automatic code generation from high level descriptions is of course an impor-
tant goal, both for reducing the design cost, and for increasing its quality. Synchro-
nous languages provide both a high level, clean and formal way of describing embed-
ded systems, and the ability to translate automatically these descriptions into efficient
code. In general, the translation is made into low level languages (e.g., C), for several
reasons: easy interfacing of the generated code with other pieces of program, inde-
pendence of the compiler with respect to the target executable code.

The primary goal of a designer of safety-critical embedded systems is convincing
him- or herself, the customer, and certification authorities that the design and its im-
plementation are correct. At the same time, he or she must keep development and
maintenance costs under control and meet extra-functional constraints on the design
of the system, such as cost, power, weight, or the system architecture by itself (e.g., a
physically distributed system comprising intelligent sensors and actuators, supervised
by a central computer). In the 1980s, these observations lead to the following deci-
sions for the synchronous languages:

Concurrency
The languages must support functional concurrency, and they must rely on nota-
tions that express concurrency in a user-friendly manner. Therefore, depending on
the targeted application area, the languages should offer as a notation block dia-
grams (also called dataflow diagrams), or hierarchical automata, or some impera-
tive type of syntax, familiar to the targeted engineering communities. Later, in the
early nineties, the need appeared for mixing these different styles of notations. This
obviously required that they all have the same mathematical semantics.
Simplicity
The languages must have the simplest formal model possible to make formal rea-
soning tractable. In particular, the semantics for the parallel composition of two
processes must be the cleanest possible.
Synchrony
The languages must support the simple and frequently-used implementation mod-
els shown below, where all mentioned actions are assumed to take finite memory
and time.

Combining synchrony and concurrency, while maintaining a simple mathematical
model, is not so straightforward. Here, we discuss the approach taken by the synchro-
nous languages. Synchrony divides time into discrete instants. This model is perva-
sive in mathematics and engineering. It appears in automata, in the discrete-time dy-
namical systems familiar to control engineers, and in synchronous digital logic famil-
iar to hardware designers. Hence it was natural to decide that a synchronous program
would progress according to successive atomic reactions. Combining programs then
amounts to defining how to combine reactions; getting a clean mathematical concept

 6.2 Code Generation from Synchronous Languages 65

to support this was by no means easy. It has led to a rich body of knowledge and
techniques including the so-called causality analysis, automatic program scheduling
generation, and finally code generation.

Position in the Design Flow

Although synchronous languages were first designed as programming languages, their
compilation is generally considered as automatic code generation by industrial users.
As a matter of fact, the level of expression of synchronous languages is the one of
usual specification formalisms used in the industry; in the normal approach, the cod-
ing phase consists in translating manually such specifications into low level pro-
gramming languages. The automatic code generation is intended to suppress not only
the manual coding phase, but also – and perhaps more importantly – the expensive
unit testing phase, which consists in testing the code of each module against their
individual specifications, in order to detect coding errors.

Existing Tools

Code generators were first developed in academic contexts [BG92, Ber92, GLB87,
BL90, HCRP91, HRR91]. Industrial versions are now commercially available: from
Esterel-Technology (see http://www.esterel-technologies.com/v2/index.html) for
Esterel and Lustre-Scade, and from TNI-Valiosys (see http://www.tni-valiosys.
com/index.html) for Signal-Sildex.

Relevant Challenges and Work Directions

The ability of synchronous languages to be translated automatically into efficient code
is a major reason for their success. However, some important issues remain more or
less open.

Code Quality
In new application domains, like automotive, there is a strong need for improving
the quality of the generated code, both concerning its size and its performances.
Important efforts are ongoing on the compiling of Esterel [Edw02, WBC+00] into
software. Moreover, in some application domains, users want to influence the
scheduling of computations within a synchronous instant, by specifying, for in-
stance, a response time between some data acquisition and a corresponding output.
Such “micro-scheduling” can be performed, to some extend, in the SAXO com-
piler [WBC+00]. Conversely, taking into account the target architecture and/or the
dependence graph, global scheduling of individual components can be computed;
this contributes to reduce OS overhead. More generally static analysis techniques
can be used to optimize the generated code.
Code Certification
In the domains of critical software, automatic code generation has to cope with the
problem of code certification. In order to save efforts not only in manual code gen-
eration effort, but also in coding validation (unit testing), the automatically gener-
ated code must be certified, in the sense that certification authorities can accept it
without further validation. It is a major industrial concern. Presently, this can be

66 6 Tools for Programming, Code Generation, and Design

done by qualifying the code generator, which generally implies to develop the code
generator with the same norms that are applied to the embedded software devel-
opment (this is what happened for the Scade-KCG code generator). This increases
tremendously the cost of development of the code generator, and also the cost of
any change in the language or its compiler. An alternative solution [PSS98] is to
formally and automatically verify the correctness of the translation for each trans-
lated program. This very interesting track must be further explored, and is not yet
admitted by certification authorities.
Code Distribution
Another longstanding challenge is code generation for distributed architectures.
While some specific architectures, like TTA [Kop98], are perfectly convenient to
execute a synchronous program in parallel, the same problem for general architec-
tures is difficult. Some research works [ML94, BCT99, BCG99, CGP99, GM02]
concerned distributed implementations preserving the synchronous semantics,
while other approaches [Cas01] accept some relaxing of these strict semantics. Fi-
nally, work on distributed fault-tolerant implementations was also conducted
[DGLS01, GLSS01].
On the Frontier of Synchrony
Applications suggest that the pure synchronous model should be made “less syn-
chronous”, in several ways. For instance, it is very common, in periodically sam-
pled systems, to have several periods, with loose communication between tasks on
different periods; this is not yet allowed in pure synchronous languages. Another
situation is the mixing of periodic sampling and event triggered reactions. More
generally, it raises the problem of implementing synchronous programs on top of a
real-time OS, allowing multi-tasking, interrupts, etc. These problems have been
studied in the context of polychronous model [SL97, AL96, GG99]. Research on
the frontiers between synchrony, polychrony, and asynchrony must be pursued.
Back to the languages
All the previous topics have some consequences on the extensions of languages.
Real-time constraints, “desynchronisations”, distributed implementation con-
straints, and so on, must be expressed in the source language. Moreover, a better
expression of program and data structures enables a better code generation
[Mor02]. Also, declarative specifications of properties (e.g., assertions) could be
used during the compilation, through the use, for instance, of discrete control syn-
thesis techniques [ACMR03]. So, the development of the languages is far from be-
ing terminated

References

[André 96] C. André. Representation and analysis of reactive behaviours: a synchronous ap-
proach. In IEEE-SMC’96, Computational Engineering in Systems Applications,
Lille, France, July 1996.

[ACMR03] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller-synthesis
techniques to build property-enforcing layers. In European Symposium on Pro-
gramming, ESOP’03. Warsaw, Poland, April 2003.

[AL96] P. Aubry, P. Le Guernic. Synchronous distribution of Signal programs. In 29th
Hawaii International Conference on System Sciences, IEEE Computer Society
Press, Volume 1, 1996.

 6.2 Code Generation from Synchronous Languages 67

[BCG99] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In
J.C.M. Baeten and S. Mauw, editors, CONCUR’99. LNCS 1664, Springer Verlag,
1999.

[BCT99] A. Benveniste, P. Caspi, and S. Tripakis. Distributing synchronous programs on a
loosely synchronous, distributed architecture. Research Report 1289, Irisa, De-
cember 1999.

[Ber92] G. Berry. A hardware implementation of pure Esterel. ACM Workshop on Formal
Methods in VLSI Design, Miami, January 1991.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language: de-
sign, semantics, implementation. Science of Computer Programming, 19(2), 1992.

[BL90] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the Signal
language. IEEE Transactions on Automatic Control, 35(5), May 1990.

[Cas01] P. Caspi. Embedded control: From asynchrony to synchrony and back. In 1st
International Workshop on Embedded Software, EMSOFT2001, Lake Tahoe,
USA, October 2001. LNCS 2211.

[CGP99] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive systems for
asynchronous networks of processors. In IEEE Trans. On Software Engineering,
25:3, May-June 1999.

[DGLS01] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel. Off-line real-time fault-tolerant
scheduling. In 9th Euromicro Workshop on Parallel and Distributed Processing,
PDP’01. Mantova, Italy, February 2001.

[Edw02] S. A. Edwards. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21,
2002.

[GG99] T. Gautier, P. Le Guernic. Code generation in the SACRES project. In Towards
System Safety, Proceedings of the Safety-critical Systems Symposium, SSS’99,
Huntingdon, UK, Springer, 1999, 127-149.

[GLB87] T. Gauthier, P. Le Guernic and L. Besnard. Signal, a declarative language for
synchronous programming of real-time systems. Proc. 3rd Conf. on Functional
Programming Languages and Computer Architecture, LNCS 274, Springer Verlag,
1987.

[GLSS01] A. Girault, C. Lavarenne, M. Sighireanu, and Y. Sorel. Fault-tolerant static sched-
uling for real-time distributed embedded systems. In 21st IEEE International
Conference on Distributed Computing Systems, ICDCS’01. Phœnix, USA, April
2001. [GM02] A. Girault and C. Ménier. Automatic production of globally asynchronous locally
synchronous systems. In 2nd International Workshop on Embedded Software,
EMSOFT’02. Grenoble, France, October 2002, LNCS 2491.

[Hal93] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9), September 1991

[HRR91] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-
flow programs. 3rd Int. Symp. on Programming Language Implementation and
Logic Programming, LNCS 528, Springer Verlag, August 1991.

[Kop98] H. Kopetz. The time-triggered architecture. In ISORC ‘98, Kyoto, Japan, April
1998.

[ML94] O. Maffeïs and P. Le Guernic. Distributed implementation of Signal: scheduling
and graph structuring. In 3rd International School and Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, 1994.

[Mor02] L. Morel. Efficient compilation of array iterators for Lustre. In First Workshop on
Synchronous Languages, Applications, and Programming, SLAP’02, Grenoble,
April 2002.

68 6 Tools for Programming, Code Generation, and Design

[PSS98] A. Pnueli, M. Siegel, and O. Shtrichman. Translation validation for synchronous
languages. In K.G. Larsen, S. Skyum, and G. Winskel, editors, 5th International
Colloquium on Automata, Languages, and Programming, ICALP 1998. LNCS
1443, 1998.

[SL97] I. Smarandache and P. Le Guernic. Affine transformations in Signal and their appli-
cation in the specification and validation of real-time systems. In 4th International
AMAST Workshop on Real-Time Systems and Concurrent and Distributed Soft-
ware, LNCS 1231, 1997.

[SP-IEEE] A. Benveniste, G. Berry Eds. Another look at real-time programming. Special
Section of the Proceedings of the IEEE, 79(9), September 1991.

[SP-IEEE03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, R. de
Simone. The synchronous languages 12 years later. Proceedings of the IEEE,
91(1), special issue on embedded systems, 64-83,January 2003.

[WBC+00] D. Weil, V. Bertin, E. Closse, M. Poisse, P. Venier, and J. Pulou. Efficient compi-
lation of Esterel for real-time embedded systems. In International Conference on
Compilers, Architecture, and Synthesis for Embedded System, CASES’00, San
Jose, USA, 2000.

[GTL03] Le Guernic, P., Talpin, J.-P.,Le Lann, J.-C. . Polychrony for system design.
http://www.irisa.fr/prive/talpin/papers/rr-jcsc02.ps.gz . Journal for Circuits, Sys-
tems and Computers. Special Issue on Application Specific Hardware Design/. (c)
World Scientific, April 2003. Available as /INRIA research report n. 4715/, De-
cember 2002.

6.3 Back-End Code Generation – Below C

Definition

Compilation of programming languages such as C and Ada to the machine language
of embedded processors. The area of Compilation for Embedded Systems is largely
driven by the demand for very high efficiency of compiled code. This includes design
goals like high performance and low code size, but more recently also low energy
code generation for portable systems. Only a small code quality overhead as com-
pared to hand-optimized assembly code is acceptable for real-life applications. This
asks for novel and aggressive code optimization technologies that make optimal use
of the specialized architectures of embedded processors.

Position in the Design Flow

High-level programming languages such as C/C++ and Ada are used as targets of
code generation from formal specifications (Code Generation in the SafeAir- Design
Flow) and as direct coding vehicles. Their use has boosted productivity and reduced
time-to-market in embedded software development.

Support for high-level language programming requires efficient compilers, mostly
for C and C++. While compiler construction for general-purpose processor is a quite
mature technology, the situation is different in the area of embedded systems. This is
due to two reasons: (a) a large variety of domain or application specific programma-
ble processors and (b) the need for extremely efficient code.

 6.3 Back-End Code Generation – Below C 69

Retargetable Compilers
Due to the high efficiency requirements in embedded system design, there is a large
variety of domain-specific processors available on the semiconductor market, e.g.
special-purpose processors for audio and video signal processing (DSPs) or protocol
processing in networking applications (NPUs). Moreover, more and more system
houses tend to develop their own in-house processors for specific applications (ASIPs),
in order to achieve a cost reduction and better product differentiation. In order to save
development time and cost for C/C++ compilers for such processors, retargetable
compilers [1] are needed whose back ends can be quickly adapted to new target archi-
tectures. Particularly in the case of ASIP design, retargetable compilers are critical in
the design flow, since they support architecture exploration in order to determine the
optimal processor architecture for a given range of applications. Incorporating the
C/C++ compiler directly in the exploration flow, together with further tools like simu-
lator, debugger, assembler, and linker, permits to achieve an optimal hard-
ware/software match early in the design process. This idea of “compiler-in-the-loop”
architecture exploration (see fig.) has also been adopted by major semiconductor
vendors (e.g. Intel, STMicroelectronics, and Texas Instruments) and is expected to
gain even wider importance in the future.

Linker

Assembler

Compiler

Simulator

Profiler

Application

Linker

Assembler

Compiler

Simulator

Profiler

Application

Advanced Code Optimization for Embedded Processors
Traditionally, most embedded software applications have been coded in assembly
languages, a very tedious and error-prone method that results in low portability and
dependability. This has been necessary, since the need for the most efficient imple-
mentation prohibited the use of high-level language compilers. Only a small overhead
of compiled code versus hand-written assembly code is generally acceptable. With the
advent of more sophisticated code optimization technology [2] the use of C/C++ is
gaining growing importance, though. There are two major approaches to embedded
code optimization. First, compiler back ends have to take the detailed characteristics
of the target machines into account, e.g. hardware support in the form of SIMD in-

70 6 Tools for Programming, Code Generation, and Design

structions, predicated instructions, efficient use of the memory hierarchy, zero-
overhead loops, etc. As opposed to general-purpose “compiler-friendly” (i.e. RISC-
like) architectures, the design of an efficient optimizing compiler backend has a large
impact on the code quality. This has frequently been neglected in classical compiler
research and needs to be intensively addressed in the future in order to further opti-
mize embedded code quality and to keep pace with the fast developments in processor
architectures. The second approach is the use novel code optimization methodologies,
e.g. based on genetic algorithms, simulated annealing, branch-and-bound, that allow
obtaining high code quality even for irregular target machines by coupling different
backend phases such as scheduling and register allocation. Such approaches have
hardly been used in practice so far due to their comparatively high runtime require-
ments. However, in embedded code generation, higher compilation times are accept-
able, which may lead to a paradigm shift in code optimization technology.

Existing Approaches and Systems
There exist number different approaches to retargetable and optimizing code genera-
tion for embedded processors in research and industry. From the “traditional” com-
piler community, there are portable compilers like gcc [3] and lcc [4] which, however,
have problems with code quality for irregular targets like DSPs. Other retargetable
compiler systems, more targeted to embedded systems have been developed in
Europe (including CoSy [5], OCE [6], FlexWare [7]), U.S. (including SUIF [8], Ex-
pression [9], Mescal [10], Liberty [11]) and Asia (including ASIPMeister [12]). While
differing significantly in their detailed concepts, many of these approaches have
adopted the idea of using an architecture description language (ADL) to drive the
retargeting of compilers and other software tools. Using an ADL, the target machine
can be captured at a higher abstraction level and more concisely than with usual
hardware description languages (HDLs). As a consequence, only a single “golden”
reference model is required for the entire processor design flow. Industrial EDA
products, like CoWare´s LISATek product line [13], Axys´ MaxCore [14], and Tar-
get´ Chess [15] build on this concept to explicitly support compiler-based architecture
exploration and design of embedded processors. Current R&D efforts are aimed at
tuning existing ADLs towards a higher automation in compiler retargeting. While a
trend towards convergence in the area of ADL design is already visible, a unified
ADL that best fits usual system design flows still requires more research.

Relevant Challenges and Work Directions

Programmable Architectures
Research into this direction needs to be broadened in order to explore even higher
code efficiency potentials and to keep pace with new developments in programma-
ble architectures (e.g. parallel DSPs for 3G mobile telephony or Network Proces-
sors for communication protocol processing).
Handling Novel Code Optimization Techniques
Tools are needed to support automatic compiler generation or retargeting. Further
advances in this area will open up a large optimization potential for embedded sys-
tem industry, since compiler retargeting will no longer be a bottleneck in both
processor architecture optimization and application software development. To-

 6.3 Back-End Code Generation – Below C 71

gether with novel code optimization techniques this will provide the required tech-
nology to achieve an optimal match between embedded software and the underly-
ing processor architectures.
A Theory For Semantics-Preserving Program Transformations
Many embedded systems run in safety-critical applications. Correctness of opti-
mizing program transformations and, in fact, proofs for this will be mandatory. A
theory for semantics preserving program transformations is needed here.
Exploiting High-level Knowledge Present at the Specification Level
Automatically generated code, often encountered in Embedded Software, has spe-
cific properties. In general, it is much more disciplined than hand-written code
providing for high-precision static analyses. Efficiency of the compiled code could
be improved even more if high-level knowledge present at the specification level
could be made known to and exploited by the compiler. On the other hand, auto-
matically generated code often contains large amounts of redundant code. Removal
of this code by provably correct optimizations is mandatory.

References

[1] Rainer Leupers, Peter Marwedel: Retargetable Compiler Technology for Em-
bedded Systems – Tools and Applications, Kluwer Academic Publishers. ISBN 0-
7923-7578-5, November 2001.

[2] Rainer Leupers: Code Optimization Techniques for Embedded Processors – Meth-
ods, Algorithms, and Tool, Kluwer Academic Publishers, ISBN 0-7923-7989-6,
November 2000.

[3] GNU C Compiler: http://gcc.gnu.org
[4] LCC Compiler : http://www.cs.princeton.edu/software/lcc/
[5] Cosy Compiler System : http://www.ace.nl
[6] OCE: http://www.atair.co.at
[7] P. Paulin, F. Karim, P. Bromley: Network Processors: A perspective on market

requirements, processor architectures, and embedded S/W tools, Proc. DATE 2001
[8] Stanford University: http://suif.stanford.edu
[9] A. Halambi, P. Grun, et al. : Expression : a language for architecture exploration

through compiler/simulator retargetability, Proc. DATE 1999
[10] W. Qin, S. Malik: Automated Synthesis of Efficient Binary Decoders for Retarge-

table Software Toolkits, Proc. DAC 2003
[11] M. Vachharajani, N. Vachharajani, and D. August: The Liberty Structural Specifi-

cation Language: A High-Level Modeling Language for Component Reuse, ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), June 2004

[12] Shinsuke KOBAYASHI, Kentaro MITA, Yoshinori TAKEUCHI, Masaharu
IMAI, Rapid Prototyping of JPEG Encoder using the ASIP Development System:
PEAS-III, Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing 2003, Vol. 2, pp. 485-488, Apr., 2003

[13] CoWare Inc.: http://www.coware.com
[14] Axys Design Automation: http://www.axys-design.com
[15] Target Compiler Technologies: http://www.retarget.com

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 72 – 84, 2005.
© Springer-Verlag Berlin Heidelberg 2005

7 Tools for Verification and Validation

7.1 Building Blocks for Verification and Validation

Verification and validation consists in exploring the current design against side prop-
erties expressed as part of the requirements. Verification & validation can concern:

1. the specification level, at early stages of the design process, or
2. the embedded code, from C/Ada/Java, to assembly.

It includes:

1. testing, a well established technology, to be revisited based on advances in
formal methods and verification,

2. model checking and methods performing an exhaustive exploration of the
reachable state space, for discrete systems or systems abstracted into some
discrete approximation of them,

3. static analysis to explore embedded code – static analysis is a technique to
formally explore existing code, typically C or Java, by abstracting away
aspects of the code that are considered “second class” for the considered
purpose.

4. more exploratory techniques, such as source/object code validation, or the
use of theorem proving – code validation is a tool assisted technique to
formally assess the conformance of some object code against its source
code, it is a proof of validity for one given compilation, not a proof of the
compiler; theorem proving refers to tools and techniques for assisted rea-
soning on specifications or programs when undecidable properties are
considered.

7.2 Model Checking

Definition

Model checking is a technique that relies on building a finite model of a system of
interest and checking that a desired property holds in that model. Since the introduc-
tion of the term ‘model checking’ in the early eighties the technology has advanced
significantly and has been applied successfully in numerous industrial case-studies. In
the area of hardware verification the technology is now taken up by the industry.

The development of algorithmic techniques (e.g. partial order reduction, symme-
try-reduction, cone-of-influence, compositionality, abstraction) and data structures
(e.g. Binary Decision Diagrams) allows for automatic and exhaustive analysis of
finite state models with more than thousand components or state variables. Existing
model checkers has enabled analysis of interesting systems with more than 10400
reachable states.

 7.2 Model Checking 73

Finite-state model checkers support analysis of qualitative properties, in particular
safety and liveness properties. However, there is a need for extensions allowing quan-
titative properties of embedded systems to be analyzed. These include real-time prop-
erties, properties of the evolution of the (continuous) environment of the embedded
control program, and performance properties. For real-time properties model-checking
tools based on the modelling formalism of timed automata exist: the successful appli-
cation of these tools to several industrial case studies demonstrates the maturity of
these tools. However, there remain significant research challenges in extending some
of the most successful techniques from finite-state model checking to the setting of
timed automata (e.g. symbolic data structures and partial order reduction).

Whereas timed automata allows explicit modelling and analysis of real-time con-
straints the extended model of hybrid automata allows for more general continuous
phenomena (of the environment) to be modelled. The technique of model checking is
also developing in the direction of performance analysis with a number of model-
checking tools based on various stochastic extensions of finite-state systems (Markov
Chains, Markov Decision Processes, Semi-Markov Processes) emerging.

Position in the Design Flow

Model checking may be applied throughout the entire span from specification,
through design to final implementation. MSC/LSC/sequence diagrams may be used at
the early specification phases and analyzed for potential inconsistencies (e.g. race
conditions) using model checking techniques. A prerequisite for applying the tech-
nique of model checking is the existence of a suitable (essentially) finite-state model.
Thus the technique is directly applicable to analysis of the control structure, both at
design and code level of a system. To make the technique applicable to general em-
bedded code finite-state abstractions need to be extracted either by application of
generic abstract interpretations or by other means of formal verification of the cor-
rectness of a suggested abstraction in particular with the use of theorem proving (e.g.
using the theorem prover PVS). In fact the introduction of abstractions plays a key
role in making model checking feasible (abstractions from infinite to finite state mod-
els) as well as efficient (abstractions from large models to smaller models). However,
for model checking to truly scale up it is imperative that it is complemented with
compositional methods allowing verification problems of large systems to be decom-
posed into verification problems of smaller systems. Lightweight theorem proving is
here useful in establishing that a particular suggested decomposition is indeed correct.

Finally, model checking may also be applied in the testing phase as a method for
automatically generating test suites tracking the satisfaction of a given system specifi-
cation model with a good coverage/confidence.

Existing Tools

The growing application of standard modelling formalisms (e.g. UML, SDL, State-
Charts, Simulink) in embedded software engineering practice provides an ideal basis
for industrial take-up of the model checking technology. Below we give pointers to
some main tools covering finite-state model checker, model checkers for real-time
and hybrid systems, stochastic model checkers and model checking applied (via ab-
straction) to source code.

74 7 Tools for Verification and Validation

Finite-state Model Checkers
SPIN http://www.spinroot.com
This is a popular software tool that can be used for the formal verification of dis-
tributed software systems. The tool was developed at Bell Labs in the original Unix
group of the Computing Sciences Research Center, starting in 1980. The software
has been available freely since 1991, and continues to evolve to keep pace with
new developments in the field. In April 2002 the tool was awarded the prestigious
System Software Award for 2001 by the ACM.
SMV
Developed by Ken McMillian was the first model checker using the symbolic veri-
fication (i.e. with the use of Binary Decision Diagrams). Presently a number of
variants of the tool exist including Cadence SMV (http://www-cad.eecs. berke-
ley.edu/~kenmcmil/), nuSMV (http://nusmv.irst.itc.it/) and SMV from CMU
(http://www-2.cs.cmu.edu/~modelcheck/smv.html)
VisualSTATE http://www.iar.com/Products/VS/
This is a commercial tool supporting code generation from hierarchical state ma-
chine models compliant with UML standard. In addition the tool offer full verifica-
tion of a number of generic sanity properties (e.g. absence of deadlock) and simula-
tion capabilities. The model checker of VisualSTATE is based on the technique of
Compositional Backwards Reachability exploiting the (in)dependency as well as
hierarchical structure of a model.
StatemateMagnum ModelChecker and ModelCertifier http://www.ilogix.com
These are commercial products available from I-Logix, Inc. (www.ilogix.com) of-
fering formal verification for embedded systems applications. Being tightly inte-
grated with Statemate, the tool supports the complete range of modelling features
of Statemate.
FormalCheck http://www.cadence.com/datasheets/formalcheck.html
This is a commercial tool provides formal verification of complex control units us-
ing a collection of reduction techniques providing elegant methods for dealing with
the complex verification of large circuits. The tool is available from Cadence.
Murphi description language http://verify.stanford.edu/dill/murphi.html
This is based on Dijkstra’s guarded commands and bears similarities to Misra and
Chandy’s Unity model. Murphi contains a number of strategies for reducing the
number of reachable states in particular by identifying and exploiting symmetries.
FDR http://www.formal.demon.co.uk/FDR2.html
This tool is developed at Oxford University and is based on the theory of Commu-
nicating Sequential Processes, CSP and the notion of failures-divergence refine-
ment. A key technique in the tool is the application of (fast) compositional state-
minimization before analysis.

Model Checkers Based on Process Algebra
Caesar/Aldebaran http://www.inrialpes.fr/vasy/cadp/
The Caesar/Aldebaran tool suite is maintained and developed mainly in
VASY/INRIA. This tool suite is built around the process algebra LOTOS. Exten-
sions for dealing with timed extensions of LOTOS (e.g. E-LOTOS and LOTOS-
NT) are currently moderately supported. The tool suite offers a range of techniques

 7.2 Model Checking 75

for analyzing a system. These include various kinds of equivalence checking,
simulation tools, visualization tools and model checking tools. Almost all tech-
niques operate on finite state representations of the system.
muCRL http://www.cwi.nl/~mcrl
The muCRL tool suite is maintained and developed mainly at the CWI and the
Eindhoven University of Technology. This tool suite is built around the process al-
gebra muCRL and timed muCRL. The tool support for timed muCRL specifica-
tions is gradually increasing. The tool suite offers tools and techniques that operate
on a symbolic representation of the state space of a system, which is not necessar-
ily finite state, and can include unbounded data types. This symbolic representation
(so-called “Linear Process Equations”) of a system is used by other tools to check
for equivalence, simulate behaviours and verify (first order) modal mu-calculus
formulae. Linear Process Equations, representing systems with a finite state space,
can serve as input to the tool suite Caesar/Aldebaran.

Real-Time and Hybrid Model Checkers
Kronos http://www-verimag.imag.fr/TEMPORISE/kronos/
This tool is developed at VERIMAG, Grenoble and is based on components of
real-time systems modelled as timed automata and correctness requirements
formulated in timed temporal logic.
UPPAAL www.uppaal.com
This is a tool environment for modelling, validating and verifying real-time sys-
tems modelled as networks of timed automata extended with discrete data types.
UPPAAL is developed and maintained in collaboration between DoCS, Uppsala
University, Sweden and BRICS, Aalborg University, Denmark.
HyTech http://www-cad.eecs.berkeley.edu/~tah/HyTech/
This is a tool for the analysis of embedded systems specified using linear hybrid
automata. The tool is developed at UC Berkeley.
D/dt http://www-verimag.imag.fr/~tdang/ddt.htm
This is a tool for reachability analysis of continuous and hybrids systems with lin-
ear differential inclusions; developed at VERIMAG.
CheckMate http://www.ece.cmu.edu/research/projects/checkmate.shtml
This is a verification tool for hybrid dynamic systems developed at CMU, having
both discrete/continuous dynamics.

Stochastic Model Checkers
ETMCC http://www7.informatik.uni-erlangen.de/etmcc/
This is a model checker for continuous time Markov chains with requirements
specified in Continuous Stochastic Logic. The tools is developed in collaboration
between Erlangen University, Germany, and Twente University, The Netherlands.
PRISM http://www.cs.bham.ac.uk/~dxp/prism/
This is a probabilistic model checker being developed at the University of Bir-
mingham. The tool supports three models: DTMCs, CTMCs and MDPs with re-
spect to analysis of PCTL properties.

76 7 Tools for Verification and Validation

RAPTURE http://www.irisa.fr/prive/bjeannet/prob/prob_1.html
This is a verification tool developed jointly by BRICS, Aalborg, INRIA, and
Twente University. The tool is designed to verify reachability properties of Markov
Decision Processes.

Model Checking for Source Code
BANDERA http://www.cis.ksu.edu/santos/bandera/
This is a toolset designed to bridge the semantic gap between a non-finite-state
software system expressed as source code and the preferred input format for exist-
ing model checkers (essentially finite-state systems). The tool applies sophisticated
program analysis, abstraction and transformation techniques. The tool is developed
and maintained at Kansas University.
BLAST http://www-cad.eecs.berkeley.edu/~tah/blast/
This is a software model checker for C programs using counterexample-driven
automatic abstraction refinement to construct an abstract model chick are model
checked for safety properties. The tool is developed at Berkeley University.
VeriSoft http://www.bell-labs.com/project/verisoft/
This is a tool for systematically exploring the state spaces of systems composed of
several concurrent processes executing arbitrary code written in any language (e.g.
C or C++). The tool is developed and maintained by Bell Laboratories, Lucent
Technologies.

Relevant Challenges and Work Directions

Some significant problems need to be solved before this take-up will be fully realized:
Semantic issues.
A necessary prerequisite in order to conduct model checking is that the given mod-
elling formalism is provided with a formal semantics;
The missing link with scientific engineering formalisms.
The gap between the modelling formalisms currently favoured in embedded soft-
ware engineering (e.g. Simulink) and the modelling formalisms supported by cur-
rent verification tools should be bridged;
Expressing properties in a user friendly manner.
The various model checkers (as visualSTATE) should at least support verification
of a number of generic sanity properties (e.g. absence of deadlocks, no dead code).
However, to establish application specific properties these should be expressed in
some suitable specification language. A challenge is to design specification lan-
guages more ergonomic and intuitive (from a software engineer’s point of view)
than that of temporal logic which is favoured by most existing model checkers.

7.3 Static Program Analysis

Definition

Static program analysis executes an abstract version of a program’s semantics on
descriptions of data (abstract data) instead of concrete data. Both data domains usu-

 7.3 Static Program Analysis 77

ally are lattices, the partial order representing precision. Often, abstraction and con-
cretization functions exist between the two domains mapping (sets of) concrete data
to their most precise description and mapping abstract data to the set of represented
concrete data. The abstract semantics of the program statements is applied iteratively
until a fixed point is reached. This fixed point describes properties of all program
executions at each program point. Static program analysis is thus semantics based
offering the chance of correctness proof, sometimes even the automatic derivation
from a given semantics.

Static Program Analysis is being used for the computation of safety properties of
embedded programs. Safety properties cover a host of relevant properties of safety-
critical systems. They state that certain run-time errors will not occur in any execution
of a program. Static analysis, by nature, is approximate. Since it often considers unde-
cidable problems, it cannot be both correct and complete at the same time. Therefore,
it is important that it “only errs on the safe side”. It should be always correct, but may
be incomplete. This manifests itself in the so-called “false alarms”, i.e., an exceptional
run-time situation is reported by the static analysis that in fact can not happen in any
execution of the program. It will be a decisive property for the acceptance of static
analysis tools in industry, whether the number of false alarms can be kept within rea-
sonable limits.

The effort needed by program-analysis tools is closely related to the complexity of
the program properties they try to determine. A trade-off between analysis speed and
precision is often possible. The precision of analyses for a given property, i.e., the
number of false alarms, often depends on, whether the used tool is a general purpose
analysis tool or one that is tailored to the application and the type of software to be
analyzed [BCCFMM03].

Position in the Design Flow

Static Program Analyses are mostly performed on source-level code at the S/W-
Implementation and the Unit Validation stages of the design process. The support
tools are partly integrated in software-development environments. Analyses are per-
formed by software developers, often at suppliers, and by quality assurance personnel
at the contractor. The necessary training effort to educate personnel to do program
analysis tasks, in particular the interpretation of warnings is not low, but will amor-
tize. Licensing of such tools will often be on project basis, often also on the basis of
number of work stations, on which the tool is installed. It is meaningful to integrate
such tools into environments and have a combined license.

A relevant property of a hard real-time system is whether it will always react inside
the given time bounds. Often, rough estimates of the timing behaviour of a real-time
system under development are useful during the development process. These can be
obtained using methods based on the structure of the program; atomic statements are
given some standard execution time, and composed statements receive timing esti-
mates computed from the timing estimates of the components and a function corre-
sponding to the type of statement. Penalties for undesirable states in modern proces-
sors, e.g. cache misses, branch misprediction can be large. As soon as the programs
under consideration are rather small, the order of magnitude of these penalties can

78 7 Tools for Verification and Validation

exceed the order of magnitude of the execution time of the programs. Any run-time
estimation method has to be aware of this limitation.

The code implementing an embedded system may have been obtained by auto-
matic, semi-automatic, or non-automated development phases. In any case, correct-
ness of the result should be checked. Static program analysis on the implementation
level can be used to check whether invariants of the specification level are still satis-
fied by the implementation. This continues for the compilation task. Compiler cor-
rectness proofs are still not feasible. Alternatives are compilation-result checks, i.e.,
the check whether an individual program is correctly translated, cf. CVT. This re-
quires the use of a theorem prover with a corresponding compilation-time overhead.
An alternative is to compute corresponding invariants on both the software implemen-
tation and the machine code level by static analyses. The computed invariants may be
strong enough for the case under consideration and the overhead usually is much less.

Some analyses are only possible, once the machine-code level is reached. Reliable
and often precise upper bounds on the execution time of embedded programs can be
obtained when all the information about the hardware platform are known. The cur-
rent state of the art in determining the WCET consists in a combination of micro ar-
chitectural analysis predicting the behaviour of the processor components and implicit
path enumeration determining a path on which the upper bound is computed. The first
phase is realized using static program analysis, the second solving an integer linear
program representing the control flow of the program. The advantages of this ap-
proach to WCET determination over competing approaches are the following:

The use of program analysis for the first phase and of ILP for the second splits the
task along the right border. ILP solving is the more costly task. This split leaves
only ILPs of reasonable size to be solved leading to acceptable overall analysis
times.
Much precision is gained by regarding instructions in different contexts, i.e., by
using context- and flow-sensitive analysis methods.
Under certain conditions depending on the predictability of the processor behav-
iour, both WCET and BCET can be determined giving the developer a feel for the
precision of the analysis.
The use of ILP for the worst-case path determination allows the use of complex
user annotations to express knowledge about program behaviour. These annota-
tions can be translated into the ILP.

WCET tools, as described above, are used on the executable code. They are used by
the developers, in order to see whether the code satisfies the timing constraints and to
find out potential for performance improvement. The use of such tools depends on the
industrial sector. They will be distributed to and used by suppliers and they will be
used for in-house development and quality assurance. Technical inspection offices,
like the German TÜVs, will ask their customers to use them before the certification
phase and use them for the certification process itself. Licensing costs will be high,
since the market is small and the development effort is high. The learning effort for
users of the tools can be kept small, provided the results of the analyses are visualized
adequately.

 7.3 Static Program Analysis 79

Existing Tools

PolySpace Verifier is a general purpose tool for analyzing C and Ada programs for
run-time errors. http://www.polyspace.com/product_datasheet/datasheets.htm
The Program Analyzer Generator, PAG, is a tool supporting the automatic genera-
tion of program analyses from specifications. http://www.absint.de/pag/
BANE is research tool for experimentation with program analyses.
http://www.cs.berkeley.edu/Research/Aiken/bane.html
The aiT WCET analyzers of AbsInt determine bounds on execution times by ab-
stract interpretation. http://www.absint.de/wcet.htm

Relevant Challenges and Work Directions

Static analysis is certainly a new and living area, which cannot be considered fully
mature and stable. Not surprisingly, research issues and advances needed are numer-
ous, and challenging:

Liveness vs. progress
Current research on static program analysis attempts to also verify liveness proper-
ties. The approach is to combine a static analysis with a progress property. This
progress property has to be proved with the help of a theorem prover.
Concurrency
The analysis of concurrent software has posed one of the biggest challenges to
static program analysis, as well as to program verification. Recently, the applica-
tion of Shape Analysis has advanced the limits of what could be analyzed by static
analysis. Multi-threaded software even with dynamically varying number of
threads and varying number of objects have been successfully tackled [YRSW03].
Exploiting high-level knowledge present at the specification level
Automatically generated code, often encountered in Embedded Software, has spe-
cific properties. In general, it is much more disciplined than hand-written code
making verification easier and providing for high-precision static analysis
[AAS03]. However, the situation could be improved even more if high-level
knowledge present at the specification level could be made known to and exploited
by the compiler.
Scaling-up
The more powerful a static analysis is the more expensive it is in general. Powerful
analyses have problems of scaling-up. User annotations and assume-guarantee rea-
soning will be needed to solve this serious problem.
WCET
The determination of precise bounds on the execution times of real-time software
critically depends on the predictability of the processor architecture. They are the
more precise, the more predictable the processor architecture is. Processor architec-
tures started to being used today reach the limit of non-deterministic behaviour that
makes the computation of precise upper bounds possible. An interesting research
direction is to identify principles for the design of processors that perform well
both in the average and in the worst case [HLTW03].

80 7 Tools for Verification and Validation

Components
The advent of component-based design and middleware in the hard real-time do-
main introduces a completely new challenge. How does one guarantee real-time
behaviour of complex systems constructed from components using middleware and
sitting on top of a real-time operating system?

References

[BCCFMM03] B.Blanchet, P.Cousot, R.Cousot, J.Feret, L.Mauborgne, A.Miné: A Static Ana-
lyzer for Large Safety-Critical Software, PLDI 2003

[HLTW03] Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The Influence of Proc-
essor Architecture an the Design and the Results of WCET Tools, IEEE Transac-
tions on Real-Time Systems, 2003, to appear

[AAS02] Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: Abstract Interpretation-Based Timing Validation of
Hard Real Time Avionics Software Systems, submitted to the Performance and
Dependability Symposium, 2003

[YRSW03] Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying Temporal Heap Properties
Specified via Evolution Logic, ESOP 2003

7.4 Testing Embedded Systems

Definition

Testing is the execution of the system under test in a controlled environment following
a prescribed procedure with the goal of measuring one or more quality characteristics
of a product. The best situation is when the required behaviour and quality is specified
in a requirements specification. The testing objective then becomes to demonstrate
whether the actual status of the product deviates from the specified status. Testing
helps finding potential defects and determining the risk of release of the product.

Testing is different from other validation techniques such as model-checking, static
analysis, review and inspection, walk-through and debugging, because it dynamically
executes the product in a realistic (but controllable) environment with actual concrete
input data, while comparing the actual and expected behaviour. The strength of test-
ing is the execution of the actual system in a realistic environment. On the other hand
it must be stressed that a fundamental limitation of testing is that only a very small
sample of the possible system behaviours can be evaluated. In any non-trivial applica-
tion the number of possible input values, input sequences, and environment conditions
is gastronomic, and often literally outnumber the atoms in the universe. Thus, the
required number of test cases needed for exhaustive (in the sense that a passing sys-
tem is guaranteed to be correct) testing is practically infinite. This is the theoretical
underpinning of the well-known statement that “testing can only show the presence of
errors, not their absence”. A central testing problem is therefore to engineer a suite of
effective test cases that contributes with useful knowledge (e.g. has a high likelihood
of detecting errors) about the system under test, and that can be executed in the
amount of time and resources allocated to the testing activity. Various techniques and
strategies have been formulated to aid selection of effective test cases. Examples
include boundary value analysis, equivalence class partitioning, branch and statement

 7.4 Testing Embedded Systems 81

coverage), fault models, mutation analysis. These test criteria can be used as test de-
sign techniques as well as heuristic measures of the thoroughness of a test suite.

Testing is used to measure several quality characteristics such as functionality (in-
put-output behaviour, accuracy, security, compliance, interoperability), reliability
(maturity, fault tolerance, recoverability), usability (understandability, learnability,
operability), efficiency (performance, time behaviour, resource utilization), maintain-
ability (analyzability, changeability, stability, testability), and portability (adaptabil-
ity, installability, conformance, replaceability). Each quality characteristic is often
tested separately using specialized testing procedures. This leads to several different
kinds of testing, i.e., functional testing, reliability testing, usability testing, perform-
ance testing, etc.

Testing is performed at several levels during the development process: unit-level,
module- or component level, module/component integration level, or system level.
Different people, techniques and tools may be involved, depending on the level. Low-
level testing is the process of testing individual units or integrating these, and is usu-
ally done by the developers. The source code is normally available and visible, and
the goal is to construct a test suite that covers each statement or branch of the unit.
High-level testing is performed when application software, system software, and
hardware is integrated into a complete product. The system under test is usually
treated as a black box that can be interacted with manually or using programmable
environment emulators. Testing may be performed by separate testing- or quality
assurance-teams. Acceptance-testing is normally performed by the customers. Re-
gression-testing is used at all levels and involves re-executing existing test cases to
check whether changes to the system under test had the desired effects and no unde-
sired side effects. Testing is often performed to measure real-time execution time and
response times e.g. to check resource utilization or obtain an estimate for the worst-
case execution time. However, using this approach is very problematic because it is
difficult to obtain safe and accurate bounds.

Position in the Design Flow

Testing is mainly performed in the later stages of systems development where code
or integrated product is ready, but test related activities may start as soon as the
project is initiated. For example, explained in terms of the V-model, preparations of
test-ware and writing abstract test cases for acceptance testing can begin as soon as
system requirements have been stated. Test case and test-ware design for system
level testing may begin when a detailed specification exists. Similarly integration
testing may start when a detailed design specification exists, and unit level testing
when unit-code is available. In principle, only the execution and verdict assignment
need to be done late. Indeed, the view taken by the “Test Management Approach”
(TMAP) to test organization is to treat testing as a process in it self with its own
phases (preparation, test generation, test execution, and completion) that are
planned and controlled. Testing is thus a separate (but not independent) process that
runs concurrently with the normal development process, and not merely as a phase
in systems development.

82 7 Tools for Verification and Validation

Existing Tools

Testing is a very broad topic and is extremely diversified, and the required tools de-
pend on what level is being tested, the quality aspect being measured, the specific
application being tested, the programming language, etc. The tools are often very
specialized and dependent on the capabilities of the specific test execution equipment.
Consequently, the range of testing tools used by industry is extensive, and only a very
limited selection can be discussed here.

Here we consider tools from the three main testing activities: test organization, test
execution and test generation:

Test Organization
This includes management and planning of the test process, allocation of resources,
test-ware management and consolidation for regression testing.

Tools support planning and control of tests, defect management, configuration
and version control to manage the system under test version, test-ware, test results
and logs, etc. An example of a tool in this category is TestDirector (Mercury).
Test Execution
The means for execution of the specified tests are implemented, and the specified
tests executed, and verdicts are assigned.

Test execution of low-level tests includes tools for automatically generating test
input data, controlling the execution of test cases, automatic regression testing, report
generation, automatic stub generation, code-coverage analyzers, code-complexity
analyzers, timing analysis, path analysis. Many tools that support the test execution
activity are available. Examples of such tools include VectorCAST, Telelogic
TauTester, Rational Test RealTime, Cantata, Panorama C/C++, tcov, prof, Junit.

High-level tests are typically executed using specialized environment emulators
or signal/load generators to stimulate the system under test with typical, rare, or ex-
treme use- and load-patterns. In many cases the test cases and environment behav-
iour is handcrafted, and written in C or (general purpose or specialized) scripting
languages. In some industrial sectors it is common to use Matlab/Simulink to spec-
ify environment behaviour. System level real-time constraints are often tested in
this fashion. It is important to emphasize that the use-patterns are still generated
manually in an ad-hoc fashion, although tools exist for their construction. Also the
test oracle problem is not solved, and verdict assignment is done based on ad-hoc
log-file analysis.
Test Generation
This activity includes analysis of the system under test and the specification basis,
formulation of a test strategy, and design and construction of a set of test cases.
The state-of-the-art is to manually specify test cases in natural language and then
translate them into the C–language or (often ad hoc) test scripting language, to use
spreadsheets to list the required test actions and expected behaviour, or to use cap-
ture-and-playback tools. Few standardized test notation languages exist; an excep-
tion is TTCN (Test and Test Control Notation) most widely deployed in the tele-
com sector. However, tools are emerging that utilizes design models (some form of
state machine notation) as basis for automatic test case generation, so-called speci-
fication or model driven testing. These tools are not only model based input stimuli
generators but also computes the expected responses. Most state-of-the-art test

 7.4 Testing Embedded Systems 83

automation tools emphasize test management and execution, whereas relatively
few tools exist for automatic test generation. For this reason a number of examples
of model based test generation tools is mentioned explicitly below:
Reactis Simulink Tester http://www.reactive-systems.com/
This generates test suites automatically from Simulink / Stateflow diagrams. Each
test consists of a sequence of stimulus / response pairs, where each stimulus as-
signs an input value to each in-port in the model and each response records an out-
put value for each out-port. The test suites are generated from coverage criteria of
the specification, e.g., transition or state coverage.
Conformiq Test Generator http://www.conformiq.com/
This tool automatically generates test cases from UML state chart models. Simula-
tions of the models can be used to generate batches of test cases that can later be
executed. Alternatively, the models can be interpreted dynamically to facilitate on-
the-fly testing. Similarly, the Statemate MAGNUM ATG (I-Logix) tool uses
model-checking and simulation techniques to derive test sequences from state chart
models.
RT-Tester (Bremen) and TorX (University of Twente)
http://www.verified.de/e_index.html
http://fmt.cs.utwente.nl/tools/torx/introduction.html
These are both tools with an underlying formal theory and are rooted in academia.
Both tools are for on-the-fly test generation and execution, where the specification
is continually probed for relevant input stimuli and used to check the validity of
output actions. RT-tester accepts specifications in a mixture of languages, but
mainly timed CSP, whereas TorX accepts Promela or LOTOS.
TGV (Irisa/Verimag) and Telelogic TestComposer
http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html
http://www.telelogic.com/
These are SDL-based test case generators. Given an SDL specification and a test
purpose (or a specification coverage criterion) these tools construct a test case that
meets the test purpose, and stores this in TTCN format. Phact (Philips Research)
TestGen (INT, France) also produce TTCN test suites, but uses FSM checking ex-
periment based test generation. TTCN (test and test control notation) is a standard-
ized language dedicated to the specification of abstract test cases. Currently, TTCN
mostly used in the context of telecom applications, but the new version 3 aims
much broader. Given a TTCN test suite, tools exist to aid the construct the test har-
ness, i.e. TTCN to C compilers (e.g. Telelogic Tau Tester).

A common characteristic of the few commercial tools that exists is that they are lim-
ited in the models they allow (deterministic, purely functional) and lack a theoretic
foundation. Especially, explicit and systematic handling of real-time, probabilistic,
and hybrid properties are missing.

As mentioned earlier, a large variety of testing tools for embedded systems exist.
Some pointers can be found at:

http://www.testingfaqs.org/
http://www.cs.queensu.ca/Software-Engineering/tools.html
http://www.aptest.com/resources.html
http://www.dacs.dtic.mil/GoldPractices/practices/mbt/index.html

84 7 Tools for Verification and Validation

Relevant Challenges and Work Directions

Although testing is the by far most important practical validation technique for com-
puter software systems employed by industry, it has long been neglected as a field of
serious research. In the past decade, however, the study of the use of (formal) models
for the systematic generation and execution of sound test suites, the validation of test
suites, and the interpretation of test results has become an established field of re-
search. This had led to the development of new theories and tools to support the test-
ing of software systems that have been successfully applied in practice. In spite of this
initial success the standard testing practices of the industry at large is still appallingly
low. The reasons for this are:

1. Lack of information/education: industrial teams are unaware of the nature
and potential of more advanced methods and tools. This must be ad-
dressed by well-focused knowledge transfer campaigns.

2. The current techniques have a great potential but need to be improved and
address a number of practically relevant issues. A prime concern is scal-
ability, e.g. with respect to the number of components and structure of the
system, and in connection with system parameters ranging over large or
infinite domains. With embedded systems this problem is aggravated by
the need to take physical features of the system environment and the tight
integration of electronics, mechanics and control software into account,
thereby requiring handling of real-time, stochastic, and hybrid properties
during modelling, test generation and execution. This requires consider-
able research efforts to refine and extend existing theories and tools.

Given the fact that the cost of testing is estimated to take up between 30 and 50% of
the development cost of embedded systems, the potential of improvements in testing
methods and tool is enormous.

The main challenges to be address include development of theory and tools for ad-
vanced model-based test-generation and execution of real-time embedded systems.
Also, transfer of knowledge and practically applicable testing methods and tools to
industry is highly needed. Central issues are:

a sound theoretical basis for test generation and -execution for real-time, stochastic,
and hybrid behaviours;
the use of symbolic techniques for test data selection for system parameters with
large or infinite domains;
the study of distributed and component based observation and testing techniques;
the development of adequate notions of test coverage;
the development of effective tool environments for test generation, execution and
interpretation;
testable design of embedded systems.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 85 – 91, 2005.
© Springer-Verlag Berlin Heidelberg 2005

8 Middleware for Implementing Hard Real-Time
Systems

We have decided to cover selected typical middleware for hard real-time, as these are
privileged targets for the design flows. Our list emphasise middleware that bring some
important advantages to design flows, namely the Time-Triggered ones. The reason is
that these middleware rely on a model of communication that adequately fits hard
real-time. Complementary information related to more traditional and general purpose
RTOS can be found in part III of this roadmap.

Aspects of real-time networks are also treated in section 24.

Approach

The Time-Triggered Architecture (TTA) provides a computing infrastructure for the
design and implementation of dependable distributed embedded systems [Kop03,
Mai02]. Tea’s basic building block is a node, i.e. a self-contained composite hard-
ware/software subsystem that can be used as a building block in the design of a larger
system. Two replicated communication channels connect the nodes to build a cluster.
To avoid medium access by a faulty node guardians are used that could be either local
at the nodes, or central at hubs, if the channels are connected in star topology (see
Figure 8.1).

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

Star Coupler Star Coupler

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

CNI

Host

Controller

Figure 8.1. Star Topology vs. Bus Topology

Communication is performed according to a previously specified, periodic time divi-
sion multiple access (TDMA) schedule. The TTA obtains its synchronous behaviour
by the progression of real-time, i.e., there exists a global system time, which is used
for the arbitration of the communication medium. In the TTA this global time is
established using the local clocks of the nodes.

In an architecture using a TDMA scheme, time is split up into (non-overlapping)
pieces of not necessarily equal durations, which are called slots. These slots are

86 8 Middleware for Implementing Hard Real-Time Systems

grouped into sequences called TDMA rounds, in which every node occupies exactly
one slot. The knowledge, which node occupies which slot in a TDMA round is static,
available to all components a priori, and equal for all TDMA rounds. When the time
of a node’s slot is reached, the node is provided unique access to the communications
medium for the duration of the slot. After the end of one TDMA round, the next
TDMA round starts, i.e., after the sending of the node in the last slot of a TDMA
round, the node that is allowed to send in the first slot sends again.

Design Principles

Consistent Distributed Computing Base
In a distributed TT system it is a priori common knowledge at which instant a mes-
sage of a correct node must arrive at all other nodes. This common knowledge can be
used to design a consistent distributed computing base, such as the one realized in the
time-triggered architecture with the TTP protocol [Kop93]. TTP is based on a time-
division-multiple-access (TDMA) strategy to replicated communication channels. The
TTP protocol provides, in addition to fault-tolerant clock synchronization, a distrib-
uted membership service and a clique avoidance service. The membership service of
TTP informs consistently all correct nodes about the health state of all nodes within
two TDMA rounds. If a fault outside the fault hypothesis causes the formation of
cliques, the clique avoidance mechanism of TTP will force the minority clique into a
restart in order that a consistent distributed computing base remains available at all
times. The correctness of the membership protocol of TTP has been investigated by
formal methods [Rus00].

It is impossible to maintain a consistent distributed computing base in an ET sys-
tem that has to cope with faults [Fis85].

Unification of Interfaces – Temporal Firewalls
A suitable architecture must be based on a small number of orthogonal concepts that
are reused in many different situations in order to reduce the mental load required for
understanding large systems. In a large distributed system the characteristics of these
interfaces between the identified subsystems determine to a large extent the compre-
hensibility of the architecture. In the TTA, the communication network interface be-
tween a host computer and the communication network is the most important inter-
face. The CNI appears in every node of the architecture and separates the local proc-
essing within a node from the global interactions among the nodes. The CNI consists
of two unidirectional data-flow interfaces, one from the host computer to the commu-
nication system and the other one in the opposite direction.

We call a unidirectional data-flow interface elementary, if there is only a unidirec-
tional control flow [Kop99] across this interface. An interface that supports periodic
state messages with error detection at the receiver is an example of such an elemen-
tary interface. We call a unidirectional data-flow interface composite, if even a unidi-
rectional data flow requires a bi-directional control flow. An event message interface
with error detection is an example for a composite interface. Composite interfaces are
inherently more complex than elementary interfaces, since the correct operation of the
sender depends on the control signals from all receivers. This can be a problem in
multicast communication where many control messages are generated for every unidi-
rectional data transfer, and each one of the receivers can affect the operation of the

 8 Middleware for Implementing Hard Real-Time Systems 87

sender. Multicast communication is common in distributed embedded systems. The
basic TTA CNI as depicted in Figure 8.2 is an elementary interface.

Sender Receiver

Control
flow

Data
flow

PUSH

Control
flow

Data
flow

PULL
C

N
I M

em
or

y

C
N

I M
em

or
y

7 56

1211
10

8 4

2
1

9 3

Data
Ctrl.

Ctrl.

Global Time

Cluster Communication
System

Figure 8.2. Data Flow and Control Flow at a TTA Interface

The time-triggered transport protocol carries autonomously – driven by its time-
triggered schedule – state messages from the sender’s CNI to the receiver’s CNI. The
sender can deposit the information into its local CNI memory according to the infor-
mation push paradigm, while the receiver will pull the information out of its local
CNI memory. From the point of view of temporal predictability, information push
into a local memory at the sender and information pull from a local memory at the
receiver are optimal, since no unpredictable task delays that extend the worst-case
execution occur during reception of messages. A receiver that is working on a time-
critical task is never interrupted by a control signal from the communication system.
Since no control signals cross the CNI in the TTA (the communication system derives
control signals for the fetch and delivery instants from the progress of global time and
its local schedule exclusively), propagation of control errors is prohibited by design.
We call an interface that prevents propagation of control errors by design a temporal
firewall [Kop97]. The integrity of the data in the temporal firewall is assured by the
non-blocking write (NBW) concurrency control protocol [Kop93].

From the point of view of complexity management and composability, it is useful
to distinguish between three different types of interfaces of a node: the real-time ser-
vice (RS) interface, the diagnostic and maintenance (DM) interface, and the configu-
ration planning (CP) interface [Kop00]. These interface types serve different func-
tions and have different characteristics. For the temporal composability, the most
important interface is the RS interface.

Temporal Composability
In a composable architecture, the integration of a system out of components proceeds
without unintended side effects. For architecture to be composable, it must adhere to
the following four principles [KO02]:

Independent Node Development
Principle one of a composable architecture is concerned with design at the architec-
ture level. A composable architecture must distinguish distinctly between architec-

88 8 Middleware for Implementing Hard Real-Time Systems

ture design and node design. Components only be designed independently of each
other, if the architecture supports the exact specification of all component services
provided at the level of architecture design.
Stability of Prior Services
The stability-of-prior-service principle ensures that the validated service of a com-
ponent is not refuted by the integration of the component into a system.
Constructive Integration
The constructive integration principle requires that if n components are already in-
tegrated, the integration of the n+1st component may not disturb the correct opera-
tion of the already integrated components.
Replica Determinism
If fault-tolerance is implemented by the replication of nodes, then the architecture
and the nodes must support replica determinism. A set of replicated nodes is rep-
lica determinate [Pol95] if all the members of this set have the same externally
visible state, and produce the same output messages at points in time that are at
most an interval of d time units apart. The implementation of replica determinism
is simplified if all nodes have access to a globally synchronized sparse time base
and use the time to the mutual exclusion problem.

Time-Triggered Protocols

TTP/C
The TTP/C protocol is a fault-tolerant time-triggered protocol that provides the fol-
lowing services:

Autonomous fault-tolerant message transport with known delay and bounded jitter
between the CNIs of the nodes of a cluster by employing a TDMA medium access
strategy on replicated communication channels.
Fault-tolerant clock synchronization that establishes the global time base without
relying on a central time server.
Membership service to inform every node consistently about the “health-state” of
every other node of the cluster. This service can be used as an acknowledgement
service in multicast communication. The membership service is also used to effi-
ciently implement the fault-tolerant clock synchronization service.
Clique avoidance to detect and eliminate the formation of cliques in case the fault
hypothesis is violated.

In TTP/C the communication is organized into rounds, where every node must send a
message in every round. A particular message may carry up to 240 bytes of data. The
data is protected by a 24 bits CRC checksum. The message schedule is stored in the
message-descriptor list (MEDL) within the communication controller of each node. In
order to achieve high data efficiency, the sender name and the message name is derived
from the send instant. The clock synchronization of TTP/C exploits the common knowl-
edge of the send schedule: every node measures the difference between the a priori
known expected and the actually observed arrival time of a correct message to learn
about the difference between the sender’s clock and the receiver’s clock. This infor-
mation is used by a fault-tolerant average algorithm to calculate periodically a correc-
tion term for the local clock in order to keep the clock in synchrony with all other

 8 Middleware for Implementing Hard Real-Time Systems 89

clocks of the cluster. The membership service employs a distributed agreement algo-
rithm to determine whether the outgoing link of the sender or the incoming link of the
receiver has failed. Nodes that have suffered a transmission fault are excluded from the
membership until they restart with a correct protocol state. Before each send operation
of a node, the clique avoidance algorithm checks if the node is a member of the majority
clique. The detailed specification of the TTP/C protocol can be found at [TTP/C].

TTP/A
The TTP/A protocol is the time-triggered field bus protocol of the TTA. It is used to
connect low-cost smart transducers to a node of the TTA, which acts as the master of
a transducer cluster. In TTP/A the CNI memory element has been expanded at the
transducer side to hold a simple interface file system (IFS). Each interface file con-
tains 256 records of four bytes each. The IFS forms the uniform name space for the
exchange of data between a sensor and its environment. The IFS holds the real-time
data, calibration data, diagnostic data, and configuration data. The information be-
tween the IFS of the smart transducer and the CNI of the TTA node is exchanged by
the time-triggered TTP/A protocol, which distinguishes between two types of rounds,
the master-slave (MS) round and the multi-partner (MP) round. The MS rounds are
used to read and write records from the IFS of a particular transducer to implement
the DM and CP interface. The MP rounds are periodic and transport data from se-
lected IFS records of several transducers across the TTP/A cluster to implement the
RS service. MP rounds and MS rounds are interleaved, such that the time-critical real-
time (RS) service and the event-based DM and CP service can coexist. It is thus pos-
sible to diagnose a smart transducer or to reconfigure or install a new smart transducer
on-line, without disturbing the time-critical RS service of the other nodes. The TTP/A
protocol also supports a “plug-and-play” mode where new sensors are detected, con-
figured, and integrated into a running system on-line and dynamically. The detailed
specification of the TTP/A protocol can be found at [TTP/A].

FlexRay
FlexRay [FRay] is a combination of two different protocols: a time-triggered TDMA
scheme and a minislotting protocol for event-triggered transmission. FlexRay also
provides a mode that makes it compatible with Byteflight [Byte] – a data bus protocol
for automotive applications. FlexRay supports different modes of operation for clock
synchronization:

a distributed fault-tolerant midpoint algorithm for the TDMA mode, and
a master-slave algorithm for the Byte-flight mode.

The master-slave algorithm in turn can establish a reference based on either time or
external events. The distributed midpoint algorithm serves as a reference for a set of
TDMA slots with equal length. Following this set is a dynamic segment for events.
During the dynamic segment, the slot counter for the minislotting protocol is incre-
mented. If a node wants to send any event messages, it must wait until the slot counter
has reached the unique ID assigned to the message. Event messages can have differ-
ent lengths. The advantage of minislotting over CSMA/CA is that minislotting has no
restriction in communication speed. Similar to the TTP/C, FlexRay supports two
redundant communication channels for fault tolerance. Because of the lack of pub-

90 8 Middleware for Implementing Hard Real-Time Systems

lished fault hypothesis information, we do not know which types and frequencies of
faults the protocol intends to tolerate or how FlexRay tolerates all types of single-
component failures. A consortium is developing FlexRay, and it has not yet published
a specification.

TT-CAN
Time-triggered CAN [TTCAN] is an extension of the well established event-triggered
CAN protocol. Communication involves periodic transmissions of a reference mes-
sage by a time master. This reference message introduces a system wide reference
time. Alternatively, an external event can trigger the reference message. Based on this
reference, TT-CAN defines several so-called exclusive windows. These windows are
equivalent to the time slots in a TDMA system. TT-CAN assigns each exclusive win-
dow to a specific node, which can send a data frame. In addition, the protocol defines
arbitrating windows. Within these windows, all network nodes can transmit frames
according to the event-triggered CSMA/CA access scheme used by CAN. Because
CAN preserves the original CSMA/CA channel access protocol for event messages, it
is inherently limited to a 1 Mbit/s data transmission rate. Because CAN provides only
one communication channel and a master-slave algorithm handles clock synchroniza-
tion, TT-CAN cannot tolerate arbitrary, single-component failures. An interesting
feature of CAN is its acknowledgment and retransmission mechanism, which uses the
CSMA/CA principle. The sender transmits an acknowledgment bit at the end of the
frame, which is set to the logical true condition, and a recessive state on the channel
represents this condition. If any of the receiver nodes has experienced a reception
error, that node can immediately change the state to a dominant channel level, indicat-
ing the logical false condition. This mechanism can ensure consistent message deliv-
ery for most cases.

References

[Kop03] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings of the
IEEE, Special Issue on Modelling and Design of Embedded Software, 2003.

[Mai02] R. Maier, G. Bauer, G. Stöger and S. Poledna. Time-Triggered Architecture: A
Consistent Computing Platform. IEEE Micro, 2002, Volume 22(4) pp. 36-45.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability [real-time embedded
systems]; Computing & Control Engineering Journal, Volume 13(4), 2002, pp. 156
-162.

[Kop93] H. Kopetz and G. Gruensteidl. TTP – A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems. In Proceedings of the 23rd IEEE International Sym-
posium on Fault-Tolerant Computing (FTCS-23). 1993. Toulouse, France: IEEE
Press.

[Fis85] M. Fischer, N. Lynch and M. Paterson. Impossibility of Distributed Consensus
with one Faulty Processor. Journal of the ACM, 1985. 32(2): p. 374-382.

[Rus00] J. Rushby. Formal Verification of Group Membership for the Time-Triggered
Architecture. 2000, SRI International: Menlo Park, CA.

[Kop99] H. Kopetz. Elementary versus Composite Interfaces in Distributed Real-Time
Systems. In Proceedings 4th International Symposium on Autonomous Decentral-
ized Systems, pages 26–33, 1999.

 8 Middleware for Implementing Hard Real-Time Systems 91

[Kop97] H. Kopetz and R. Nossal. Temporal Firewalls in Large Distributed Real-Time
Systems. In Proceedings of IEEE Workshop on Future Trends in Distributed Com-
puting, pages 310–315, 1997.

[Pol95] S. Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica Determin-
ism. Kluwer Academic Publishers. 1995.

[Kop93] H. Kopetz and J. Reisinger. The Non-Blocking Write Protocol NBW: A Solution
to a Real-Time Synchronization Problem. In Proceedings of the 14th Real-Time
Systems Symposium, pages 131–137, 1993.

[Kop00] H. Kopetz. Software Engineering for Real-Time: A Roadmap. In Proceedings 22nd
International Conference on Software Engineering, pages 201–211, 2000.

[TTP/C] TTTech Computertechnik AG. Specification of the TTP/C Protocol.
[TTP/A] OMG. Smart Transducer Interface. Initial Submission, Object Management Group,

2001
[Byte] http://www.byteflight.de/homepage.htm
[FRay] http://www.flexray.com/
[TTCAN] http://www.can-cia.de/can/ttcan/

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 92 – 102, 2005.
© Springer-Verlag Berlin Heidelberg 2005

9 Review of Some Advanced Methodologies

9.1 The Setta Project

Authors

C. Scheidler DaimlerChrysler
P. Puschner TU Vienna
S. Boutin Renault
E. Fuchs Dependable Computer Systems
G. Gruensteidl Alcatel Austria
Y. Papadopoulos University of York
M. Pisecky TTTech
J. Rennhack EADS Airbus
U. Virnich Siemens

Introduction

The overall goal of the project SETTA (Systems Engineering for Time Triggered
Architectures) was to push time-triggered systems—an innovative European-funded
technology for safety-critical, distributed, real-time applications such as fly-by-wire
or drive-by-wire—into future vehicles, aircraft, and train systems. To achieve this
goal, SETTA focused on the systems engineering of time-triggered systems. The
SETTA consortium consisted of leading European companies in the transport and
component supplier sector (DaimlerChrysler, Renault, Airbus Germany, Alcatel Aus-
tria, and Siemens VDO), innovative European high tech start-ups (TTTech,
DECOMSYS), and universities with an excellent reputation in real-time (University
of Technology at Vienna) and safety-critical systems (University of York).

SETTA addresses the systems engineering of safety-critical distributed real-time
systems with a special focus on time-triggered architectures (Kopetz and Gruensteidl,
1994; Scheidler, et al., 1997). An innovative methodology and a corresponding engi-
neering environment is developed which aims for a higher maturity at early develop-
ment steps. Key features are the support for virtual systems integration and the tighter
interconnection between the functional development process and the safety analysis
process. The supporting tool components are designed and implemented in the course
of the SETTA project. The methodology is evaluated by pilot applications from the
automotive, aerospace, and railway domain.

The SETTA Methodology

Current Drawbacks
Figure 9.1 shows the 3V lifecycle-process model which will be used to illustrate the
weaknesses in engineering of time-triggered systems. The original 3V model has been
firstly published by Mosnier and Bortolazzi (1997). The 3V model in Figure 9.1 has
been slightly adapted. Phases which traditionally put a major focus on the time-

 9.1 The Setta Project 93

triggered nature of the target system are coloured in dark grey. The 3V model consists
of three Vs representing the system simulation, prototyping, and product development
stages.

The first V covers the definition and simulation of the overall system functionality.
Software-in-the-loop simulation (SIL) is the primary methodology applied.

 FMEA
 FTA

 FMEA
 FTA

Algorithm
Development

System
 Definition

Valid. by
Simulation

Prototype
 Definition

Global
Design

Verification

Verification

Local
 Design

Prototype
Validation

System
 Definition

Coding

Global
 Design

Verification

Verification

Local
 Design

System
Validation

Coding

Figure 9.1. 3V process model adapted on time-triggered systems

Implementation aspects, including the “time triggered” property of the target system,
are not considered in this systems-engineering phase.

The second V is characterized by rapid prototyping based on Hardware-in-the-loop
simulation (HIL). In this phase, hardware specific parameters become important. The
global design covers the mapping of tasks to computer nodes and the determination of
the message scheduling between the nodes. The local design addresses the scheduling
of tasks on each node.

The third V addresses the system development for the final target hardware. A
typical problem at this stage is the limited performance of the target system. Dead-
lines met by the oversized prototypical hardware might not be met on the target--a
situation that is not acceptable for the safety-critical systems targeted at in the SETTA
project.

At least four drawbacks in this lifecycle-process model can be identified.

1. There is a gap between the first and the second V. Due to constraints of the
target system, the assignment process of the second V may fail, thus invali-
dating the result of the preceding simulation stage of the first V. For exam-
ple, a distributed control application running stable at the first V might be-
have differently due to the timing constraints caused by message passing
between computer nodes.

2. A schedule verification tool on the global design level is lacking. The veri-
fication tool is needed to check the consistency of the message descriptor
list (MEDL; the MEDL determines the message schedule and thus the run-
time behaviour of the final system). A verification tool is particularly de-
manded for the acceptance of the time-triggered technology in the aero-
space industry.

3. A timing verification tool on the local design level is lacking. Executing
code and measuring its execution time on the target is the current state-of-
the-art. However, this technique cannot guarantee to yield safe upper
bounds of the execution time.

94 9 Review of Some Advanced Methodologies

4. The functionnal development process and the safety analysis process are
decoupled. Tools supporting Fault-Tree Analysis (FTA), Event-Tree
Analysis (ETA) and Failure Mode and Effects Analysis (FMEA) are not
connected to simulation tools like Matlab/Simulink.

SETTA Design Flow Model
The aim of the SETTA project is to propose a design-flow model for time-triggered
systems that overcomes the four shortcomings identified before.

 FMEA
 FTA

 FMEA
 FTA

Algorithm
Development

System
 Definition

Valid. by
Simulation

Prototype
 Definition

Global
Design

Verification
WCET tool

Verification

Local
 Design

Prototype
Validation

System
 Definition

Coding

Global
 Design

Verification

Verification

Local
 Design

System
Validation

Coding

 FMEA
 FTA

Gl. Design
TTACOM

Verification
TTPverify

Figure 9.2. SETTA 3V design flow model

A key component in the SETTA approach is a suite of simulation-building blocks
provided for the Matlab/Simulink environment. The simulation building blocks sup-
port virtual systems integration, in other words, the gap between the first V and the
second V is closed. Time-triggered systems are, in contrast to event-triggered sys-
tems, fully predictable in their runtime behaviour.

SETTA exploits this predictability at the modelling stage. Simulation-building
blocks model not only the core functionality of a system, but also the distributed na-
ture and the used communication mechanisms, which both affect the system’s behav-
iour. E.g., the effects of value discretisation, communication delays, and fault-
tolerance, which are typically abstracted in a system model and are a significant
source of problems in later implementation stages, are much easier dealt with, if they
are already part of the system model. Based on the virtual systems integration, system
manufacturers and component suppliers can co-operate in a much tighter way.

A schedule verification tool for the global design level is developed. Verification
on the global design level, currently performed at the prototyping or system develop-
ment stage, is mapped to the simulation stage. The verification tool developed within
the SETTA project verifies the MEDL which controls the simulation building blocks.
A timing verification tool for the local design level is developed. A specific WCET
tool for the simulation-building block set analyses the timing behaviour of the code
generated for each of the building blocks. An algorithm for fault-tree synthesis will be
developed and implemented which provides an intelligent interface between a func-
tional modelling tool (Matlab/Simulink from The Mathworks) and a fault tree analysis
tool (FT+ from Isograph).

To summarize, the main goal is to achieve a high maturity at early development
stages based on virtual systems integration. Activities currently performed at proto-
typing or product development stage are mapped to the simulation stage, as depicted
by the arrows in Figure 9.2. Although the tool components are developed by four

 9.1 The Setta Project 95

different partners, SETTA aims for a fully integrated systems engineering environ-
ment. To achieve this goal, the tool components will be linked via different interfaces
which will be sketched in the following.

The simulation building blocks are triggered by a configuration file which de-
scribes the message scheduling on the bus interconnecting computer nodes. This file
can be checked by the scheduling verification tool. The WCET analysis will be inte-
grated into the Matlab/Simulink environment and is therefore also connected to the
simulation building blocks. The fault-tree synthesis algorithm extracts the structural
information out of Matlab/Simulink files which can be extended with the simulation
building blocks.

SETTA Tool Components and Validators

Tool Components
A suite of simulation-building blocks – product name: TTACOM – is developed in
the SETTA project which supports the virtual systems integration (involved partner:
Dependable Computer Systems). TTACOM is a Matlab/Simulink block set that al-
lows the development of distributed applications, including the Time-Triggered Pro-
tocol (TTP) bus. It contains blocks for configuring clusters, reading and writing mes-
sages, controlling the simulation progress over time, and a detailed graphical TTP
interface.

A schedule verification tool – product name: TTPverify – is developed in the
SETTA project (involved partner: TTTech). The purpose of this component is to
check the message descriptor list (MEDL) of time-triggered systems. The communi-
cation in time-triggered systems is statically scheduled. The communication control-
lers transmit data according to a predefined schedule which is stored in dedicated data
tables. To ensure correct system functionality, it is therefore of the utmost importance
to verify that these automatically generated data tables satisfy the overall require-
ments. For this purpose, a dedicated schedule verification tool will be specified which
can read the data tables and verify that they meet the requirements.

The WCET analysis tool that is being developed in the course of the SETTA pro-
ject (Kirner 2000) derives the WCET by means of static code analysis (involved part-
ner: Technical University of Vienna). This stands in contrast to the widely used
method of determining the WCET by measuring the duration of representative task
executions. This latter approach cannot provide a guaranteed execution-time bound.

Validators
The objective of the automotive validator is to evaluate the results of the SETTA
project in the automotive domain (involved partners: DaimlerChrysler, Renault, and
Siemens Automotive). The architecture chosen to be the validator for SETTA is a
part of an automotive chassis control system which consists of a brake-by-wire
system and an adaptive cruise control simulator. The brake-by-wire system consists
of a redundant brake pedal system provided by DaimlerChrysler and a brake actua-
tor provided by Siemens Automotive. The adaptive cruise control simulator pro-
vided by Renault models the dynamics of a vehicle on a highway. The system has
strict performance, timing, and safety requirements and contains two distributed
control loops.

96 9 Review of Some Advanced Methodologies

The objective of the automotive validator is to evaluate the results of the SETTA
project in the aerospace domain (involved partner: EADS Airbus). The architecture
chosen to be the validator for SETTA is the cabin pressure regulation system. This
system has strict performance, timing and safety requirements. Two independent
pressure control functions will be realized for backup reasons and will be imple-
mented as redundant components. Both controller functions will receive appropriate
information such as planned flight profile, current position, altitude, and current cabin
pressure from the air data/inertial reference system. Taking these parameters and the
actual cabin pressure into account, the pressure controller will calculate and command
the desired openings for the outflow valves.

In the SETTA project, Alcatel Austria provides the specific requirements from the
railway domain and validates the SETTA engineering methodology and tools by us-
ing a typical railway application. The main focus of the railway validator is the
evaluation of the schedule verification and timing verification tool.

References

[1] Kirner, R., R. Lang, P. Puschner (2000). Integrating WCET Analysis into a Mat-
lab/Simulink Simulation Model . Submitted for DCCS 2000: 16th IFAC Workshop
on Distributed Computer Control Systems, Sydney, Australia, 29th November –
1st December.

[2] Kopetz, H., G. Gruensteidl, (1994). TTP – A Protocol for Fault-Tolerant Real-
Time Systems. IEEE Computer, Vol. 24 (1), pp. 14-23.

[3] Mosnier, F., J. Bortolazzi, (1997). Prototyping Car-Embedded Applications. In
Advances in Information Technologies: The Business Challenge, pp.744-751, IOS
Press.

[4] Scheidler, C., G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, C. Temple. (1997). Time-
Triggered Architecture– (TTA). In: Advances in Information Technologies: The
Business Challenge, pp. 758-765. IOS Press.

9.2 The SafeAir Project

The SafeAir project (http://www.safeair.org) main goal was to substantially improve
the design and development process of high complexity systems for aerospace and
other industrial applications of similar complexity, allowing maintaining the high
level of dependability in the face of an exponential growth in functionality. The pro-
ject has developed tools, training and the supporting methodology for designers of
embedded systems. The emphasis is on formal development of systems, providing
formal specification, model checking technology, qualification analysis and validated
code generation.

An ASDE (Avionics System Development Environment) tool-set implementing
synchronous technologies, methods and tools, that meet the high dependability needs
of real-time embedded systems with high complexity, has been developed and evalu-
ated in the SafeAir framework. This integrated environment strongly builds on exist-
ing best in class commercial front-end tools and on the verification and validation
technologies developed in the SACRES Esprit project (http://www.tni.fr/sacres/), now
expanded to an open tool-set, responsive to user needs.

 9.2 The SafeAir Project 97

Authors

Drora Goshen and Vered Gafni, Israel Aircraft Industries. The author of the present
version is Thierry Gautier, INRIA. The SafeAir project was headed by Philippe Bau-
freton, Hispano-Suiza. Other participants were: Israel Aircraft Industries, Airbus
France, Airbus Deutschland GmbH, Siemens then Infineon, INRIA, OFFIS, the
Weizmann Institute, TNI-Valiosys, I-Logix, Telelogic.

Architecture of the ASDE Tool-Set

The ASDE is a coordinated open tool-set, which allows:

The creation of coherent models of the System Under Development by using in a
coordinated manner various modelling and analysis tools.
The investigation and maintenance of models created by using the coordinated
tool-set.
The formal verification of the global model and sub-models with respect to the
required properties.
The simulation of the behaviour specified by the overall model and by its sub-
models.
Code generation & validation.
Document generation.

Following are the main building blocks of the ASDE tool-set:

ModelBuild (http://www.tni-valiosys.com/) is the framework of the design and
simulation tools (architectural description editor, Statemate, Sildex, SCADE and
Simulink).
ModelVerify is (in a conceptual view) the framework of the verification and analy-
sis tools BOOST (http://www.infineon.com/) and HYBRID (http://www.offis.de/).
SCADE_KCG (http://www.esterel-technologies.com/) is a compiler that generates
executable C code of the design model or sub-models.
CVT (http://www.wisdom.weizmann.ac.il) is a code validation tool applied either
to the C code (with respect to the SCADE source), or to machine code (with re-
spect to the C source).
Polychrony http://www.irisa.fr/espresso/Polychrony is the IRISA synchronous
design academic prototype (based, as Sildex, on the Signal language), provided as
an added toolbox to ASDE, and that can be used for advanced experiments.

The environment allows an easy and transparent transformation of data from one tool
to the next one.

Methodology

An ASDE Implementation Process Methodology has been provided during the
SafeAir project to support the tool-set. The ASDE supports the following activities
throughout the different phases of a typical system development cycle:

98 9 Review of Some Advanced Methodologies

Development Cycle
Phase Activity Activity Description

No. description

1 Specification Not supported by ASDE

2 Design Properties Specification

Conceptual Modelling

Physical Modelling

Establish formal requirements

Establish Functionality & Op-
eration Concepts (Functional
Analysis).

Evolve alternative designs

3 Analysis and control Simulation

Formal Verification

Verify (either by simulation or
formal verification) that each
design meets requirements.

4 H/W and S/W
Implementation

Code Generation S/W Implementation

5 Unit integration &
testing

Code Validation S/W unit testing

6 System Integration
& Verification

Not supported by ASDE

Figure 9.2 presents a top-level view of the Development cycle, the activities sup-
ported by ASDE, and their inter-relations. Each of these development activities con-
sists of a number of sub-activities that altogether concur at getting the result. The
System Engineering Process activities are used iteratively during the development
cycle. Therefore, the Implementation Process Methodology does not dictate any par-
ticular method of going through these activities, however, a recommended develop-
ment process is shown in Fig. 2. It shows that conceptual and physical modelling are
carried out concurrently, while using simulation as an analysis feedback for the de-
sign. In parallel, properties specification is performed. A formal verification of the
conceptual model can be done while an extended verification will be done on the
physical model, see below for the meaning of these terms.

System Design
The System Design Phase assumes as an input the natural language system specifica-
tion, and generates a global system design in terms of computational activities parti-
tioned into a concrete physical architecture and a properties specification of the system.

The System Design process consists of the following activities (Fig. 9.1):

Conceptual Modelling
A conceptual model describes the partitioning of the system into conceptual (“logi-
cal”) subsystems/objects, the behaviour and the functional capabilities provided by
them, and data/signal flows between them. The Implementation Process Methodol-

 9.2 The SafeAir Project 99

ogy is intended for the development of large-scale systems that consist of a number
of subsystems that operate concurrently, while interacting, to achieve the global
system functionality. In terms of the operational model we call such systems
“Globally Asynchronous, Locally Synchronous (GALS)”.

The ASDE tool-set provides several tools for the conceptual model development
and presentation (these equally apply to global behavioural and functional model
views). The initial design starts with an Architectural Editor that provides for
specification of asynchronous interconnected components. Then, each component
is separately refined as a synchronous module. For that purpose, Sildex, SCADE,
or Statemate are appropriate tools that completely support synchronous conceptual
modelling. Moreover, the tool-set allows integrated specifications that employ the
specific strength of each tool to generate better descriptions. It also allows the in-
corporation of special purpose tools such as MATLAB/Simulink.
Physical Modelling
The physical design model represents the implementation of the conceptual model
within a concrete physical architecture. The physical architecture describes the sys-
tem partitioning into physical subsystems/components and their interconnections.
The physical architecture describes the architectural modules (e.g., air-plane, en-
gine, computer, processors, etc.), channels through which signals flow, and their
connection to the physical modules. The architecture is refined by iterative decom-
position of the physical system into physical subsystems. The signal channels are
refined as needed by decomposition into lower-level channels, to suit the specifica-
tion of lower-level architectural modules. The physical architecture is usually de-
veloped after the conceptual modelling, but it can be done concurrently.

After review and approval of the conceptual and architectural models (see simu-
lation and formal verification sections, below) the physical model is actually con-
structed by allocation of the behavioural and functional elements of the conceptual
model to elements of the physical architecture, and signals flowing among them
are mapped to ports and channels.
Properties specification
The purpose of this activity is to provide a formal presentation of properties re-
quired for formal verification as described in the next section. State and temporal
properties can be formally expressed using the Properties Specification Language
(PSL) provided by ModelVerify. The input for this activity–called system formal-
ization–is the natural language specification in the first place, but also sometimes
common knowledge of the physical environment need to be formalized as well in
order to enable correct verification process described in the next section. In gen-
eral, properties must be classified either as “assertions” (assumed to be true in any
possible behaviour of the system under development), or “requirements” (required
to be true in any possible behaviour of the system under development). Naturally,
assertions and requirements play different roles in the verification process (as-
sumed versus to be verified). Hence, the correct classification of properties–under
the developer responsibility–is essential to the correctness of the verification proc-
ess and must be concluded by a careful analysis of the natural language specifica-
tion. ModelVerify provides for managing assertions and requirements in different
repositories. From a methodological point of view, since it is not realistic to have a

100 9 Review of Some Advanced Methodologies

“total” formal verification, critical requirements must be identified and verified
(this also means that only relevant assertions must be expressed formally).

A major quantitative improvement of the formal verification capabilities can be
achieved by abstractions. By this technique, the data (states, etc.) are analyzed to
identify equivalence classes. Thus, the size of explored graph is considerably re-
duced. ModelVerify is capable of performing some abstractions automatically. The
major abstraction efforts, however, remain a developer due.

System Analysis
Formal Verification
Formal verification is intended for verification of temporal properties, required of
the system behaviours, using algorithms rather than simulation. Formal verification
is a crucial technique regarding critical systems since it results in an absolute an-
swer whether a design satisfies the system requirements, or not (in case of refuta-
tion it also provides a counter example). This is in contrast with simulation that
provides only partial coverage of the possible behaviours. However, formal verifi-
cation cannot fully replace simulation due to its complexity.

Formal verification should be carried out in various stages of the system devel-
opment depending on the specific activity. Also, like simulation, formal verifica-
tion can be applied to partial designs as well as to the complete model. Formal
verification consists of the following activities: 1) Properties Consistency Check.
2) Model Checking.

Properties consistency check is intended to verify that the specification ex-
pressed in the Properties Specification Language is consistent in the sense that it
does not contain logical contradictions (e.g., requirements that contradict each
other).

Model Checking is an algorithm that gets as input the assumed properties speci-
fied in the previous stage, the System under development specification produced
using ModelBuild, and a property to be verified–one of the required properties re-
pository. Then, the model checking is activated and after a while the developer will
get the result: either the required property is verified, or the required property is not
satisfied in which case an example of a behaviour that falsifies the requirement will
be given. Also, it should be possible to run automatically a simulation of the falsi-
fying behaviour in order to locate the mishap. Nevertheless, it must be emphasized
that often verification failures are due to under-specification of assumptions, mis-
understanding of the natural text intension, or just a mistake in its formalization. In
general, there are two verification stages: first, the “Formal Verification” that is
carried out on the functional design; second, the “Extended Formal Verification”
which considers in addition the physical architecture model.
Simulation
Simulation is intended to verify the semantic correctness, completeness and consis-
tency of the conceptual and the physical models. It is based on running the (execu-
table) model design through pre-defined scenarios of the (simulated) environment
behaviour, and mental inspection of the results with respect to the system specifi-
cation. Simulation is first applied to the functional model in order to detect concep-
tual errors. Then, simulation is carried out again after completion of the physical
model. This time, it is intended to verify that the system functionality after physical

 9.2 The SafeAir Project 101

subsystems partitions, and insertion of communication go-betweens, is still consis-
tent with the conceptual design. Usually, simulation is carried out in two levels:
subsystem level where part of the system is isolated and locally simulated, and sys-
tem level where the system is checked as a whole.

S/W Implementation
Code generation
Following verification of the model, investigation of its properties through simula-
tion and adequate review, code is generated for architectural modules identified as
modules to be implemented in software. Code is also generated for simulation pur-
poses. The code is generated by the ASDE (SCADE/Lustre language) for each
CPU, based on the allocation of activities (functions) to architectural (physical)
modules, performed within the framework of the coordination of the conceptual
and design models.
Cross compilation
The generated C code for each target CPU is compiled by a suitable cross compiler
outside the ASDE.

S/W Unit Testing (Code Validation)
As the last step in the generation of operational software, the CVT (Code Validation
Tool) validates automatically the correctness of the generated code for each proces-
sor, with respect to the SCADE/Lustre design. When the CVT is invoked to validate
C code (CVT-C), the generated C code is compared to the SCADE/Lustre design for
each processor: it verifies that the target C code is a correct implementation of the
“source” specification in Lustre. When the CVT is invoked to validate the binary code
(CVT-A), it verifies the translation from C to the assembly code.

Beyond SafeAir

Strong Points
The SafeAir methodology and its implementation through the ASDE toolset essen-
tially rely on commercially available frameworks and tool bases; it does not require
extensive developments of brand new technologies. Its strong points can be catego-
rized as follows:

Moving from V-shaped to Y-shaped lifecycle. In this metaphor, the Y is regarded as
a smaller “v” put on the top of the vertical bar. The vertical bar represents auto-
matic code generation together with automatic code validation. As a result, the “v”
part of the cycle concentrates on higher level phases of the design flow.
Providing a strong formal basis. All tools of the ASDE are supported by a strong
formal semantic basis; the meaning of each and every notation is made very pre-
cise. This makes it possible to rely on automatic embedded code generation, even
at a certified level (by using the SCADE certified code generator). As a wider and
more flexible mean to qualify the generated code, very advanced procedures of
automatic code cross-validation are proposed; they allow to check whether some
generated code actually refines its associated source code; this is different from
certifying the code generator, it rather consists of certifying a given pair of {source,

102 9 Review of Some Advanced Methodologies

object} codes. Then, following a more established background, extensive and pow-
erful verification tools dedicated to earlier phases of the design are available.
Architecture of the embedded software is addressed. While several technologies
are now commercially available to generate embedded code for individual proces-
sors, the generation of the entire embedded architecture is still far from being rou-
tine. A central difficulty is the distributed nature of such architectures, and its (fre-
quent) hybrid synchronous/asynchronous style. The SafeAir methodology has pro-
vided a breakthrough in this respect by providing the ModelBuild service, which
allows emulating the deployment of a design over a distributed, possibly asynchro-
nous, architecture; this is again supported by a formally sound basis. This is a sig-
nificant step toward virtual architecture exploration.
Integration of the different frameworks. The smoothness of the design flow is rec-
ognized as a key limiting factor in all methodologies relying on the combination of
different frameworks. The SafeAir project has addressed this issue by using the
Lustre-SCADE formalism as a common semantic platform.

Limitations
They can be categorized into two broad classes:

The scope of the SafeAir methodology is too narrow. The integration with higher
stages of the design flow needs to be improved. Firstly, the integration with scien-
tific engineering tools and technologies is only partial. Secondly, the issue of how
to combine the advantages of the ASDE with the broader scope of UML method-
ologies has not been considered. Today, we see typically two concurrent progress
directions:
o Research toward integrated tool suites, from scientific engineering down to ar-

chitecture;
o Efforts aiming at extending the benefits of UML in the technical and real-time

industrial areas.
o With no doubt this concurrency is an obstacle toward progress.
Virtual exploration is not provided to the needed level. Using the ASDE, the de-
signer can generate models of his application deployed on his architecture. Unfor-
tunately, he cannot back-animate his high-level specification in parallel with the
modelled architecture. To say it differently, he knows his high-level spec, he sees
the resulting detailed design, but he cannot see, by simulation, the link between
both. This prevents the designer from having, at the same time, tightly related high-
level and detailed views of his design. But it is precisely the essence of design by
virtual exploration to provide this facility. On the other hand, the formal verifica-
tion of programs is performed on the C code generated from these programs. This
is in the most general case, a too low-level approach since it prevents from verify-
ing properties on partial specifications, for which code cannot be generated. A
more general approach would be to check properties on partial (non deterministic)
designs; these partial designs would be progressively refined toward more detailed
designs from which, finally, code can be generated. In this approach, the proof sys-
tem should be applicable at any level of the model.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 103 – 113, 2005.
© Springer-Verlag Berlin Heidelberg 2005

10 Executive Overview on Component-Based Design
and Integration Platforms

Component-Based Design is expected to increase software productivity, by reducing
the amount of effort needed to develop, update, and maintain systems. There are two
main benefits expected from component technology. First, it gives structure to system
design and system development, thus making system verification and maintenance
more tractable. Second, it allows reuse of development effort by allowing components
to be re-used across products and in the longer term by paving the way for a market
for software components.

Component based technology has become widespread in general program devel-
opment with platforms such as JavaBeans/EJB from Sun, .NET/COM from Microsoft,
and the manufacturer independent CORBA initiative from OMG. Adoption for the
development of embedded and real-time systems is significantly slower. Major rea-
sons are that real-time systems must satisfy requirements of timeliness, quality-of-
service, predictability, that they are often safety-critical, and that they must obey
stringent constraints on resource usage (memory, processing power, communication).
Existing wide-spread component technologies are inherently heavyweight and com-
plex, incurring significant overheads on the run-time platform; they do not in general
address timeliness, quality-of-service or similar extra-functional properties important
for embedded and real-time systems. Yet, in their present form they are used in large,
distributed, and not safety critical systems, e.g., in industrial automation, but they are
unsuitable for deployment in most embedded real-time environments.

For small real-time systems, component technologies have been developed for par-
ticular classes of systems, often as extensions of existing real-time operating systems
within specific development organizations, and their adoption outside these organiza-
tions is limited. To avoid large and resource-consuming run-time platforms, they do
not in general support run-time deployment of components. Composition of compo-
nents into (sub)systems is rather performed in the design environment, prior to compi-
lation, thus enabling static prediction of system properties and global optimisation of
resource utilization..

Based on a survey of selected component technologies in different industrial sec-
tors and the needs of industry, we find two important obstacles to wider adoption of
component technology for embedded and real-time systems.

There is a lack of widely adopted standards for component technology. A compli-
cating factor is that different industrial sectors have different priorities concerning
the main characteristics offered by such a standard.
A component technology for real-time systems should support specification and
prediction of timing and QoS-properties. Solutions to these problems are not well
enough developed and not well enough integrated into development tools.

Therefore we survey techniques for handling different functional and extra-functional
properties of component and system behaviour. A conclusion is that techniques exist

104 10 Executive Overview on Component-Based Design and Integration Platforms

for handling such properties, but that further research is needed to improve the theory
of specifying and composing components, and to develop tool support.

After a survey of technical characteristics of main component technologies, we
also survey some efforts for standardization of component models and modelling
languages, paying special attention to developments pertinent to embedded and real-
time systems.

The survey concludes with a summary of important issues for success of compo-
nent-based development of embedded systems. Many of these are concerned with
extra-functional properties, and the special characteristics of embedded systems. Sat-
isfactory solution of these issues is considerably more challenging than the current
solutions to component-based systems. We indicate possible ways to arrive at solutions.

10.1 Motivation and Objectives

Component-Based Design and Development is perceived as key for developing ad-
vanced real-time systems in a both cost- and time effective manner. It can be seen a
qualitative jump in software development methodology, comparable to the transition
from assembly language programming to high level problem oriented languages
around 1970, or the transition from procedural programming to object oriented pro-
gramming around 1990.

Component Based Design is seen to increase software productivity, by reducing
the amount of effort needed to develop, update, and maintain systems. Benefits in-
clude the following:

Giving Structure to Systems under Development. Component technology sup-
ports the structuring of complex systems early in the development process. In this
way, many integration and maintenance problems can be addressed early, at lower
cost.
Reuse of Development Effort. Components can be re-used across several prod-
ucts or even product families. Re-use is made easer by defining product line archi-
tectures, in which components have given roles. New products can then re-use
components of previous products by slight modification or parameterisation.
Supporting System Maintenance and Evolution. Systems are easier to maintain
if they have a clear structure, e.g., as a system composed of components. For leg-
acy systems, it sometimes pays off to decompose them into components in order
to make future upgrades and maintenance easier.
Enabling a Market for Software Parts. Standardized component specifications
and technologies allow to integrate components produced by different suppliers.
Currently, for embedded systems, only large components are transferred between
different organizations, e.g., RTOS, databases, process and control components. If
a wider class of components were re-usable across a wider class of systems, it
would give higher returns on development investment. One vision for the future is
that application development follows a “drop & glue” approach, picking compo-
nents from a library incorporating the intellectual property of the system house, as
well as standardized components. This would give the system developer a range of
re-usable components supporting all layers in a system architecture. This vision
includes an open market of components, which are interoperable, and where inte-
gration problems are solved by standardized component frameworks.

 10.2 Essential Characteristics 105

Component technology has gained wide adoption in the area of business data process-
ing, and is under continuous development. There are also signs of adoption for the
development of embedded and real-time systems. However, the pace is significantly
slower. Major reasons are that other concerns are of great importance for the devel-
opment of such systems. Real-time systems must satisfy constraints on extra-
functional properties such as timing (e.g., meeting deadlines), quality of service (e.g.,
throughput), and dependability (including reliability, safety, and security). It is impor-
tant that functional and extra-functional properties be predictable, in particular if the
system is safety-critical. Embedded systems must often operate with scarce resources,
including processing power, memory, communication bandwidth. These concerns are
not addressed by widely used component technologies.

There are many challenges to overcome in order to develop component technology
that is suitable for the many particularities of embedded systems. Therefore, this
roadmap presents a survey of selected topics important for component-based design
of embedded systems, based on which directions for further work are outlined. Our
aim is that it will serve as a guide to researchers whose work is motivated by the
emergence of component-based development in embedded systems design., It assists
by providing a survey of existing background work, and by providing directions for
advancing the state-of-the-art. The selection of topics is, of course, coloured by the
background of the authoring team, which has a strong representation of researchers
particularly engaged in modelling, specification, and verification of embedded and
real-time systems.

10.2 Essential Characteristics

Basic Concepts

There is some disagreement about the precise definition of basic terms in component
based software development. We therefore give a short treatment of basic concepts
and define how they will be understood in this document.

In component based software development a system is structured using compo-
nents. In classic engineering disciplines, a component is a self-contained part or sub-
system that can be used as a building block in the design of a larger system. It pro-
vides specific services to its environment across well-specified interfaces. Examples
are an engine in an automobile, or the heating furnace in a home. Ideally, the devel-
opment a component should be decoupled from development of the systems in which
it is used. Components should be reusable in different contexts.

In software engineering, there are many different suggestions for precise defini-
tions of components in component based software development. According to
[BBB+00], advocates of software reuse equate components to anything that can be
reused; practitioners using commercial off-the shelf (COTS) software equate compo-
nents to COTS products; software methodologists equate components with units of
project and configuration management; and software architects equate components
with design abstractions.

The best accepted definition in the software industry world is based on Szyperski’s
work [Szy98]:

106 10 Executive Overview on Component-Based Design and Integration Platforms

A component is a unit of composition with contractually specified interfaces and
fully explicit context dependencies that can be deployed independently and is
subject to third-party composition.

We largely follow this definition and in particular stress the separation between com-
ponent implementation and component interface. Ideally, there should be no context
dependencies that are not captured by the interface. However, in practice interfaces
capture only certain aspects of a component’s behaviour.

Szyperski [Szy98] tends to insist that components should be delivered in binary
from, and that deployment and composition should be performed at run-time. In this
report, we take a more liberal view, and consider a component as a software imple-
mentation that can be executed on a physical or logical device. This includes compo-
nents delivered in high-level languages, and allows build-time (or design-time) com-
position. This more liberal view is partly motivated by the special requirements for
embedded systems, as will be discussed in section 11.3.

There are two prerequisites that enable components to be integrated and work to-
gether:

A component model specifies the standards and conventions that components must
follow to enable proper interaction.
A component framework is the design-time and run-time infrastructure that man-
ages resources for components and supports component interactions.

There is an obvious correspondence between the conventions of a component model
and the supporting mechanisms and services of a component framework.

Component models and frameworks can be specified at different levels of abstrac-
tion. Some component models (e.g., COM) are specified on the level of the binary
executable, and the framework consists of supporting OS services. Some component
models (e.g., JavaBeans, CCM, or .Net) are specified on the level of processor inde-
pendent byte code. And yet other component models (e.g., Koala) are specified on the
level of a programming language (such as C). The framework can contain “glue code”
and possibly a runtime executive, which are bundled with the components before
compilation.

In component based system development, there is a clear distinction between two
perspectives of a component.

The component implementation is the executable realization of a component,
obeying the rules of the component model. Depending on the component model at
hand, component implementations are provided in binary form, byte code, compi-
lable C code, etc.
The component interface summarizes the properties of the component that are
externally visible to the other parts of the system, and which can be used when de-
signing the system. An interface may list the signatures of operations, in which
case it can be used to check that components interact without causing type mis-
matches. An interface may contain additional information about the component’s
patterns of interaction with its environment or about extra-functional properties
such as execution time; this allows more system properties to be determined when
the system is first designed. An interface that, in addition to information about op-

 10.2 Essential Characteristics 107

eration signatures, also specifies functional or extra-functional properties is called
a rich interface.

The component implementations must of course conform to the properties stated in
their interfaces. In principle this presupposes that there are procedures and mecha-
nisms for checking or enforcing conformance, such as verification (simulation, test-
ing, run-time monitoring, formal verification, etc.) and code generation.

The information in component interfaces facilitates also the check for interopera-
bility between components. Rich interfaces enable verification of system require-
ments and prediction of system properties from properties of components. This allows
system properties to be verified and predicted early in the development lifecycle,
enables early design space exploration, and saves significant effort in the later system
integration phase. A research challenge today is to develop methods for predicting
system properties from component properties.

A contract is a specification of functional or extra-functional properties of a com-
ponent, which are observable in its interface. A contract can be seen as specifying
constraints on the interface of a component.

It is here important to keep in mind the role of extra-functional properties of em-
bedded systems, and their dependence on platform characteristics. Many important
properties of components in embedded systems, such as timing and performance,
depend on characteristics of the underlying hardware platform. Kopetz and Suri
[KS03] propose to distinguish between software components and system components.
Extra-functional properties, such as performance, cannot be specified for a software
component in isolation. Such properties must either be specified with respect to a
given hardware platform, or be parameterized on (characteristics of) the underlying
platform. A system component, on the other hand, is defined as a self-contained hard-
ware and software subsystem, and can satisfy both functional and extra-functional
properties.

Closely related with component-based development is the software architecture of
a program or computing system, which is generally taken to denote:

“the structure or structures of the system, which comprise software components
[and connectors], the externally visible properties of those components [and
connectors] and the relationships among them.” [BCK98]

The architecture of a system is an early design decision, which to a large extent de-
termines global system parameters such as functionality, performance, resource con-
sumption, maintainability, etc. Descriptions of system architectures include descrip-
tions of component properties, visible through their interfaces, and enable informed
evaluations of different system architectures when selecting between them. Architec-
ture Definition Languages (ADLs) have been developed as languages for expressing
system architectures as compositions of software modules and/or hardware modules.
Typical concepts of ADLs are components, ports, connectors, etc. They can also
describe various classes of component properties. When used in Component-Based
Development, component properties expressed using an ADL should in principle also
be expressible in component interfaces. For example, Meta-H may decorate compo-
nents with properties such as execution time and failure modes. Component interfaces
must then be rich enough to allow description of such properties.

108 10 Executive Overview on Component-Based Design and Integration Platforms

ADLs concentrate on the description of a system, whose properties are the compo-
sition of properties visible in component interfaces. Complementing this, a compo-
nent technology specifies how such interfaces are implemented (possibly from inde-
pendently developed components), so that the resulting system implementation has
the properties described in its architecture. Since the purpose of this document is to
concentrate on components themselves, we refrain from giving an extensive overview
of ADLs. A few ADLs that are perceived as influencing the development of compo-
nent technology are described in section 14.

10.3 Role in Future Embedded Systems

If the technological and organizational challenges for component based development
of embedded systems are overcome, the benefits can be summarized as follows.

Giving Structure to System Development. Component technology supports the
structuring of complex systems early in the development process. In particular, it
allows a structured resource and timing management, which is crucial for many
embedded systems. In current development practice, resource and timing prob-
lems are resolved during system integration with high cost. There is a strong trend
and desire to handle these problems on component level, thus solving the corre-
sponding integration problems a priori. This presupposes a component technology
with rich interfaces that support description of resource and timing properties.
Reuse of Development Effort. Components can be re-used across several prod-
ucts or even product families. Re-use is made easer by defining product line archi-
tectures, in which components have given roles. Again, performance and Quality
of Service properties of products can be handled when defining a system architec-
ture, provided that component interfaces can express resource and quality-of-
service properties.
Supporting System Maintenance and Evolution. Systems are easier to maintain
if they have a clear structure, e.g., as a system composed of components. For leg-
acy systems, it sometimes pays to refactor into components in order to ease future
upgrades and maintenance r.
Enabling a Market for Software Parts. Standardized component specifications
and technologies allow us to integrate components produced by different suppli-
ers. Currently, for embedded systems, only large components are transferred be-
tween different organizations: RTOS, databases, process control components, etc.
In order for a wider class of components to be re-usable across a wider class of
systems, widely used component technologies must be developed that are able to
cope with the specific properties of components in embedded systems.

Expectations from component technology in major industries include to gain by struc-
turing system development; this gain is expected in the foreseeable future, and would
alone justify investments in component technology, in particular if it builds on current
development technology and processes There is some reluctance to make drastic
changes to development processes in order to support a radically new component
technology, even if it might be able to attain far greater gains, since there are high
risks involved in introducing new development technology and processes.

 10.4 Overall Challenges and Work Directions 109

10.4 Overall Challenges and Work Directions

Findings, Synthesis, Needs

Here is a brief summary of the findings of this roadmap, concerning the current state
of the art, and needs for further development. It is structured under major headings.

Support for system development. Component technology can improve system de-
velopment by supporting system design early in the development process. Many inte-
gration and maintenance problems can be addressed early, at lower cost. System
properties can be predicted during system design. However, support for these activi-
ties is still not adequately developed to suit the needs of embedded system develop-
ment. In particular, there is still inadequate support for the extra-functional properties
that are characteristic for embedded systems. There is a need to further develop tech-
niques that address the following issues

Specification of functional and extra-functional properties of components as
part of their interfaces. In particular, this concerns properties with system-wide
impact, such as memory and resource consumption, timing, performance, etc.
These are typically extra-functional properties characteristic for embedded sys-
tems. A complication is that extra-functional properties typically depend on the
underlying platform and execution environment, and it is not well understood how
to cope with this dependency in interface specifications
Determination of QoS, timing, and resource properties of components. There
are several existing techniques for this, including measurement, simulation, and
static analysis of source code. Each technique has its advantages and limitations,
so they are suitable in different contexts. For software components of embedded
systems a difficult problem is that the results from measurement or simulation de-
pend on the measurement platform, hardware platform, the particular system con-
figuration and environment used for the measurements, etc. Such results may not
be valid on other platforms or in other system configurations.
Prediction of system properties such as QoS, timing, and resource consump-
tion, from component properties expressed in component interfaces. Support for
this activity can potentially solve many integration problems early in the devel-
opment process, and aid in system evolution, e.g., when new modules are added.
The analysis of system properties from component properties is in general an in-
herently complex problem; the complexity can be mitigated by more efficient
analysis techniques, and by employing suitable architectures and design princi-
ples.
Handling interference between components. Components have individual re-
quirements that can be violated when composed and deployed with other compo-
nents. Techniques are needed that ensure that component features do not interfere
with those of other components. Such interferences can be very subtle. An impor-
tant specific scenario where unexpected interferences may occur is when several
components, each implementing a piece of functionality, are mapped onto one
small hardware unit.
Handling heterogeneous system descriptions. The interaction between compo-
nents of an embedded system is typically much more extensive than between

110 10 Executive Overview on Component-Based Design and Integration Platforms

components in the business processing domain, where, e.g., interaction via method
calls can suffice. Components can execute and communicate synchronously or
asynchronously, sometimes using different timing models. It is not well under-
stood how to understand systems whose components execute and communicate
using different paradigms.

Wider adoption of component technologies for embedded system design is
needed, in order to motivate investment in tools, platforms, component repositories,
etc. Issues that must be advanced include the following.

Widely adopted component models. There is currently no wide-spread compo-
nent model that is suitable for the needs in embedded system development. Needs
vary between industrial sectors, whence we might see a development of different
models in different sectors.
Implementation of Component Frameworks. There is a lack of implemented
platforms that are suitable for embedded systems. Such platforms should support a
suitable component model, not require a large supply of resources, and provide
well-chosen generic system functionalities, e.g., for safety, reliability, and avail-
ability. Since platform requirements vary between industrial sectors, it seems
plausible that different platforms will e developed for different sectors.
Uniformisation of interface specifications. There is currently a variety of ap-
proaches for specifying functional and extra-functional component properties.
Convergence and standardization of these approaches is necessary to motivate in-
vestment in tools for verification of component properties, prediction of system
properties, etc.
Component Certification. In order to transfer components across organizations,
techniques and procedures should be developed for conveying trust in the quality
of component implementations. This problem may need advances in component
verification (including testing, simulation, formal verification), and in procedures
for documenting the efforts made in verification.
Tool support for different development activities, including tools to analyse and
predict system properties of systems.
Standards and implementations of component frameworks must be developed
that suit different embedded systems application domains. A single technology
will not suit all the various domains, and in fact domain specific standardization
efforts are underway in several industrial sectors. A standard should preferably be
independent of a particular platform or vendor, to avoid future dominance by a
single platform provider.

Challenges and Work Directions

We conclude by summarizing some of the important research challenges, and indicate
directions for further work.

Extra-functional Properties in Component-Based Development of Embedded
Systems give rise to a number of hard technical problems.

Specification of extra-functional properties has to meet many challenges.

 10.4 Overall Challenges and Work Directions 111

o Dependency on the underlying platform could be addressed by contracts, or
specifications, that depend on properties provided by the platform interface.
Such dependencies could be expressed, e.g., by letting parameters in the speci-
fication depend on parameters of the platform, or by using other mechanisms.

o Uniformisation and Standardization of Specification formalism. This process
requires a more solid understanding of how to best specify extra-functional
properties at an appropriate level of understanding. Efforts are underway to ex-
tend UML notations with capabilities to express extra-functional properties.

Determination of QoS, timing, and resource properties of components faces
several challenges
o Dependency on platform, configuration parameters, etc. This problem is espe-

cially relevant when properties are obtained by measurement or simulation,
since this needs a system context as driver for the measurements. Potential ap-
proaches to overcome the problem include to find ways to generate perform-
ance or timing models where the dependency on the environment is explicit,
and can be determined by appropriate measurements, or to find techniques to
generalize from one system environment to another. Static analysis of source
code does not suffer from this problem to the same extent, and has the poten-
tial to offer stricter guarantees, important in safety-critical applications. Tech-
niques for coping with the complexity of this technique should be further de-
veloped.

Prediction of extra-functional system properties is in general an inherently
complex problem, which could be addressed as follows.
o There is a large supply of tools that analyze system functionality, performance,

timing, etc. using techniques from scheduling, formal verification, perform-
ance analysis, etc. Such tools and techniques should be linked to tools for
Component Based Development; an example where this is underway is Meta-
H, but there is a large untapped potential. To use this potential, techniques and
notations for component and system specifications must be further uniformised
and standardized.

In the foreseeable future, an important objective should be to leverage the
power of existing academic and commercial tools modelling, composition,
verification, analysis, simulation, etc., by connecting existing pieces into a
tool-chain for modelling and analysis of component-based real-time systems.

o Techniques for predicting and analyzing extra-functional system properties
must take into account both the interaction between components, as well as
their sharing of processing resources, making this a serious research challenge.
Techniques for addressing it should include:

 techniques to integrate components while preserving and guaranteeing es-
sential properties of component behaviour. Rules for composability should
be developed, which guarantee that if a components meets a property in a
certain context, then this property is preserved when its context changes.

 techniques that exploit compositionality, by developing techniques to pro-
vide or extract simple component interfaces, which enable the prediction of
global properties as well as checking that each component conforms to its

112 10 Executive Overview on Component-Based Design and Integration Platforms

interface. In order for such an approach to succeed, it is essential to mini-
mize the linking and dependencies between components.

 novel techniques for analysis of extra-functional properties that combine
the strong aspects of the different disciplines of scheduling theory, per-
formance analysis, model checking, etc.

Handling interference between components. The problem of ensuring that com-
ponent features do not interfere with those of other components has been termed
the feature interaction problem in the telecommunications domain. We need prin-
ciples for ensuring that properties of a component are still valid in a large system
context.

The development of widely adopted component technologies for embedded sys-
tem design should be supported by working along several directions, including the
following.

Widely adopted component models can be obtained in several ways.
o Parts of established component technologies, such as COM, can be adapted for

embedded systems.
o Component technologies that have proven successful in specific contexts can

be further developed.
o Successful techniques for handling extra-functional properties should be

brought to standardization.
Implementation of Component Frameworks is necessary for a wider adoption
of a component technology.
o Platforms that support established component technologies and suit the needs

of embedded systems by using a constrained supply of resources, and having
predictable resource and timing behaviour, do not exist today, but should be
developed.

o Suitable techniques by which platforms can provide services for run-time
composition and replacement, failure handling, system adaptation and recon-
figuration, should be developed and integrated in an RTOS.

o Small OS platforms that are used for embedded systems can be extended with
new functionality and develop into a more powerful component technology.
There are several examples where a small OS platform has been extended with
design disciplines for component design, supported by design tools that solve
integration problems prior to compilation. This trend can be further developed.

Development of application-specific system architectures that support the de-
velopment of components suiting specific needs in such an architecture. Such ar-
chitectures are being defined in several industrial sectors.

10.5 Document Structure

This document is structured as follows. In section 11, we present a view on the devel-
opment of component-based systems, as a basis for identifying key concerns for com-
ponent based development, in particular for embedded systems. section 12 presents
condensed reports on the state of the art, trends, and needs for component based de-

 10.5 Document Structure 113

velopment in different industrial application sectors. In section 13, we concentrate on
presenting techniques used for specifying and analyzing important functional and
extra-functional properties of systems using information about component interfaces.

Section 14 presents major component models, and assesses some of their strengths
and limitations, in particular with respect to the aspects discussed in section 13. Fi-
nally, in section 15, we survey the situation with respect to standardization efforts, in
particular related to OMG, that are central to component technologies for real-time
systems.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 114 – 119, 2005.
© Springer-Verlag Berlin Heidelberg 2005

11 Component-Based System Development

Component-Based Software Engineering (CBSE) uses methods, tools and principles
of general software engineering. However there is one distinction: CBSE distin-
guishes component development and system development with components. There
is a slight difference in the requirements and business goals in the two cases and there
exist different approaches.

In component development, the main emphasis is on reusability: components are
built for reuse in many applications, many of them not yet existing. A component
should ideally be precisely specified, easy to understand, sufficiently general, easy
to adapt, easy to deliver and deploy, and easy to replace.
System development with components is focused on the identification of reus-
able entities and relations between them, beginning from the system requirements
and from the availability of already existing components [BCK98, GAO95]. Much
implementation effort in system development is no longer necessary but there are
efforts required in dealing with components, including locating them, selecting
those most appropriate, adapting them, and verifying them [MSP+00].

We not only recognize different activities in the two processes, but also find that
many activities can be performed independently. In practice the processes are often
already separated, since third parties, independently of system development, develop
many components. Even components developed internally within an organization that
uses the same components in different products, are often treated as separate entities
developed separately. For this reason we can distinguish:

Lifecycle of component-based systems
Lifecycle of components

11.1 Lifecycle of Component-Based Systems

Development with components builds on advanced ideas of Object Oriented Design
and Pattern Based Design through its focus on the identification of reusable entities
and relations between them, starting from the system requirements. Different lifecycle
models, established in software engineering, can be used in Component-Based Devel-
opment, but modified to emphasize component-centric activities. Let us consider, for
example, the waterfall model using a component-based approach. The top half of
Figure 2.1 shows the phases of the waterfall model. Underneath are shown the ac-
companying activities in Component-Based Development.

Characteristic features of component-based development are the following.

Identification of requirements is performed as in traditional development. How-
ever in the component-based approach, the mapping between system and compo-
nent requirements is important. Requirements for components should be identified
during system requirements elicitation, in order to reuse existing components.

 11.1 Lifecycle of Component-Based Systems 115

Figure 12.1. The CBD cycle compared with the waterfall model

The early design phase focuses on two essential steps:
o The logical view of the system is specified by a system architecture with com-

ponents and their interaction. In this view, components are represented by their
interfaces, possibly including specification of relevant extra-functional proper-
ties (in real-time systems this includes timing properties). The architecture
specification process is combined with finding, evaluating, selecting, and
adapting components that will perform the roles defined by the interfaces. The
logical design is in its essence model based development, because it focuses on
composing components such that the resulting model satisfies requirements.

o The structural view refines the system architecture consisting of component
implementations, to conform to a component framework, and various technol-
ogy-specific services. The refined component model may support analysis of
technology dependent properties usually associated with resources, such as
execution times.

The implementation phase includes adapting, composing, and deploying compo-
nents, using a component framework.
The verification (or test) phase performs system verification (e.g., by testing).
Rich component interfaces enable a significant part of system verification to be
performed in the design phase based on the developed models, thus saving signifi-
cant effort in the test phase.
The maintenance phase puts extra focus on the replacement and update of entire
components, possibly during system operation.

In summary, the activities that are specific to component-based systems development
are:

Specify logical and structural system architecture The architecture specification
process must take into account that the system requirements should be compatible
with those of available components; in this way the system design becomes an in-
terplay to match system and component requirements. Often the requirements
cannot be fulfilled completely, and a trade-off analysis is needed to adjust the sys-
tem architecture and to reformulate the requirements to make it possible to use ex-
isting components. In addition, the selection of a particular component technology
must be taken into consideration, as a component technology may require particu-
lar frameworks with a number of specific services such as component intercom-
munication.
Find and select components that may be used in the system. Available components
are collected for further investigation. To successfully perform this procedure, a

116 11 Component-Based System Development

reasonable number of candidates must be available The selection is a trade-off be-
tween requirements elicitations and system design. If the process focuses only on
requirements, it is very likely that components meeting all the requirements will
not be found. On the other hand, if components are selected too early, the resulting
system may not meet all the requirements.
Component repositories offer tool support for this process. Finding components,
testing them in a particular environment and storing them in component databases
are activities that can be separated from the system development, but obviously
the type of categorization and the search criteria offered by such a repository in-
fluences its usability.
Create proprietary components to be used in the system. In many cases, it will not
be possible to define the entire system from already existing components. Core
functionalities of the product are likely to be developed as they provide the com-
petitive advantage of the product. Parts created in this way should be designed as
components with well-defined interfaces to allow reuse in forthcoming applica-
tions and to facilitate maintenance. This usually requires more effort and lead-time
than adapting existing components.
Match component requirements with system requirements and verify system prop-
erties from component properties. A research challenge today is to predict the sys-
tem properties from those of components.. Emerging properties, i.e., the (typically
extra-functional) system properties not existing for the components, are of particu-
lar interest. For this purpose, rich interfaces are essential. Techniques for express-
ing rich interfaces and predicting system properties are discussed in section 13.
Adapt the selected components so that they suit the existing component model or
requirement specification. Some components can be directly integrated into the
system, some need to be modified through a parameterization process, some need
wrapping code for adaptation, etc.
Compose and deploy the components using a framework for components. A par-
ticular function is often implemented by several components. By introducing as-
semblies into the system, conflicts between the basic components can occur. It
may happen, for example, that assemblies include different versions of the same
basic component. In such a case a mechanism for re-configuring assemblies must
exist, either supported by the component framework, or used manually. The tradi-
tional V&V integration activities must be performed. However, they may become
easier if some of the work has been done when specifying the system architecture
(predicting system properties from component properties).
Replace earlier with later versions of components. This corresponds to system
maintenance. Implementations of components, and thus the entire system, may
evolve over time. Bugs may be eliminated or new functionality added. Elimination
of bugs in component implementations, which do not affect the interface, should
be completely transparent to the system behaviour. Ideally, this requires at most a
validation of the new implementation against its interface. Any evolution of the
system that affects its interface requires an additional validation at system level. If
functionality is added, a minimal validation consists in checking that the new
functionality is not used in an undesirable manner by other components. A
particular challenge is to upgrade or replace components during system operation.

 11.3 Issues Specific for Embedded Systems 117

11.2 Lifecycle of Components

The component development process is in many respects similar to system develop-
ment; requirements must be captured, analysed and defined, the component must be
designed, implemented, verified, validated and delivered. When building a new com-
ponent the developers will reuse other components and will use similar procedures of
component evaluation as for system development. There are however some signifi-
cant differences:

There is greater difficulty in managing requirements, caused by the interplay be-
tween component and system requirements.
Precise component specifications are more important.
Greater efforts are needed to develop reusable units,
Verification against component specification must be more stringent and docu-
mented, in particular when transferring components between organizations.
In a market for components, property rights and their protection become an issue.

The delivery result may be a component, tested and specified, perhaps even certified,
stored in a component library in a package suitable for distribution and deployment.
The next phase in the lifecycle is component deployment into a system. The deploy-
ment should be enabled without making changes in the rest of the system or the
framework, and should be automated.

11.3 Issues Specific for Embedded Systems

The design of real-time systems must consider constraints that do not apply to large
component and object-based systems such as business data processing systems. Addi-
tional constraints include the following.

Real-time systems must satisfy constraints on extra-functional properties such as
timing (e.g., meeting deadlines), quality of service (e.g., throughput), and depend-
ability (including reliability, safety, and security).
It is often important that functional and extra-functional properties be statically
predictable, in particular if the system is safety-critical.
Real-time systems must often operate with scarce resources (including processing
power, memory, and communication bandwidth).

Therefore, observations that hold for large business data processing systems may have
to be reconsidered for real-time and embedded systems.

The definition of components by Szyperski [Szy98], emphasizes contractually
specified interfaces, fully explicit context dependencies, independent deployment,
and third-party composition. It seems biased towards component models where
components are deployed at run-time into the system, with run-time support for
component registration and composition. This fits well to the component models
that are used in non-critical, non-real-time, and resource-insensitive applications.
However it is not likely that this applies d to component models for embedded and
real-time systems [CL02, Ch. 13]. There is a wide range of embedded systems

118 11 Component-Based System Development

(from very small to extremely large systems) and there is a wide range of real-time
requirements (from hard real-time to adaptive real-time). While larger embedded
systems may be resource insensitive and thus apply widely used component tech-
nologies, smaller embedded systems cannot afford such resources.
In widely used component technologies, the interfaces are usually implemented as
object interfaces supporting polymorphism by late binding. While late binding al-
lows connecting of components that are completely unaware of each other beside
the connecting interface, this flexibility comes with a performance penalty, which
may be difficult to carry for small embedded systems. Dynamic component de-
ployment is not be feasible for small embedded systems.

Taking into account all the constraints for real-time and embedded systems, we con-
clude that there are several reasons to perform component deployment and composi-
tion at design time rather than run-time:

It allows composition tools to generate a monolithic firmware.
It allows for global optimization,, e.g., in a static component composition known
at design time, connections between components can be translated into function
calls instead of using dynamic event notifications.
Design-time composition allows specific adaptation of components and generated
code towards particular micro controller families and real-time operating system..
Verification and prediction of system requirements can be done statically from the
given component properties.

Design time composition presupposes a composition environment that specifically
provides the following functionalities.

Component composition support;
Component adaptation and code generation for the application;
Building the system by including selected components and components that are
part of the run-time framework;
Static verification and prediction of system requirements and properties from the
given component properties.

There may also be a need for a run-time environment, which supports the component
framework. It may implement component intercommunication and control of the
behaviour of the components.

11.4 Summary and Conclusions

The development of an adequate technology for component-based development faces
many challenges. This is in particular true for real-time and embedded systems. Based
on the exposition in this section, we structure the issues into several groups

Component specification: in the context of embedded systems, it is obvious that
interface specifications of components must go beyond syntactic information and
include functional and extra-functional characteristics and requirements. For real-
time systems the temporal attributes of components and systems are of main inter-
est. For embedded systems the properties specifying the resources and the proper-

 11.4 Summary and Conclusions 119

ties related to dependability are important. However, there is still no consensus
about how components for real-time systems should be specified.
Prediction of system properties from component properties: Even if we assume
that we can specify all the relevant properties of components, it is not necessarily
known how they will determine the corresponding properties of systems of which
they are composed. Moreover, existing component models do not provide support
for predictable composition. In this, one should aim for interfaces providing full
functional and extra-functional specifications of components are essential.
Managing the interplay between achievable system requirements and component
specifications: is complex, as the possible candidate components usually lack one
or more required features. Further, the relations between the system requirements
and component requirements are complex.
Architecture specification: the use of components has an impact on the choice of
the system architecture, as it must take into account not only the requirements, but
also the available components.
Component models: Component models for real-time systems are still in the very
early phase of development. In general, existing component models do not support
the specification of functional and extra-functional properties, in particular timing
and QoS properties.
Component evaluation and verification (possibly for certification): the trustwor-
thiness of a component, which is the reliability of component in relation to its in-
terface specification, is an important issue. The issue is difficult since the trend is
to deliver components in binary form and the component development process is
outside the control of component users. Protocols for component certification are
of great interest
Component repositories: which address the issues of how to store and retrieve
components, how to index components in a component library, and how to find
“similar” components.
Managing changes in component requirements: an important issue are changes to
components over time and possible conflicts arising from different coexisting ver-
sions of a component within the same system. A precise interface specification
should allow clarifying this issue.
Update and replacement of components at run-time is useful for many real-time
systems. In the context of design-time composition, it is a challenge to combine
this feature with design-time optimization across component boundaries.

For all areas, it is evident that appropriate tools are essential for a successful compo-
nent-based development. In non real-time domains there exists various tools support-
ing model based and component-based development and they have proved to be suc-
cessful, but in the real-time domains there is a lack of such tools. There is thus a
unique opportunity for transferring essential results from research into industry
through development of tool suites.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 120 – 138, 2005.
© Springer-Verlag Berlin Heidelberg 2005

12 Current Design Practice and Needs in Selected
Industrial Sectors

The current state of and the needs for component-based approach differ very much
between industrial domains. Types of embedded systems vary from ultra small de-
vices with simple functionality, through small systems with sophisticated functions,
strong real-time requirements, and low resource consumption requirements, to large,
possibly distributed systems, where the management of the complexity is the main
challenge. Further we can distinguish between systems produced in large quantities,
in which the low production costs are extremely important and low-volume products
in which the system dependability is the most important feature. Usually for high
volume products the time-to-market requirements are extremely important as well as
the variation of the products. All these different requirements have impact on feasibil-
ity, on use, and on approach in component-based development. In different domains
we can find very different component models and system and software architectures.

12.1 Automotive

Industrial Landscape

Cars are typically manufactured in volumes in the order of millions per year. To
achieve these volumes, and still offer the customer a wide range of choices, the prod-
ucts are built on platforms that contain common technology that have the flexibility to
adapt to different kinds of cars by adding different components or different variants of
the components. Computer-based “components” built in the vehicles are control sys-
tems, infotainment (information and entertainment) systems, and diagnostic systems.
Diagnostic systems are often an integrated part of the control system. Automotive
systems have contained embedded controllers for more than one century. One well
known example of an early embedded control system based on mechanical technol-
ogy is fuel injection in combustion engines, where the camshaft, mechanisms and the
cylinder valves constitute an embedded controller with parts for sensing, processing
and actuation. The introduction of computer based embedded control has been moti-
vated both by technical reasons – the need for improving performance or introducing
entirely new functions – and by market demands. Moving functionality from hard-
ware to software most notably also reduces the number of physical components and
thus, at least in principle, makes the production much simpler. Another driver for the
introduction of embedded control systems has been legislation. In the automotive
industry, on-board diagnostics (OBD) is today regulated through legislation. Another
area which has received considerably attention is the demand for increasingly effi-
cient diagnostics, service, and production functionality.

There is a wide span of requirements on the infrastructure in today’s vehicles. The
vehicle industry works with demands on functionality, reliability, and safety, but also
with demands related to product variation, extensibility and maintenance of delivered

 12.1 Automotive 121

products, and integration of supplier components [MFN04a,MFN04b,Mer03]. This
implies high requirements on flexibility in terms of adding or removing nodes or other
components. Moreover, part of the functionality has stringent requirements on real-
time performance and safety, e.g., safety critical control applications. Other parts of
the functionality, such as the infotainment applications, have high demands on net-
work throughput. Yet, other parts require only lightweight networks, as for example
locally interconnected lights and switches. All of these varying requirements in vehi-
cle networks are reflected in the architecture, implementation, and operation of a
modern in-vehicle network.

Component-Based System Development Context

Within the automotive industry, the component-based approach has a relatively long
tradition, as these systems are typically built from physical components that are either
developed in-house or provided by external suppliers. Today, the physical compo-
nents also include several computer nodes (or Electronic Control Units, ECUs)
equipped with software that implements vehicle functions. Typical functions provided
by nodes include power train controls, e.g., for fuel injection, active suspension, and
combustion, safety related controls (brakes, collision warning, etc), driver assistance
functions, comfort functions, and infotainment. A rapid development of electronic
components and replacement of mechanical components has increased the importance
of efficiency in development and production of embedded components: Modern ve-
hicular systems contain almost hundred computer nodes, and the development costs
of the electronic parts for high end models approached 40 % of the total costs [Gri03].
Even if this development is successful in many aspects, for example in the form of
reuse and time-to-market, the trend cannot continue in the same way as the systems
are becoming too complex and too costly with the current practice consisting essen-
tially in having an ECU dedicated to a single functionality.

In general, there has over the last decades been a strong trend to connect stand-
alone controllers by networks, forming distributed systems. The main driver for this
has been cost reduction, since the use of networks makes reduction of the necessary
cabling possible, or at least a possibility to bound the increase in length given the
drastic increase in the number of control units. Another and closely related trend has
been modularisation, where for example, an electronic control unit is physically inte-
grated into an engine, forming a sort of mechatronic module. Combining the concepts
of networks and mechatronic modules makes it possible to reduce both the cabling
and the number of connectors, the result of which is facilitated production and in-
creased reliability.

Notice also that the components are to a large extent provided by external suppli-
ers, who work with many different car companies (or OEMs, original equipment
manufacturers). The role of the OEM is thus to provide specifications for the suppli-
ers, so that the component will fit a particular car, and to integrate the components
into a product.

Limited resources (CPU & memory) require simple component models with as low
overhead as possible. The implications of that is there a requirement for resolving of
dynamic behaviour as much as possible at compilation/composition time: code gen-
eration, controlled component adaptation, generation of platform (framework) with

122 12 Current Design Practice and Needs in Selected Industrial Sectors

required services. Component models should also provide a means for specification of
(worst-case) execution time and memory consumption. These specific requirements
exclude utilization of general-purpose component models.

State of the Practice

An example of a contemporary car electronic architecture is that of the Volvo XC90.
The maximum configuration contains about 40 ECUs. They are connected mainly by
two CAN networks, one for power train and one for body functionality. From some of
the nodes, LIN sub networks are used to connect slave nodes into a subsystem. The
other main structure is a MOST [MOS99] ring, connecting the infotainment nodes
together, with a gateway to the CAN network for limited data exchange. Through this
separation, the critical power train functions on the CAN network are protected from
possible disturbances from the infotainment system. The diagnostics access to the
entire car is via a single connection to a single ECU. The partitioning of functionality
is decided by the location of the sensors and actuators used, but also by the combina-
tions of optional variants that are possible. If a car is sold with only a subset of the full
functionality, the amount of physical hardware installed is limited to the minimum
necessary. Network communication software provides a layer between the hardware
and the application software, so that communication can be described at a high level
of abstraction in the application, regardless of the low-level mechanisms employed to
send data between the nodes. Volcano [CRTM98] is a communication concept used
throughout the Volvo Car Corporation for managing network traffic. Through the
Volcano API the underlying network technology is hidden from the application engi-
neer. The Volcano concept also addresses vehicle manufacturer controlled integration
of components developed by suppliers. This is done through the use of the Volcano
API and by separate specification of the signals used by a component and the network
configuration. The network configuration is provided by the integrator and specifies
how signals are to be transferred over the network. Traditional real-time operating
systems are usually too resource consuming to be suitable for automotive applica-
tions, and do not provide the predictable timing that is needed. Therefore the new
standard OSEK has been developed. There are several suppliers of OSEK compliant
operating systems. All components interact with each other and with the application,
and must therefore have standardized interfaces, and at the same time provide the
required flexibility. To conserve hardware resources, the components are configurable
to only include the parts that are really necessary in each particular instantiation

The main benefits of the technology used today are improved and more flexible
functional behaviour of the vehicles, decreased time-to-market and production costs.
The trend to replace mechanical components with electronic components will con-
tinue and even increase.

The current development trends in automotive software call also for increasing
standardization of the software structure in the nodes (i.e. ECUs). In particular, the
use of code generation requires a clear interface between the support software and the
application, and the need to integrate software from different suppliers in the same
node also calls for a well-defined structure. One approach for solving this is the new
standard OSEK [OSE], which is a resource efficient and predictable real-time operat-
ing system.

 12.1 Automotive 123

Challenges and Work Directions

As the number of ECUs increases, the entire system becomes more complex. The
system functions, controlling particular aspects at the system level (for example cruise
control) require input and output control of many components. This requires sharing
different types of resources (time, communication, memory, and CPU consumption).

While the system development is highly componentized, this is not true for soft-
ware development. ECUs include proprietary software, mostly owned by subcontrac-
tors. This makes the entire system inflexible and inefficient in utilizing resources,
makes it difficult to implement complex functions, and expensive to add new ECUs.
The next major step in designing these systems is to go from the current situation with
one node one supplier to a situation with one node several suppliers, i.e. there will be
several software components of different origins executing on a typical node. Also to
enable delivery of more complex applications, it must be possible to spread out soft-
ware components through several nodes. This requires changes in the design process
and new division of responsibilities.

There is a need for increasing standardization of the software structure in the
nodes. In particular, the use of code generation requires a clear interface between
the support software and the application, and the need to integrate software from
different suppliers in the same node also calls for a well-defined structure.

An important aspect is to create a more flexible software partitioning. The main
use for this is probably not to find the optimal partitioning for each car on a given
platform, since that would create too much work on the verification side, but to al-
low parts of the software to be reused from one platform to the next. This puts
even higher demands on the node architecture, since the application must be to-
tally independent from the hardware, through a standardized interface that is stable
over time. Therefore, further standardization work is needed, in particular for sen-
sor and actuator interfaces. A standard, or de-facto standard, component model for
small embedded systems in the automotive domain does not exist today. The ex-
isting component-based technologies require too many resources to be suitable for
small embedded systems. Developing and establishing an appropriate component
technology, including a supporting framework is one of the main research chal-
lenges.
With increasing complexity, system reliability and safety become major problems.
A satisfactory handling of safety-critical functions, such as emerging brake- and
steer-by-wire systems, will require the integration of methods for establishing
functional and temporal correctness for each component, as well as system-wide
attributes such as safety and reliability. but also from the complexity of the in-
volved organizations; a vehicle is composed of hardware components coming
from a multitude of companies. It is not uncommon that a car manufacturer today
in-house only develops a few control units – a very low percentage of some 70
control units indeed. This means that system integrators in some cases are trying
to regain control and development of the control units because of their large im-
pact on the vehicle. Systems integration is complicated by the fact that manual
specifications are used, leaving room for misinterpretations, causing costly itera-
tions, and highly difficult systems integration.

124 12 Current Design Practice and Needs in Selected Industrial Sectors

The current practice, to dedicate an ECU for each particular service can not be main-
tained and a need for a methodology which is more economic in resources is needed.
The current approaches are only beginning to consider the deployment of model-
based development processes, and current methods and tool support are available for
single ECU based implementations only. In the context of high end cars, the TTA
Technology [KR93] has been used. It proposes a solution for using the synchronous
approach transparently in a distributed system. This is done by hiding distribution via
an implementation of a time based access protocol of each node to a common bus
with proven properties. It allows naturally sharing ECUs for several functionalities.
Nevertheless, the underlying middleware requires very high quality, and thus expen-
sive, components.

An example of an ongoing effort in the European automotive industry is the project
EAST-EEA [EAS03] with participation of all major European car manufacturers,
suppliers and software-tool providers, as well as research organizations and universi-
ties with connections to the automotive industry. The goal of EAST-EEA is to de-
velop a structure for the next generation of electronic automotive features. There are
two main activities to achieve this goal: (1) specification of middleware suitable for
the automotive industry, and (2) development of an Architecture Description Lan-
guage (ADL). The middleware specification will leverage on the automotive indus-
try’s positive experiences of the RTOS standard OSEK, and will support concepts and
provide services on a higher abstraction level than a current OS does. The ADL will
allow manufacturers and their suppliers to exchange requirements, specifications and
documentation about both hardware and software characteristics. The ADL will sup-
port system-descriptions on multiple abstraction levels, ranging from very high-level
feature specification to very implementation-close operational specifications.

12.2 Industrial Automation

Industrial Landscape

Industries in the industrial automation domain have long used approaches for pro-
gramming control systems, which employ some elements of component based devel-
opment. Typical application domains are in control of industrial processes, power
supply, industrial robots, where there are many strong European companies including
ABB, Siemens, Thales, etc.

Industrial automation domain comprises a large area of control, monitoring and op-
timization systems. They typically include large pieces of software that have been
developed over many years (often several decades). Most control systems are manu-
factured in rather large volumes, and must to a large extent be configurable to suit a
variety of customer contexts. They can be classified according to different levels of
control. Each layer has a predefined set of control tasks that are typically supported by
some computer system and which may or may not involve human interaction [CL02]:

Process level concerns the process equipment to be controlled (for example, a
valve in a water pipeline, a boiler, etc.).

 12.2 Industrial Automation 125

Field level (or single control level) concerns sensors, actuators, drivers, etc. This
level comprises the interfacing equipment of a control system to the physical
process.
Group control level concerns controller devices and applications which control a
group of related process level devices in a closed-loop fashion.
Process control level concerns operator stations and processing systems with their
applications for plant-wide remote supervision and control and overview the entire
process to be controlled. This level may provide man-machine interface applica-
tions for different types of supervision and control activities, such as process state
visualization, alarm processing, process event handling, batch preparation, etc.
Production or manufacturing management level concerns systems and applica-
tions for production planning. Applications at this level support the manage-
rial/administrative tasks in preparing for the next batch of work.
Enterprise management level concerns systems which deal with enterprise-wide
control activities. These tasks are usually subsumed under the term Enterprise Re-
source Planning (ERP). They include human resources, supply chain management,
administrative order processing, finance and accounting, etc.

Notice that, even if the higher levels are not embedded, they are of uttermost impor-
tance as they need to be interoperable with the lower level which greatly influences
the possible choices of the component model and in fine the design choices. The inte-
gration requirements have in many cases led to a decision to use component technolo-
gies which are not appropriate for embedded systems but provide better integration
possibilities.

Depending on the level, the nature of the requirements and the implementation will
be quite different. In general, the lower the level, the stronger are the real-time re-
quirements (including timing predictability) and the resource limitations. Also, the
component based approach will include different concepts at different levels. While at
the lowest levels availability, timeliness, and reliability are the most important quality
requirements, at higher levels it will be performance, usability, and integrability. At
the process control level, the development environment is strictly separated form the
run-time environment and components are usually source software modules. Typi-
cally, synchronous languages [Hal93, Ber99b] have been developed and are used to
simplify the programming of reactive systems. On the basis of the synchrony hy-
pothesis, it is possible to define components, which can easily be composed at compi-
lation time into larger systems. The component models address extra-functional prop-
erties and constraints such as worst-case execution time and memory consumption
and allow specifying efficient functional interfaces (e.g. procedural interfaces). The
environment, supporting composition techniques (visual or script-based) is separated
from run-time environment. At the process control level and above, the system com-
plexity is the dominating characteristics, while hard real-time requirements are less
dominant. Furthermore, systems must be open to a wide variety of other systems and
standards. This allows utilizing (standard) component models, widely used in other
domains: desktop applications and distributed applications.

Also, dependent on the application area the requirements on timeliness will be dif-
ferent. In a typical industrial process automation (manufacturing, for example), fast
responses are not crucial, while in others (for example, distribution of electricity)
timeliness is extremely important.

126 12 Current Design Practice and Needs in Selected Industrial Sectors

Component-Based System Development Context

The core part of a control system or a robot is typically a real-time control system that
runs on a simple RTOS, or even without any OS. Other parts, such as I/O and com-
munication protocols are in many cases provided by suppliers. The system has to be
open to allow easy integration of new functionalities. Since the software usually sur-
vives many generations of hardware, it must be easy to port. Component-based devel-
opment has been practised for many years by developing and using the standard IEC
61131 [IEC95].

Industrial control systems are most often part of larger systems, e.g., an assembly
line for cars. Such systems are typically composed of many nodes that communicate
over field buses. Thus, a system must be open to a wide variety of other systems and
standards, implying that a component technology for industrial automation must be
compatible with component technologies such as .NET and CORBA.

In comparison with the situation in the automotive domain, one can roughly say
that the lower layers of industrial control systems have similar requirements and are
similar in structure but, at least until now, the interoperability requirements are higher
and the lifecycles longer. Another difference is that there is a strong tradition in soft-
ware development, bound to, e.g., standards for programming PLCs and IEC 61131
[IEC95].

State of the Practice

In the last years, the use of component-based technologies has rapidly expanded and
become the dominating development technologies in industrial automation. The tech-
nology mostly used in large systems is Microsoft COM, and to smaller extent differ-
ent implementations of CORBA, although neither COM nor CORBA provide support
for real-time. The systems using these technologies are adaptive-real-time systems.
Often a component technology is used as a basis for additional abstraction level sup-
port, which is specified either as standards or proprietary solutions. Some examples of
utilization of component technologies:

Example 1: OPC Foundation [OPC03], an organization that consists of more than
300 member companies worldwide, is responsible for specifications that standard-
ize the communication of acquired process data, alarm and event records, histori-
cal data, and batch data to multi-vendor enterprise systems and between produc-
tion devices. The specification is based on standards DCOM [BK98], XML-DA
and SOAP.
Example 2: ABB Automation Products develops a next generation of automation
system architecture called Aspect Integrator Platform [CL02, Chap. 17], which is
the basis for the design of automation systems, such as open control systems for
continuous and batch type processes, traditional supervisory control and data ac-
quisition systems, and others. The architecture uses Microsoft’s COM technology,
but it determines system architecture and enables flexible system configurations.
The main concept is based on AspectObjects which are treated as components. An
AspectObject encapsulates all the assets called “Aspects” belonging to that object.
In this model the aspects are treated as object attributes. The attributes (as the As-
pectObject itself) are implemented as special COM objects.

 12.2 Industrial Automation 127

Example 3: Component-based development has been utilized for many years by
developing and using the standard IEC 61131 [IEC95]. It defines a family of lan-
guages that includes instruction lists, assembly languages, structured text, and a
high level language similar to Pascal, ladder diagrams, or function block diagrams
(FBD). Function blocks can be viewed as components and interfaces between
blocks are released by connecting in-ports and out-ports. Function block execution
may be periodic or event-driven. IEC 61131 is successfully used in development
of industrial process automation systems, for example in ABB and Siemens.
Example 4: Controllers that fulfil real-time requirements (either adaptive or hard)
usually do not use component-based technology such as COM. However in some
cases (such as for ABB controllers) a reduced version of COM has been used on a
top of a real-time operating system [LCS02]. The reused version includes facili-
ties for component specification using the interface description language of COM,
and some basic services at run-time. These services have been implemented inter-
nally.

As a conclusion one can state that component-based approaches have a long tradition
in automation (especially by the use IEC 6113, which is not sufficient today) and
there is a clear trend to use widely spread technologies as much as possible which are
not the most appropriate ones for the domain.

Benefits from Using Component Technologies

The main reason for wide use of component-based technology in the automation
industry is the possibility of reusing solutions in different ranges of products, effi-
cient development tools, standardized specifications and interoperation, and integra-
tion between different products. For example, the main advantage of OPC is the use
of standard interfaces and communication protocols of control devices provided by
different vendors. Another benefit is transparency of data access, provided by the
middleware. Finally, component-based technologies enable seamless integration
with other type of systems, for example business and office applications.

Challenges and Work Directions

The problems of growing system complexity together with the requirements on
open, upgradeable, highly dependable and distributed systems pose many chal-
lenges which are in fact the central issues of component-based development in gen-
eral.

System integration is today a central problem in development. Presently, this
results in a need for extensive testing and in integration problems for large sys-
tems. In fact, we are lacking well defined architectures suitable for industrial
control applications. Many integration problems are caused by inadequate tech-
niques for handling resources and timing properties in the development process.
Adequate support for resource and timing properties in a component technology
is a must. The problem is similar concerning predictability and quality of ser-
vice. Component models including the possibility to specify quality of service
and reliability related properties as well as tools supporting them are lacking.

128 12 Current Design Practice and Needs in Selected Industrial Sectors

Many systems have very high requirements on availability, which must be re-
flected in the development of system architecture, systems integration, etc. Sup-
port for high availability by a component framework is needed.
Improving efficiency of the development and maintenance process. A main goal
of the component-based approach is a significant improvement in the develop-
ment process. An efficient use of components requires tools for system devel-
opment with components; in particular tools for component composition. Con-
trollers, usually hard real-time systems with restricted resources, cannot directly
use de-facto standard technologies. They either use dedicated, in fact proprie-
tary, component models or particular parts of de-facto standard technologies (for
example, interface specification, but without run-time support).
Increase lifetime of the products. Industrial automation systems have a long life
time, they can be in operation for more than twenty years. In that period many
assumptions change – the environment, the hardware platform, communication
standards, component models, languages, etc. Old technologies become obso-
lete. This poses huge problems for maintenance. To improve and even make the
maintenance possible, a means for system specification independent of the cur-
rent technology is required. Concepts such as Model Driven Architecture
[MDA] have the goal to allow flexible evolution of the applications and their
components. These technologies should be combined with the component-based
approach and be further developed.
Because of the dependency on one component technology vendor, there is a
standing risk: the current technology can become obsolete and the companies
are forced to migrate to new technology even if there are no requirements for
that. The controllers, usually hard real-time systems with restricted resources
cannot directly use de-facto standard technologies. They either use proprietary
component models or try to use particular parts of de-facto standard technolo-
gies (for example interface specification, but not run-time support). In the latter
case, the challenge is to identify a proper level of reuse of the technology. The
lowest level includes use of standardized interface specification, such as IDL
(Interface Definition Language), or COM binary interface, and implementation
of some standard interfaces.
Improving interoperability. Systems at the process control level must be able to
communicate to different types of field devices and use different protocols. For
this reason, it is important to define standards that contain more information than
general purpose standards or tools. OPC Foundation is one attempt to identify the
interoperability standards for process data. So far it is related to particular compo-
nent technologies (i.e. COM and .NET). An advantage of this is that the support in
form of applications and tools comes together with the standards. A disadvantage
is a dependency on a particular technology, operating system and a single vendor.
Similar standards independent of particular technology should be developed. The
systems on enterprise management level interoperate not only with the process
control systems but also with administration enterprise resource management and
similar tools. Such tools utilize in many cases successfully general-purpose com-
ponent models (COM, EJB, CORBA). This means that interoperability between
different application domains and different component models are required.

 12.3 Consumer Electronics 129

12.3 Consumer Electronics

Industrial Landscape

For high-volume electronics products, like TV, VCR, and DVD, cost per product unit
is an important issue. These costs are largely determined by the hardware costs, and
lead to constraints on the software; for example, the available memory. In addition,
the diversity of these products increases, as does the complexity of the products due to
convergence of functionality.

Component-Based System Development Context

Consumer electronics products are developed and delivered in form of product fami-
lies which are characterized by many similarities and few differences and in form of
product populations which are sets of products with many similarities but also many
differences. Production is organized into product lines – this allows many variations
on a central product definition [Don00,Per98,Bal98]. A product line is a top-down,
planned, proactive approach to achieve reuse of software within a family or popula-
tion of products. It is based on the use of a common architecture and core functions
included into the product platform and basic components. The diversity of products is
achieved by inclusion of different components.

Due to market requirements to launch continuously new product versions, devel-
opment and production of products are separated from the development of compo-
nents. Similarly as in the automotive industry, product development is integration-
oriented; that is, products are built by integration of components and new features (i.e.
products) are achieved by integration of new components.

Traditionally, in the consumer electronics domain the products providers are also
developers of components (in difference to automotive industry). Very often, the
market advantages of products are achieved by development of new, technologically
advanced, components – these are presently still hardware components in most cases,
but importance of software components is growing rapidly.

State of the Practice

Because of the requirements for low hardware and production costs, general-purpose
component technologies are not used, but rather more dedicated and simpler proprie-
tary models have been developed.

An example of such a component model is the Koala component model used at
Philips [vO02,vOvdLK00]. Koala is a component model and an architectural descrip-
tion language to build a large diversity of products from a repository of components.
Koala is designed to build consumer products such as televisions, video recorders, CD
and DVD players and recorders, and combinations of them. A Koala component is a
piece of code that can interact with its environment through explicit interfaces only.
The implementation of a Koala component is a directory with a set of C and header
files that may use each other in arbitrary ways, but communication with other compo-
nents is routed only through header files generated by the Koala compiler, based upon
the binding between components. As Koala components are delivered in the form of

130 12 Current Design Practice and Needs in Selected Industrial Sectors

source code, it is possible to statically analyze components and systems built by com-
posing them.

As a rule, the component models used in consumer electronics are proprietary
which requires internal support for their development and maintenance. Furthermore,
it requires development of a number of development tools: ADL, component reposi-
tory, composition languages, compilers, debugging and testing tools, configuration
tools, etc. Such development is usually not a core business of producers of consumer
electronics, and it requires an important amount of resources which could be shared
amongst several producers. The use of a proprietary technology makes it also more
difficult to use COTS components. There are increasing requirements for achieving
interoperability between proprietary and standard component technologies.

Benefits from Using Component Technologies

There are two main benefits in a component-based product line development:

 Reuse of already existing components and common architecture for many vari-
ants of the products,
 Separation of product development from component development.

The first benefit is achieved not only through reuse of the core functionality (which
includes the architecture solutions and components that build a core-functionality),
but also reuse of particular components in different product families. The second
benefit is realized by enabling larger development time for particular components
than the time for development of a specific product. Typically, products are released
two times per year, while development of a new component requires a year or a year
and a half.

There are other benefits resulting from using a component-based approach. The lat-
ter forces the software to be explicitly structured. Software components can only
interact through well-defined interfaces. In Koala, components can be parameterized
by the use of so-called diversity interfaces – which allow describing several parameter
dependent variants of interfaces. By binding components into a product, before the
actual compilation of the code, the memory footprint can be reduced: optimizations,
using static analysis, for example to discover unused parts, are done across compo-
nents without breaking the encapsulation provided by the components.

Challenges and Work Directions

On one hand, it becomes more and more important to develop products that comprise
several functions, previously being sold as separate products. Examples are TV sets
that have embedded DVD and VCR, and connections to the Internet. On other hand,
also interoperability requirements increase. TV sets are supposed to communicate
with PCs, mobile phones and similar. Pervasive systems implementing the “every-
thing anytime everywhere” paradigm, such as eHome systems are new visions of new
products in which consumer electronics plays an important role. This implies high
demands on interoperability. In addition to standard communication protocols, stan-
dard information models, standard component specifications and services are re-

 12.4 Telecommunication Software Infrastructure 131

quired. This also implies achieving interoperability of systems built on different tech-
nologies.

Presently, the component models used in consumer electronics support only rudi-
mentary analysis and prediction of extra-functional properties of the components and
systems. There are increasing requirements for developing methodologies for reason-
ing about system properties derived from the component properties. Typical require-
ments are prediction of memory, CPU and power consumptions.

Component models in this domain cover composition at development (compila-
tion) time; runtime systems are monolithic applications, which make on-line updates
of components difficult. Although requirements for plug-and-play concept are not
highly prioritized, it is expected that this will be more important in the future. For this
reason a support for managing components at run-time will be required.

12.4 Telecommunication Software Infrastructure

Industrial Landscape

Telecom applications involve several domains, such as commercial information sys-
tems, network management, service management and real-time network and execu-
tion platforms. There are specialized units developing particular techniques and skills
(network traffic, middleware, software engineering, performance evaluation, architec-
ture, User interfaces…). Moreover, in general, services are developed, deployed and
provided by different business units. The telecommunication world is an increasingly
open world involving many actors, working all on the same infrastructure.

A main requirement in the telecommunication domain is that service design and
development needs to be fast, by nevertheless respecting all the actor expectations and
security requirements. Many context constraints exist in the domain: the complexity
of the infrastructure (middleware), the heterogeneity of the standards for protocol
exchanges as well as their continuous evolution, the emergence of new standards, the
absence of formal specification for many standards and many more [ITE, RNR03].

Component-Based System Development Context

In the context of telecommunication infrastructure and services, components play and
have played a crucial role, and the majority of these components are embedded in
core network platforms or several types of devices: mobile, fixed, etc. Components
may be shared between different applications. These applications are in general not
deployed at the same time but are continuously added and modified, inducing a large
amount of work for functional integration, but also and even mainly, for performance
integration. Furthermore, components – or their specifications – are reused when new
services are developed in order to reduce the development cycle and to allow a large
commercial diversity with a relatively small technical diversity [ITE] and to ensure a
certain uniformity of the service behaviour.

Large telecom applications, such as switches, have to satisfy requirements on high
performance, massive concurrency (handling many calls simultaneously), high avail-
ability, robustness, etc. These requirements must be addressed by a suitable architec-
ture, which gives adequate support for all these requirements. An example of a

132 12 Current Design Practice and Needs in Selected Industrial Sectors

framework which has been developed with this in mind is the Erlang Open Telecom
Platform (OTP) [Erl], which is a run-time framework supporting massive concur-
rency and high availability of applications in the concurrent language Erlang.

State of the Practice

Currently, the application designers build new applications in a vertical fashion. A
vertical structure is contradictory with the need to rapidly build and modify (cus-
tomize) new services, to integrate them in a consistent way with existing ones and
to share common infrastructure and platforms (core network execution platforms or
embedded mobile devices), etc [KK00]. The analysis of real-time and QoS require-
ments, which are essential the service deployment and provision, can today not be
analyzed during the early stages of design, as QoS properties are well studied and
expressed only at a very low level (execution platform and network level). Conse-
quently, time or performance problems are mainly discovered once the application
is deployed and tested. This leads to expensive time to market development.

Also, due to the absence of formal specification of component interfaces and
composition rules and the lack of real-time and QoS property specifications at com-
ponent level, current practice consists more in creating new software components
(even at the specification level) rather than in reusing existing ones.

In the domain of Telecom, UML [UML.OMG02] is extensively used in the con-
text of commercial information systems for the static system description (class
diagrams), but unfortunately it is not used for modelling of the dynamics of the
application. This is mainly due to the fact that current UML tools do not handle the
dynamic aspects (absence of appropriate tools and standard semantics). In the past,
and still currently, for some applications model based formal approaches are used.
The standards in the telecom domain, such as SDL [SDL,CCD+01,CDN01], and
similar frameworks – for example ROOM [Sel96] or Erlang [Erl,OSER], a func-
tional language are used for the specification of protocols and services. Esterel
[Ber99a, CPP+01, CPP+02] or other synchronous formalisms have also been used
for synchronous applications, such as software radio. For performance prediction of
service platforms some commercial tools based on queuing theory – for example
SES workbench [SES], Opnet [OPN]) – are used. This means that for different
activities different, only informally related, models are used [MDVC03].

Challenges and Work Directions

The challenge for the telecommunication domain for the future is to enable the
ubiquitous “anything, anytime, anywhere” concept, which means that a service
should be seen for an end user as a black box – or a least a grey box – respecting
functional and extra-functional properties (Quality of Service) independently of the
underlying platform. Due to the openness of the telecommunication architecture, a
multitude of services and service components are currently provided by several
companies and must be dynamically integrated and updated. Telecommunication
applications must be created in a secure and reliable way with short development
times in a multi-provider environment. There is a real need to go from a vertical
service development to a horizontal approach based on flexible, reliable and open

 12.4 Telecommunication Software Infrastructure 133

software infrastructure (middleware). In order to achieve this goal, it is essential to
provide service designers with a software infrastructure offering an interface layer
or middleware hiding as much as possible the heterogeneity and the complexity of
the underlying layers. Only such interface layers consisting of component and con-
nectors with appropriate functional and extra-functional characterizations will allow
flexible evolution of the applications and their components, as well as consistent
integration of different applications developed by different providers. Concepts
such as Model Driven Architecture [MDA, Nic02] have the objective to help the
creation of such an infrastructure and provide a syntactic support for this. A re-
search goal for software infrastructure should be to integrate Model Driven Archi-
tecture concepts with component based development approaches and provide an
innovative and consistent development methodology from high level specifications
towards design. Formal validation of components, which must take into account
rich interface specifications, is crucial for a consistent composition of distributed
components. It is the only way to ensure a flexible and secure interface to the tele-
communication service designer.

For service designers, the interest of components goes beyond interoperability.
Service components have individual requirements that might be violated when
composed and deployed with other service components. This problem, well-
known in the telecommunication world as the service interaction problem, must
be tackled taking into consideration real-time and performance aspects. Espe-
cially in the context of mobile telecommunication or WEB-services, real-time
aspects, quality of service and dynamic composition are important issues.
Another important aspect is the definition of a methodology for component
based design, from the analysis steps towards implementation and testing, ap-
plied for component lifecycle and system lifecycle. There is a large consensus
for the use of standards, such as UML, SDL and MDA in the telecommunication
world, but research is necessary in order to take into account real-time aspects,
quality of service and deployment issues and to better integrate components and
composition in the software lifecycle.
Component and system verification using formal techniques for real-time sys-
tems should be enforced. Its systematic use should enable quick and secure tele-
communication service creation answering questions like how to build an archi-
tecture based on a set of components (reused and/or shared by several services)
in such a way that we can guarantee the provision of complete applications re-
specting quality of services and safety requirements (especially security re-
quirements).
Specific attention should be paid to mobile devices. They have to tackle several
critical constraints (memory size, energy consumption, time constraints, etc.).
They require continuous adding, removing or modification of components, and
different service negotiation procedures. Security and availability are require-
ments in any kind of environment (unreliable environment, different kinds of
communication modes, different performance properties). Specific components
are needed for different communication patterns.

134 12 Current Design Practice and Needs in Selected Industrial Sectors

12.5 Avionics and Aerospace

Industrial Landscape

Some of the characteristics for software development for avionics and aerospace in-
clude the following.

Applications are highly safety- and mission-critical and must be able to satisfy
very hard real-time constraints. For example, Ariane 5 is inherently instable: its
position must be correctly controlled within each 10ms cycle, meaning that the
loss of sensor data of a single cycle leads to the potential loss of the rocket. For
this reason, such systems are inherently complex and expensive to design, up-
grade, and support.
Some of theses systems have an extremely long lifetime (over 20 years for an
airplane) and will undergo several generations of upgrades and platform migra-
tions. Also the amount of software in this kind of systems has been dramatically
increasing. For example, in 1974, an Airbus 300B embedded just 500 Kbytes, to-
morrow Airbus 380 will embed 64 Mbytes and at horizon of 2015, a Gbyte of em-
bedded software is probably not a limit. In space applications, the trend is similar.
Similar as in the telecom domain, an important difficulty, reported also in section
3.2 of this document, is that the development of avionics and space systems is di-
vided into several teams with specialized skills, and that no single person can
overlook anymore the entire flight computer and the rapid growth of the embed-
ded software makes this worse.
Extensive model-based simulation and validation is performed since flight testing
is extremely costly.

One consequence of the facts mentioned above is that model-based approaches are
more advanced and applied than in other domains, e.g., as witnessed by the promi-
nence of the avionics application domain in many advanced technology projects (e.g.,
SafeAir http://www.safeair.org/project/, Mobies http://www.liacs.nl/marcello/ mo-
bij.html, and others).

Component-Based System Development Context

Presently, the approach for building a flight controller is a synchronous approach
(such as explained in section 3.2), which considers the entire system as a unique en-
tity with a single clock. Deployment on rapidly evolving distributed architectures
which might be based on different technologies (different kinds of buses,…), as well
as replication for increasing reliability and other safety and security related issues are
handled apart. The validation of the integrated system is a major problem. Compo-
nents play a role here, but they are mainly design time components as there is no
explicit notion of component based middleware used in any present development
process in this domain. More emphasis appears to be placed on predictability of
global system properties and global system architecture.

Nevertheless, there is a prominent desire is to continue the trend towards model-
based development, supporting it by integrated tool chains that can perform analysis
of properties like fault tolerance, timing, utilization, quality of service, etc. on models,

 12.5 Avionics and Aerospace 135

and thereafter generate optimized code for target platforms. There exist some ap-
proaches which start to be used in this domain or in comparable domains (e.g. auto-
motive):

The TTA Technology [KR93] proposes a solution for using the synchronous ap-
proach transparently in a distributed system. This is done by hiding distribution
via an implementation of a time based access protocol of each node to a common
bus with proven properties. This architecture is based on the existence of redun-
dancy of its physical nodes. It implements a particular dependability model and
does not handle other extra functional aspects, as for example security issues.
Moreover, its extreme requirements on the internal clocks of all components and
the important computational overhead, makes this technology probably inappro-
priate for space applications (where high reactivity is combined with slow compo-
nents due to problems with radiation).
An example of technologies for handling component based systems that have been
developed for the avionics domain is Meta-H [Met]. Meta-H is a domain-specific
Architecture Description Language (ADL) dedicated to avionics systems which
has been developed at Honeywell Labs since 1993 under the sponsorship of
DARPA and the US Army. A significant set of tools (graphical editor, typing,
safety, reliability, and timing/loading/schedulability analyzers, code generator...)
has already been prototyped and used in the context of several experimentation
projects. Notice however, that Meta-H is very low level. Today, it is rather a lan-
guage for assembling existing pieces of code.

Also there is an ongoing new development of a standard called AADL (Avion-
ics Architecture Description Language [WKB04] which has emerged from Meta-
H, and which will include in its forthcoming version V1 a UML profile for avion-
ics and space system. The usefulness of this extension will depend on its ability to
describe high level abstractions and the relevant properties of components.

Challenges and Work Directions

A major challenge in the domain is the adoption of a truly component based approach.
The encapsulation of functionalities concerning distribution, security, replication, in a
middleware consisting of components with guaranteed extra-functional properties will
be the key for making existing validation methods (applied today to the synchronous
model of the control) applicable to an integrated system. It makes the development of
the control application independent of the actually used architecture and supports
architectural changes during the lifetime of a system through the replacement of some
of individual middleware components as required.

In order to make this vision a reality, appropriate formalisms for representing high
level views of a given system architecture, including properties of components need
to be built. For example, in AADL, there exists a notion of connector, which needs to
be made general enough to represent a middleware component guaranteeing secure or
timely communication, etc. Also, the necessary infra-structure does not exist today
and must be built. As an example, the EU Integrated Project ASSERT proposes to
tackle this problem.

136 12 Current Design Practice and Needs in Selected Industrial Sectors

12.6 Summary and Challenges

Component-based development is practiced in several industrial domains. The com-
ponent-based approach at system level, where hardware components are designed
together with embedded software, has been successfully used for many years. Also
large-grain generic components like protocol stacks, RTOS, etc. have been used for a
long time. In addition to this, technology supporting a component-based approach has
been developed either in the form of dedicated proprietary component models or by
using reduced versions of some widely used component models.

A major, short-term benefit of the component-based approach is that it imposes a
beneficial structure to system development. Component technology supports the
structuring of complex systems early in the development process. In this way,
many integration and maintenance problems can be addressed early, at lower cost.
Systems are easier to maintain if they have a clear structure, e.g., as a system
composed of components. The development of product-line architectures and of
standardized domain-specific architectural guidelines supports adequate system
structuring. Legacy systems can sometimes be structured into components in order
to make future upgrades and maintenance easier
Component-based development allows integration problems to be handled in the
earlier phases of system design. Component properties that have global system
impact, notably properties of timing and resource consumption, can be specified in
interfaces in such a way that global resource usage can be predicted a priori,
avoiding hard problems in system integration.
It is easier to achieve time-to-market requirements by separating the component
development process from system development process. Components can be re-
used across several products or even product families. Re-use is made easer by de-
fining product line architectures, in which components have given roles. New
products can then re-use components of previous products by modification or
parameterization.

A longer-term potential of component technology is to enable a Market for Software
Parts. However, this advantage is currently unclear, and would demand that compa-
nies make high initial investments in tools and technology.

A prerequisite for the further adoption of component technology in many sectors is
to define a more standardized software structure, encompassing domain-specific
guidelines for system architectures, and the functioning and interfaces of different
types of components. Such developments are underway, e.g., in the automotive and
avionics domains, and can lead to more efficient development processes, support for
exchange of software components between organizations. Further standardization of
component interfaces will support interoperability between products and between
components.

Technical needs from a component technology fall into several categories:

Composition and integration of component-based systems requires technology for
specification of interfaces to be developed to the point that it can a priori guaran-
tee component interoperability. This is important, e.g., in the telecommunications

 12.6 Summary and Challenges 137

domain where interoperability is crucial, in domains where manufacturers have
the role of system integrators, e.g., in the vehicle and industrial automation do-
main. Important properties for component interoperability in embedded systems
are component timing and resource properties, since these properties have system-
wide impact.
Embedded systems are typically resource constrained. This is a further motivation
why component technology must support specification of extra-functional proper-
ties (resources), so that system resource needs can be predicted and managed early
in system development. It is furthermore important that a system composed of
components can be optimized for speed and memory consumption, typically by
globally optimizing compilation. This applies to industrial sectors with large vol-
umes and small platforms that have constraints on, e.g., power consumption, such
as the automotive industry and small mobile devices. To support more advanced
component technologies for embedded systems, it is important to develop efficient
implementations of component frameworks (i.e., middleware), which have low
requirements on memory and processing power.
Predictability of system properties, in particular concerning QoS, is crucial in
many domains of embedded systems. This means that a component technology
should bring solutions to the following problems.
o Prediction of global system properties from component properties, as s speci-

fied in component interfaces. A current shortcoming is that methods for break-

ing down system timing requirements into component requirements are not
fully developed.

o Components have individual requirements that can be violated when composed
and deployed with other components. Techniques are needed that ensure that
components do not interfere with requirements of other components. Such in-
terferences can be obvious, such as violations of memory protection, or more
subtle. An important scenario where interferences will occur is when several
components, each implementing a piece of functionality, are mapped onto one
ECU.

o Determination of QoS, timing, and resource properties of components, e.g., by

measurement, simulation, static analysis, etc. An inherent difficulty is that

these properties depend not only on the component software, but also on the
underlying platform.

Embedded systems often have high requirements on safety, reliability, availability
and QoS, including their predictability. A proper solution to these generic re-
quirements needs to include
o Specification of relevant properties in component interfaces, together with

mechanisms to check adherence to interface specifications.
o Suitable generic mechanisms (e.g. middleware with guaranteed properties) in

component frameworks that allow building systems with high requirements on
safety, reliability, availability, etc.

o Mechanisms to analyze system-wide safety, properties, potentially using tech-
niques that are tailored for specific component frameworks.

138 12 Current Design Practice and Needs in Selected Industrial Sectors

Reuse of components across different organizations is sometimes hampered by the
lack of technology and procedures for verifying and certifying component imple-
mentations against their interface specifications.
The adoption of component technology is hampered by the lack of widely adopted
component technology standards which are suitable for real-time systems. This
can to a large extent be attributed to the special needs of the embedded systems
sector (resources, extra-functional properties). It may be unreasonable to expect a
single standard for embedded systems to emerge; a more likely scenario – already
starting to emerge – is that domain-specific component standards and frameworks
will be developed. Important considerations for such solutions are as follows.
o Interoperability between different component technologies is important. One

motivation is for users not to be bound to a single vendor of platforms or inte-
gration tools. There is also a trend towards open, extensible, and upgradeable
systems. Component technologies for embedded systems should therefore be
compatible with existing standards. Service negotiation is a natural part of
open embedded systems.

o Frameworks and middleware implementations available to industries in a
given domain.

o Tools that allow components to be developed and integrated. Such tools must
in most case provide adequate support for solving timing and resource prob-
lems when defining the system architecture. Current proprietary component
models for embedded systems are typically not widely enough used to moti-
vate the cost of developing such tool support.

Embedded systems are typically developed over a long time, implying that support
for maintenance of system evolution is an important consideration. The appropri-
ate level of specification of component and system properties should allow system
hardware and platforms to be exchanged and upgraded, as well as allowing com-
ponents to be reused in different contexts. This motivates an increased interest in
model based approaches to specification and development, including the MDA
approach. A suitable middleware layer can hide specific problems stemming from.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 139 – 159, 2005.
© Springer-Verlag Berlin Heidelberg 2005

13 Components and Contracts

13.1 Introduction

One of the key desiderata in component-based development for embedded systems is
the ability to capture functional and extra-functional properties in component inter-
faces, and to verify and predict corresponding system properties. For real-time sys-
tems, this is perceived to be particularly important for properties such as timing and
quality-of-service.

In this section, we review existing techniques for capturing, verifying, and predict-
ing different properties of component and system behaviour. Properties of compo-
nents can be expressed in their contracts, hence the title of the section. The term con-
tract can very generally be taken to mean “component specification” in any form.

A contract is in practice taken to be a constraint on a given aspect of the interaction
between a component that supplies a service, and a component that consumes this
service. Component contracts differ from object contracts in the sense that to supply a
service, a component often explicitly requires some other service, with its own con-
tract, from another component. Therefore the expression of a contract on a compo-
nent-provided interface might depend on another contract from one of the component-
required interfaces. For instance, the throughput of component A doing some kind of
computation on a data stream provided by component B clearly depends on the
throughput of B.

It is indeed challenging to develop a practical framework for reasoning about com-
plex component properties (e.g., performance properties) stated in contracts, e.g., to
infer global system (performance) properties. A complete solution to this problem
requires powerful mathematical reasoning, e.g., about properties of stochastic proc-
esses. A pragmatic, more modest, approach to this problem, which does not need
powerful mathematical reasoning, is to agree on a small set of fixed contracts, or a
small set of fixed building blocks for contracts. For each contract, one can then in
advance develop techniques for monitoring or verifying that component implementa-
tions satisfy the contract, and techniques for inferring system properties from compo-
nent contracts. For instance, for performance properties, one can define a fixed set of
different levels of performance, and for each level define rules for run-time monitor-
ing and for component interoperability.

In simple cases, such a scheme can be seen as constructing a type system for speci-
fying properties. More complex cases may involve constraints expressed in some type
of logic, and thus checking beforehand that components interact correctly then need
some form of theorem proving techniques.

To structure the exposition into different types of component properties, we use the
classification of contracts proposed by Beugnard et al. [BJP99], where a contract
hierarchy is defined consisting of four levels.

Level 1: Syntactic interface, or signature (i.e. types, fields, methods, signals, ports
etc., that constitute the interface).

140 13 Components and Contracts

Level 2: Constraints on values of parameters and of persistent state variables,
expressed, e.g., by pre- and post-conditions and invariants.
Level 3: Synchronization between different services and method calls (e.g., ex-
pressed as constraints on their temporal ordering).
Level 4: Extra-functional properties (in particular real-time attributes, perform-
ance, QoS (i.e. constraints on response times, throughput, etc.). We will separate
this level into two aspects
o 4a: timing properties (e.g. absolute time bounds)
o 4b: Quality of Service properties, typically given by performance measures,

often formulated in stochastic terms (e.g. average response time).
Currently, most component models support only level 1 contracts, while some models
support also other levels (see section 14). In the remainder of section 13, we will
survey techniques for capturing and reasoning about component and system properties,
discussing each aspect separately. We will use the four levels of the Beugnard hierar-
chy for structuring our treatment of different interface properties. Regarding level 4,
we make a separation between timing properties (e.g. absolute time bounds) and sto-
chastically formulated performance properties (e.g. average response time). In addi-
tion, we briefly treat reliability properties.

For each aspect, we will consider techniques for

expressing properties of systems and components,
predicting or verifying system properties from component properties, in particular
for doing this statically at design-time,
checking that component properties are compatible (assumptions made in one
component specification are guaranteed by some other component specification),
verifying that component implementations satisfy properties given in component
specifications, and
compile-time and run-time support for enforcing system or component properties.

13.2 Level 1 – Syntactic Interfaces

Definition

By a syntactic interface, we understand here a list of operations or ports, including
their signatures (the types of allowed inputs and outputs), by means of which commu-
nication with a component is performed.

Generally speaking, a type can be understood as a set of values on which a related
set of operations can be performed successfully. Belonging to a given type usually
implies constraints that go beyond what value is denoted exactly, most notably how
the value is stored (required when operations are performed). Once types have been
defined, it is possible to use them in specifications of the form: if some input of type
tin is given, then the output will have type tout.

Type safety is the guarantee that no run-time error will result from the application
of some operation to the wrong object or value. A type system is a set of rules for
checking type safety (a process usually called type checking since it is often required
that enough information about the typing assumptions has been given explicitly by the

 13.2 Level 1 – Syntactic Interfaces 141

designer or programmer, so that type checking becomes mostly a large bookkeeping
process).

“Static” type checking is performed at compile- (or bind-) time and ensures once
and for all that there is no possibility of interaction errors (of the kind addressed by
the type system). Not all errors can be addressed by type systems, especially since one
usually requires that type checking is easy; e.g., with static type checking it is difficult
to rule out in advance all risks of division-by-zero errors.

Type systems allow checking substitutability when components are combined: by
comparing the data types in a component’s interface, and the data types desired by its
environment client, one can predict whether an interaction error is possible (e.g. pro-
ducing a run-time error such as “Method not understood”).

Specification of System and Component Signatures

A system for specification of syntactic interfaces must include:

A type system, together with a syntax (we can call it an Interface Description
Language, or IDL) for specifying signatures of operations/ports;
A mapping from the (abstract) interface types to component implementations. For
instance, if components are given in some programming language (for example, if
they are written in C), and the interface types use the type system of C, then the
mapping is direct. If components are available in binary form, there must be an
agreed mapping from interface types to binary formats of component implementa-
tions.
A notion of substitutability, which describes when the interfaces of two compo-
nents are compatible.

For embedded systems, the type system is usually rather simple, with a substitutabil-
ity amounting to equality (i.e. one may only substitute objects whose interface is the
same as the declared one). For run-time component frameworks, a little bit more
flexibility is usually allowed, with substitutability based on type extension or even a
more generally defined conformance relation.

For instance, every CORBA object has a type name, which is the same as the inter-
face name assigned in its IDL declaration. The operations that it can perform, and the
variables (and their types) that it understands, are all part of its type. Base types in-
clude three different precisions of integers and floating-point numbers plus fixed-
point, standard and wide characters and strings, etc. Constructed types include records
(“struct”s), unions, and enumerations. One can declare either fixed or variable length
structs, arrays, strings, and wstrings. There is an any type that can assume any legal
IDL type at runtime.

CORBA supports sub-typing by extension: one can create a subtype by extending
the base type’s list of operation signatures. But one must not redefine any of the base
type’s operations, and it only works in the absence of explicit self-reference. The
advantage of this scheme is that it is easy to implement and understand, the disadvan-
tage is that it is still quite restrictive since some safe substitutions are ruled out.

A proposal for a polymorphic type system suitable for embedded system design is
given by Lee and Xiong [LX01] and incorporated in Ptolemy II. It combines several
types of polymorphism, including some standard coercions between numeric data

142 13 Components and Contracts

types. One design goal is that the check for substitutability should be efficient, since
one may have to carry it out at run-time.

Component Interoperability

Conformance is more generally defined as the weakest (i.e., least restrictive) substi-
tutability relation that guarantees type safety. Necessary conditions (applying recur-
sively) are that a caller must not invoke any operation not supported by the service,
and the service must not return any exception not handled by the caller. Conformance
has a property called contravariance: the types of the input parameters of a service
must conform in opposite to the types of its result parameters.

For example, if we have a type sign for the set of the three numbers -1, 0 and +1,
it is natural to see sign as a subtype of integer. Now consider a numerical func-
tion sign from integers to signs: this function can be used (substituted) in contexts
where a function accepting sign is expected, and in contexts where a function return-
ing integers is expected.

At first, the contravariant rule seems theoretically appealing. However, it is less
natural than covariance (where parameter types conform in the same direction), often
encountered in real world modelling (animals eat food, herbivores are subtypes of
animals, but they eat grass which is a subtype of food, not a super-type!), and is in-
deed the source of many problems. The most surprising one appears with operations
combining two arguments, such as comparisons. If the contravariant rule is used, the
type associated with equal for Child instances is not a subtype of the one of equal for
Parent instances. As soon as this kind of feature is considered (and they are com-
mon), the contravariant rule prevents a sub-typing relation between Child and Parent
(see [Cas95] for more details and solutions).

Trends and Conclusion

About 10 years after the debates on contravariance vs. covariance have peaked in the
OO research community, the dust has settled down somewhat. We can now identify
three main directions that have been taken to deal with this issue.

Keep it simple: No-variance is used for IN parameters. That is the approach used
in mainstream languages such as CORBA, C++, Java, C# etc. For instance, if one
needs a specialized version of x.equal(y), the type checking (through down casting
on parameter x) must be done by hand by the programmer, and verified at runtime
only.
(ii) Model reality: Covariance is used for IN parameters. This is the approach used
in Eiffel, which makes static type checking a non-local, non-incremental task. In-
deed, if no other restriction is made, type checking requires extensive program
analysis and looks much more like theorem proving than the simple bookkeeping
process it used to be.
(iii) Make it complex: use parametric polymorphism in conjunction with reference
polymorphism, and have a type system where the types themselves can be seen as
variables. This is quite appealing as far as the expressive power of the type system
is concerned, but it still lacks a mainstream adoption.

 13.3 Level 2 – Functional Properties 143

The conclusion is that as soon as one wants a minimum of flexibility for defining type
conformance between a provided interface and a required interface, static type check-
ing is no longer a simple bookkeeping process. So level 1 contracts do not have a very
different nature than contracts of other levels. In some cases, they can be defined with
restrictive rules to allow simple tools to process them, in other cases one could be
interested in having more flexibility at the price of more complex tools for static
checking, or even rely on runtime monitoring.

A concern in component-based design of embedded systems is that runtime moni-
toring of interface types may be desirable for building reliable systems, and because
one cannot completely trust component implementations. If components are deployed
at run-time, the check for substitutability must be performed with available computing
resources.

13.3 Level 2 – Functional Properties

Definition

Functional properties are used to achieve more than just interoperability. Level 2 in
the Contract Hierarchy is concerned with the actual values of data that are passed
between components through the interfaces, whose syntax is specified at Level 1 (the
preceding section). Typical properties of interest are constraints on their ranges, or on
the relation between the parameters of a method call and its return value. It is also
customary to include at level 2 properties of a persistent state of a component. In level
2 contracts, transactions are described as atomic, which means they are appropriate
for components with sequentialised or totally independent interactions.

Specification of System and Component Properties

Formalisms at level 2 provide means for describing partial functions or relations for
representing a component (or system) step. In constraint languages, as provided by
Eiffel/SCOOP [Mey91, Mey97] (dedicated to the Eiffel programming language),
OCL [WK98] (Object Constraint Language dedicated to UML), LSL (Larch Shared
Language) [GHG+93], JML (Java Modelling Language) [LB99], relations are ex-
pressed by means of invariants, pre- and post conditions. More classical notations are
for example Kahn networks [Kah74]. Logical formalisms are Unity [CM88] or TLA
[Lam94], with the difference that they allow also to express liveness properties, that
is, additional properties of infinite sequences of steps (fix points).

In practice, pre- and post conditions are rarely used in the context of large compo-
nents, but rather for small components, often describing data structures providing a
set of operations considered as atomic. One reason may be that the same type of inter-
faces is much harder to obtain for compositions of components.

Verifying Component Properties

There exist a number of tools using constraints for run-time monitoring which gener-
ate exceptions in case of violation of interfaces at run-time. This is the case for exam-
ple in Eiffel and for JML annotations of Java. It also exists in .NET. Run-time moni-

144 13 Components and Contracts

toring assumes that interface specifications are executable, and incurs a nontrivial
cost. Many frameworks use assertions in a test phase, often using a constraint lan-
guage. Here, aspect-oriented programming techniques [KLM+97], which allow to
compose different features when generating code for testing or for final implementa-
tion, can be used to introduce some degree of automation and to facilitate mainte-
nance.

There are research tools that perform static checking of JML, such as ESC Java at
Compaq [ESC] based on (partial) static analysis methods, or in the Loop project at
University of Nijmegen [Loo] which is based on the use of interactive theorem
provers. Theorem provers are also used to verify invariants or temporal logic proper-
ties on TLA or Unity specifications. Such tools are primarily used in applications that
require highly dependable software. Even in the future, they might not become widely
used in standard component based development, but it is important that they exist for
demanding applications. Certainly, component manufacturers may want to use them,
to provide highly dependable component implementations conforming to contracts.
To some extent, the use of theorem provers can be seen as a form of experimentation,
which should result in automated procedures for various application domains.

Some of these formalisms are also used in the domain of hardware or on finite state
abstractions of components, where (symbolic) composition and model-checking are
applicable, and any of the many model-checkers developed in the last 2 decades can
be used.

The B-Method [Abr96], is based on a formalism of the same kind, but it provides
an integrated framework for systematic refinement from invariants to implementa-
tions of functional components.

Component Interoperability and System Properties

There are two aspects of interoperability: one is preservation of component properties
and general system properties like absence of deadlock, and the second is verification
of emerging global system properties corresponding to functional system require-
ments.

In the context of level 2 specifications, composition of interfaces can be seen as
composition of partial relations. Therefore, component interoperability amounts to
verify that composition does not require strengthening of preconditions (leading to
additional undefinedness). In simple cases, it can be sufficient to check that pre-
conditions are satisfied by corresponding post-conditions of connected interfaces.

The level 2 system properties are determined from the composed partial relation. In
general, its formal calculation requires more sophisticated mathematical machinery in
the form of fixed-point theory, as simpler representations in terms of invariants and
pre/post conditions cannot always be synthesized.

The situation concerning existing tool support is the same as for the verification of
components themselves. Run-time monitoring is the main approach, and alternative
methods consist in using interactive theorem provers, or, alternatively, a top-down
approach based on systematic refinement.

In the case of finite domains, the situation is more favourable, as representations of
compositions can be synthesized from representations of components.

 13.4 Level 3 – Functional Properties 145

Existing academic tools for the static validation of component properties should be
pushed towards more automation and integrated into professional development tools.
The main problem of level 2 specifications is their applicability to distributed sys-
tems, due to the absence of means to express interactions as non atomic or to express
explicit concurrency. This can be improved by considering additional level 3 specifi-
cations. In practice, level 2 specifications can be used mainly for a single level of
components and when non-interference between transactions can be guaranteed by
construction (in general by sequentialising access to components), as for example in
the synchronous approach used in the context of safety critical applications.

13.4 Level 3 – Functional Properties

Definition

Level 3 in the Contract Hierarchy is concerned with the actual ordering between dif-
ferent interactions at the component interfaces and more importantly, they allow in-
teractions between a component and its environment to be considered non atomic.
Level 3 specifications provide the following facilities:

description of transactions (input/output behaviours) not necessarily as atomic
steps.
explicit composition operators avoid the obligation to provide an explicit in-
put/output relation taking into account all potential internal interactions. This has
the further advantage that a restricted use of a component does indeed allow to de-
rive stronger properties (only the actually occurring interactions need to be taken
into account, not all hypothetical ones)
many level 3 formalism allow to express explicit control information, which makes
the expression of complex, history dependent input/output relations much easier

Indeed, formalisms at level 3 have explicit composition and communication primi-
tives.

Specification of System and Component Properties

There are several, formally comparable families of description techniques:

Automata, including hierarchical state machines etc. as found in SDL, UML have
explicit composition operators which allow easily to represent complex compo-
nents by means of the same formalism.
Process algebras are very similar in principle, and really focus on the notion of
composition.
Temporal Logics are used for the description of global properties to be verified on
a component or a system (also for components specified with level 2 interfaces),
rarely as component characterizations to be used in further composition.
Sequence Diagrams or Sequence Charts represent also global properties, but in
terms of a set of interesting scenarios and are mostly used to describe test cases.
They may be used to describe complete specification if the number of alternative
scenarios describing a transaction is relatively small.

146 13 Components and Contracts

In order to distinguish between or the required and offered parts in the context of
contract specifications, most of these formalisms use the distinction between inputs
and outputs. Timeouts or explicit timing restrictions can be used in some formalism to
restrict waiting for particular inputs or component reaction time. Most of these for-
malisms must handle unexpected inputs explicitly by providing complete specifica-
tions. A recent suggestion for extending automata-based formalisms with explicit
distinction of provided and required interfaces are interface automata [CdAH+02].

Verifying Properties and Component Interoperability

In the context of level 3 contracts, the expression of interfaces of complex compo-
nents is made possible due to explicit composition. In this case, the verification of
component properties and of system properties are of the same nature. However,
system verification can easily become intractable for systems consisting many com-
plex components (cf. the state explosion problem).

In academia, in the last two decades a large number of model-checking tools have
been developed, which allow to show that a composition of automata (describing
behaviours of components) satisfies some property (a desired component or system
property), described either as an automaton, a formula of temporal logic, or in the
form of a scenario (Message Sequence Chart [Mau96, IT00] or Live Sequence Chart
[DH01]). These tools can be used to verify properties of relatively small descriptions,
i.e., mainly of medium-size components or systems. In order to make the verification
of complex systems that are compositions of components tractable, two kinds of
methods have been developed:

abstraction, to hide the internal structure of sub-components and to synthesize the
externally visible behaviour of a component by abstracting, whenever possible
from interactions between internal components
compositional verification techniques, which are similar in nature but based on
characterizations of components in terms of (temporal) properties and use of de-
ductive verification techniques

Most model-checkers work on finite-state systems only, but in the last years also tools
for checking decidable or semi-decidable properties of infinite-state systems (such as
parameterized systems, systems with counters or communication through lossy chan-
nels) have been developed. Nevertheless, at present these tools are not integrated with
any existing tool for component-based development.

For modelling languages like SDL or UML, which can be used to describe inter-
face behaviours, there exist case tools [USE01, Ilo, Tel] with restricted simulation and
validation facilities, allowing to validate a composition of a set of components de-
scribed by their interface behaviour by simulation.

Nevertheless, none of these tools provides facilities for defining observation crite-
ria that are necessary to explicitly hide internal information. Industrial practice is
mainly based on testing and/or on model-based simulation. The step from a complete
functional model to an implementation, for example in C can be done automatically in
some contexts. For synchronous languages, and for SDL, automatic code generators
exist and are being used.

 13.5 Level 4a – Timing Properties 147

It should be noted that system validation is in general not done for arbitrary envi-
ronments, but with a particular, restricted environment (including the underlying
platform) and a restricted number of possible interaction scenarios in mind. This re-
duces the amount of non-determinism and makes validation more feasible, which then
gets very close to testing of a restricted number of scenarios played by the environ-
ment. In this context, level 3 specification have the considerable advantage over level
2 specifications that encapsulation of internal activities need not be done a priori for
all uses of a components, but after restriction to a particular environment. This allows
for the derivation of stronger global properties.

Research Challenges

Currently, there exist many specialized tools, both academic and commercial, for
modelling, composition, verification, analysis, simulation, or other activity in the devel-
opment of component-based systems. In the foreseeable future, an important objective
should be to leverage the power of these tools, by connecting existing pieces into a tool-
chain for modelling and analysis of component-based real-time systems. Such tool chain
could, e.g., allow to model systems in a subset of UML, thereafter translate such models
into formats usable by other tools, e.g., for simulation and timing analysis.

The application of model checking techniques to component-based systems has to
tackle the well-known state space explosion problem. An important approach to veri-
fication large systems is to combine compositionality and abstraction techniques, by
providing a simple interface for each component, and verifying that: (i) the interfaces
of system components interact correctly, and (ii) that each component conforms to its
interface. In order for such an approach to succeed, it is essential to minimize the
linking and dependencies between components, as shown e.g., by Sharygina et al.
[SBK01].

In certain applications, the interaction between components may be managed by
requiring that components be strictly independent of each other, or that their interac-
tion be in terms of access to a common data structure, under the control of, e.g., a
transaction manager. For many application areas, the identification of suitable restric-
tions on component interaction remains a challenge.

The complexity of system complexity must also be managed by developing tech-
niques to integrate components while preserving/guaranteeing essential properties of
component behaviour. Ongoing work on composition principles that formulate condi-
tions for guaranteeing the preservation of component properties during composition
can be found in [BGS00,GS02]. Principles that allow the inference of system proper-
ties directly from component properties would certainly provide more motivation for
the verification of components. An interesting research challenge is the study of archi-
tectures that support such composition principles.

13.5 Level 4a – Timing Properties

Definition

Timing requirements define constraints on the order of occurrence and on upper
and/or lower bounds of durations between events. We can distinguish between hard

148 13 Components and Contracts

real-time systems, where all the occurrences of the specified events must satisfy the
specified constraints, and adaptive real-time systems where the distribution of the
durations between the specified events over all occurrences within an execution must
obey some constraints, e.g., on average and variance etc. In this section, we consider
timing properties for hard real-time systems, for adaptive real-time and QoS we refer
to the next section.

Specifying Timing Requirements

In the current practice, time bounds can be associated with the duration between
events in an informal or (semi)formal requirements specification. Typical timing
properties are the following ones, where time requirements are expressed using physi-
cal time, e.g., seconds, some abstract time unit, cycles of some clock or number of
computation steps. When different requirements and definitions of a system are ex-
pressed using different notions of time, it is important that the relationship between
these different notions is well defined.

When called, this method is computed within 20 ms (execution time property).
This function is computed periodically, with a period of 50 ms (periodicity prop-
erty)
packets are sent with a frequency of 50Hz and a maximal jitter of 1ms (periodicity
property)
Component C receives data requests at most every 3 ms (inter arrival time prop-
erty)
When the value of variable x exceeds 100, component C is notified within less
than 10 ms (reactivity property)
If lightning strikes, transformers is shut off within 50 microseconds (response time
property)
RPM does not exceed 50000 for more than a few seconds during the start phase.
The response to this signal comes within 3 cycles (response time property)
When component C gets a request every 2 to 3 cycles, it provides the response
within 2 cycles (conditional response time)
the execution time of task T is 20 to 30 ms and its overall duration should not
exceed 100m.

Note that such properties can express both requirements and assumptions depending
how they are used.

Existing formalisms that allow the expression of time bounds are in fact exten-
sions of level 2 and level 3 formalisms extended with time. They include metric tem-
poral logics, i.e., temporal logics with quantitative constraints on the duration between
events, timed extensions of automata, sequence charts extended with time, timing
diagrams or general constraint languages, like OCL, extended with time. For example,
in Message Sequence Charts [IT00] and also in Sequence Diagrams in some UML
tools, time bounds can be assigned to the distance between two events. In Live Se-
quence Charts [DH01], time dependent properties are expressed with timers, meaning
that durations cannot be measured, but only constrained. Timed automata are more
expressive: they specify constraints between events by means of so called “clocks”
measuring durations, which are reset to zero at the occurrence of one event, and then

 13.5 Level 4a – Timing Properties 149

used in “guards” to restrict the possible occurrence times of other events. A notion of
urgency allows to distinguish between time constraints and time guards.

Temporal logics extended with time have rather limited expressive power. Se-
quence Diagrams define time constraints in the context of certain scenarios, and are
very cumbersome if the overall number of scenarios is big. Timed-automata based
formalisms naturally define constraints on all possible scenarios, but it is harder to
argue about particular “interesting” scenarios.

Some programming and modelling languages have an explicit notion of time. In
synchronous languages one can define behaviours occurring at certain cycles, where
cycles of various lengths (all multiples of a basic cycle) can exist. In the modelling
languages SDL and Room, a notion of global time and timers can be used. But all
these formalisms are aimed at the definition of time dependent behaviours, rather than
at expressing real-time requirements. ITU recommends time extended Message Se-
quence Charts for defining real-time requirements for SDL system models.

For UML, which contains both formalisms for functional behaviour descriptions
and for expressing requirements and constraints, recently a “profile for real-time,
scheduling and performance” has been defined [OMG01b], including notions of tim-
ers, timed events, constraints on their time of occurrence and a large number of nota-
tions for which no semantics are given. These notions are defined for all of UML, but
have apparently been built with mainly timed Sequence Diagrams in mind.

A more elaborated RT-profile for UML, also based on a large number of intuitive
notations, but including semantics, is being developed in the OMEGA IST project
(http://www-omega.imag.fr/). Note that component timing properties depend in gen-
eral on a given platform and system con- figuration. They must therefore either be
properties of a system component (i.e., the running software together with platform
and run-time system) be parameterized by (characteristics of) the underlying platform,
compiler, etc.

Component Interoperability and System Properties

There is a vast literature on timing analysis, treating the problem of determining
whether a set of given system timing requirements can be met by a collection of com-
ponents with known timing parameters. The most common paradigm is schedulability
analysis, which takes as input component timing properties, system timing require-
ments (on response times, periods, deadlines, etc.), and properties of the scheduler
and platform. The output is an answer about feasibility and information about how the
scheduling should be performed. In the context of hard real-time systems, it is impor-
tant to answer the following questions: “to which extent a component based approach
is possible?” and what kind of “components” are useful in this context. For this pur-
pose, let us look at what is current practice:

Scheduling Periodic Tasks
Mainstream schedulability analysis assume that tasks are executed periodically or a
periodically with known maximal activation frequency. For each task a worst case
execution time is known or assumed, and where applicable also the worst case com-
munication requirements, overhead for context-switching, etc. on a given platform. A
simple framework is RMA, where all tasks are periodic, can be pre-empted, and have

150 13 Components and Contracts

a statically known pattern of access to shared resources. Under suitable conditions,
schedulability can be analyzed in a time proportional to the number of tasks. This
approach is present in Meta-H and Rubus and to some extent in PECOS. In general,
an integration platform need not perform the schedulability analysis itself; this can be
done by an external tool. Schedulability analysis can also be performed for distributed
platforms, if communication delays have known bounds. An example is the Volcano
system on CAN. This approach has also inspired the real-time profile of CORBA, and
in the area of languages, Java-RT and Posix. The approach is mature and has proven
practicality. In this context, a component may realize tasks or represent a shared “re-
source” used for the realization of certain sub-tasks. Its interface must, therefore,
specify its worst-case execution time for each task (or sub-task) for the platform under
consideration and the implied resource usage. It must also be stated whether pre-
emption is allowed, and whether multiple concurrent invocations are permitted.

Synchronous Approach
This paradigm enforces a very strict scheduling policy. Globally, the system is seen as
a sequential system that computes in each step or cycle a global output to a global
input. The effect of a step is defined by a number of transformation rules. Scheduling
is done statically by compiling the sets of rules into a sequential program implement-
ing these rules and executing them in some statically defined order. A uniform timing
bound for the execution of global steps is assumed (system requirement). In this con-
text, components are often “design-level components”, as the component-based de-
sign is compiled into a single sequential program later on. In this case the analysis of
the WCET (worst case execution time) of a single step is done on the target code
directly. An extension to the use of run-time components consists of generating code
containing calls to those components. Some component models, such as IEC61131-3
use this execution paradigm. In some sense, this approach is quite close to RMA,
where the “global period” plays the same role as the “global step”. TTA defines a
protocol for extending the synchronous languages paradigm to distributed platforms.
In this context, distributed components can be made easily interoperable as long as
they conform to the timing requirements imposed by the protocol. Another compo-
nent view consists in considering an entire synchronous system as a “component”
communicating (asynchronously) with its environment by buffering inputs from the
environment and/or relying on certain continuity properties of the environment. This
is sometimes called the GALS (Globally Asynchronous, Locally Synchronous) ap-
proach.

Generalizations
Currently under investigation in the research community are generalizations of sched-
ulability analysis to distributed systems and to more dynamic task sets, e.g. with re-
configuration (this is discussed in action 3). Another extension consists in considering
components with a more complex structure than entities realizing a set of periodic
tasks with a global WCET, e.g., components which have an internal state, as de-
scribed by a state machine, or systems with modes. Quite a number of tools have been
developed recently, aiming at analysis of this kind of systems, such as Taxys
[BCP+01], Prometheus [G¨os01], IF [BGM02], or Times [AFM+02] . An ambitious
example of a model and framework supporting this and other paradigms is Ptolemy

 13.5 Level 4a – Timing Properties 151

[RNHL99, Lee01] or Metropolis [BLP+02]. In this context component interoperabil-
ity is to some extent subsumed under the timing analysis done when checking that
system requirements can be met. This analysis includes checking that the components
can cooperate to satisfy the system timing requirements. In the context of adaptive
real-time system, composition frameworks as proposed in [BGS00] are very promising.

Verifying Component Properties

A difficult point in timing analysis is assessment of WCETs of tasks or of the code
implementing a global step of a synchronous system. In current practice, this is done
by measurements (on each particular target platform), or by simulation, e.g., by using
hardware simulators. Recently, there has been progress in static code-based prediction
of WCET by taking into account a very precise platform model [FHL+01, FW98].
Note that WCET calculation is becoming more and more complex, since new hard-
ware features of processors are increasingly unpredictable, and due to the sometimes
complex platform dependencies. In order to make assertions about upper bounds of
durations, both time-dependent characteristics of the external environment and of the
platform on which the component is executed, as well as knowledge about all re-
source usage, need to be known. Work on extracting timing information from periph-
erals and other devices remains to be done.

Research Challenges

Today, it is not a problem to find a language or notation for the description of timing
behaviours and timing requirements. There is a large number of formalisms (e.g.
timed automata) and standards (e.g. UML SPT) available for modelling though some
of them still need a formal semantics. The research challenges are in analysis. For
example, the SPT notation can be used to specify requirements on UML diagrams,
such as “this method should be executed within 10 milliseconds”. The difficulty is
really how to check that the requirement is guaranteed.

The timing behaviour of a hard real-time system depends on not only its components,
but also the execution platform as well as the environment where the system is em-
bedded. Thus the robustness and composability of analysis and implementation para-
digms are of particular importance for component-based development. By robustness
we mean that timing properties of a system are preserved or refined by any upgrading
or reconfiguration, of components.

Much research focuses on component models for specific frameworks and plat-
forms. Important advances have been made in the domain of execution time estima-
tion for individual tasks, as well scheduling analysis at design time. This is supported
by adapting traditional scheduling theory where parameters of some scheduling para-
digm are specified in the interface of components. Such specifications are also stan-
dardized [OMG01b]. Classical scheduling theory assumes that system architectures
and components have a certain structure. A number of approaches exist which go
beyond the classical theories and propose techniques to extend timing analysis to less
constrained forms of component specifications (e.g., as timed automata).

152 13 Components and Contracts

For short-term research, a number of important problems remain to be solved:

Integration of the analysis capacities of the above mentioned tools for both low-
level timing analysis based on abstract interpretation and for interoperability
analysis based on timed automata or other more general task descriptions. The
system TIMES [AFM+02] is a work in this direction.
Extension of the well-understood, but restrictive paradigms provided by the syn-
chronous approach or by classical RMA analysis to more general frameworks. For
example, TTA is an approach extending the applicability of the synchronous ap-
proach to distributed systems. A system like Giotto [Hen01] extends it with more
dynamic scheduling of the tasks making up a step.

For long-term research, a challenging research task is to develop a paradigm that
encompasses the whole spectrum of approaches from the very strict synchronous
approach to the fully asynchronous approach, including distributed systems. Such a
paradigm must provide a semantic framework for composition of time-dependent
components, based on different communication and interaction modes. This will al-
low the verification of compositions of time-dependent systems and their properties at
modelling level.

A number of features, such as run-time update and dynamic reconfiguration of sys-
tems, which provide some of the motivation for using a component-based approach,
have so far been essentially avoided in systems with hard real-time requirements. It is
an interesting research question, whether such features can be reasonably included
into hard real-time systems.

Essentially, what is needed is the robustness of timing analysis. There are a number
of open and challenging problems in developing platform-independent analysis tech-
niques for all levels:

For low-level WCET analysis, existing techniques and tools are available only for
specific hardware architectures and applicable under strict assumptions on the exe-
cution platform e.g. pipeline analysis will break up if pre-emption is allowed. It is
not an economical solution to develop a WCET tool for every platform and re-
calculate the WCET for all software components when hardware components are
upgraded or replaced. It is desirable to have WCET tools where standard hardware
components and features (e.g. pipeline) as input are parameters for analysis.

For system-level analysis, a large amount of work has been done on schedulability
analysis (e.g. RMA) and consistency checking of timing constraints and require-
ments (e.g. model checking based on timed automata). However, the existing tech-
niques provide no guarantee that the analysis results will be valid after some change
on any part of the system or environment e.g. a component is upgraded or ported to
a different platform. It appears that the synchronous programming paradigm is a
promising approach to construct deterministic systems that are easy to verify. But
the problem is converted to check that the timing requirements from the environ-
ment are satisfied by a deterministic system, which is a difficult problem.

We should also emphasize that the components in a hard real-time system share
scarce resources. Handling resource sharing induces a number of interesting and diffi-
cult research problems e.g. synthesis of schedules optimizing resource usage (e.g.
power consumption) from application tasks.

 13.6 Level 4b – Quality of Service 153

13.6 Level 4b – Quality of Service

This section addresses quality of service of component-based designs related to adap-
tive real-time issues. Hard real-time issues have been treated in the preceding section.

Definition

A quality of a system can in general be considered as a function mapping a given
system instance with its full behaviour onto some scale. The scale may be either
qualitative, in particular it may be partially or totally ordered. Or the scale is quantita-
tive, in which case the quality is a measure. The problem of realizing systems that
have certain guaranteed qualities, also known as their quality of service (QoS), in-
volves the representation of such qualities in design models or languages and tech-
niques to implement and analyze them as properties of implemented system instances.

While some definitions of ‘QoS’ include concepts such as security, where the scale
is not a measure, we here focus on quantitative measures, especially on those related
to time. In this area, there is a common further classification of system requirements,
distinguishing between hard real-time requirements, where the quality of any imple-
mented system instance must lie in a certain interval, and adaptive real-time require-
ments. Typical examples of such requirements are: “The average lifetime of the bat-
tery pack is 4 hours”, or “The probability of a buffer underrun is less than 0.001”.
This is the focus of this section; hard real-time systems are handled in the preceding
section.

Embedded System Context

Embedded systems designers are usually facing many challenges if they strive for
systems with predictable QoS. To incorporate these constraints in the embedded sys-
tems design process is a challenging issue, for the following reasons.

The system dynamics is becoming ever more complex, making it more and more
difficult to observe or predict the QoS properly.
The trend towards networked embedded systems raises issues like message buffer-
ing, interdependencies due to media sharing, and communication characteristics,
all influencing the system QoS.
Applications involve more and more extra-functional features in the form of mul-
timodal interfaces and multimedia support, having impact on the QoS.
Modelling and analysis facilities for QoS are (if at all) not well integrated into the
methods and tools available to embedded system designer, because QoS relates to
different design aspects than the functional design.

For reasons such as these, encapsulation of QoS properties inside a component is very
difficult. Most of the work already done focuses mainly on the definition of QoS
contracts. A workable approach appears to be to attach offered QoS properties (much
like post-conditions) to components, as well as required QoS properties (resembling
preconditions) [Sel02].

154 13 Components and Contracts

Specifying System and Component Requirements

Contract Languages. Research has progressed in the context of languages to specify
such contracts, and to attach them to component interfaces. We mention QuO/CDL
(http://quo.bbn.com), AQuA (http://www.crhc.uiuc.edu/PERFORM/ AQuA.html),
QML [FK98], and AQML [Nee91]. A more descriptive overview can de found in part
III of this document. These languages are mostly syntactic extensions of CORBA’s
Interface Definition Language (IDL) tailored to express QoS properties. In order to be
useful in component based systems, contract languages must include facilities for
expressing properties typical of components, that is, their context dependencies
[WBGP01]. A component provides a service under a given contract only if the sur-
rounding environment offers services with adequate contracts [Reu01]. Such depend-
encies are much more complex than the traditional pre/post-condition contract scheme
of object oriented programming. In the most general case, a component may bind
together its provided contracts with its required contracts as an explicit set of equa-
tions (meaning that offered QoS is equal to required QoS).

Therefore, a component oriented contract language includes constructs for:

expression of QoS spaces (dimensions, units);
primitive bindings between these spaces and the execution model (bindings to
observable events, conversion from discrete event traces to continuous flows, defi-
nition of measures);
constraint languages on the QoS spaces (defining the operations that can be used
in the equations, form of these equations).

Verifying Component QoS Properties

In an ideal world, a component user (i.e., a designer that picks a component to include
it in a design) has precise information on the QoS behaviour of the component with
respect to its environment. Then, during component composition, some answers on
the QoS behaviour of the composed system could be computed.

In practice, contracts written in languages such as QML or QuO are compiled to
create stubs that monitor and adapt the QoS parameters when the system is opera-
tional. This QoS adaptation software is, in effect, equivalent to a controller for a dis-
crete system. In the approaches practiced today, the following issues limit the confi-
dence that a designer can put in QoS declarations of a component.

The existing QoS contract languages are not equipped with a formal meaning, thus
do not provide a basis for formal proofs, nor can they be used to perform symbolic
computations.
The QoS contracts often involve very complex dependencies.
There are no techniques to prove that a given component implementation abides
by the QoS contracts of the component declaration.
The runtime monitoring cannot fully observe and measure the component’s behav-
iour in the defined QoS space, because of technical limitations (e.g., under-
sampling events, distributed delay computation).

 13.6 Level 4b – Quality of Service 155

QoS Contract Negotiation and Adaptation

Components are bound to be deployed in diverse architectures. As a consequence,
adaptive-real-time QoS properties are often considered as “promises”, and in practice
implemented with best-effort techniques. QoS contracts are thus not interpreted as
final and non-negotiable constraints (differing from the classical interpretation where
post condition failure means bad design). This implies that run-time violations of the
contractually agreed QoS can occur. In particular, the component characteristics of
“fully explicit context dependencies” and the possibility of being able to “be deployed
independently” are not met by these approaches. Instead the contracts are understood
as guidelines for what has to be achieved, and architectural choices by the designer
must make provision for variation as well as fallback (minimal) constraints.

Classical component [Bro96] (i.e., non QoS-aware) technologies already include
facilities for dynamic discovery of resource availability (in other words: level 2 con-
tract negotiation). QoS contract models must support adaptability even further, be-
cause a contract may be valid at some instant and invalid at a later time (while level 2
contracts stay valid once “discovered” in a given component execution). Such a sup-
port requires means of specifying variation in the QoS contract model, as well as
adequate contract monitoring support.

Since quality of service contracts may fail, contracted software in components
must be able to cope with failure situations. This software must therefore exhibit
capacities for adaptation, using techniques such as the ones described in this roadmap,
in Part III. Application domains such as components for mobile computing put an
emphasis on this relationship, because the highly varying quality of service of com-
munication resources has a major impact on the software architecture of mobile appli-
cations. Although the concept of quality of service contracts is exposed in Part II, the
notion of quality of service specification is shared by the QoS system development
group. Such a notion of QoS contracts should be used as a pivotal concept for coop-
eration between these communities.

Contract Monitoring

Since contracts must be monitored during component execution, the component infra-
structure must provide some support to the designer. Building contract monitors is a
difficult task, often more difficult than the design and coding of a component imple-
mentation.

Typical difficulties include:

reliable access to execution events and to precise time for sampling;
computing with distributed events;
coordinating distributed monitors, etc.

Therefore, monitors must now be designed by specialists. A component implementa-
tion is then augmented by specific pieces of a contract monitor. Since time is often an
important factor of QoS contracts, the monitor code must be efficiently synchronized
with the service code of the component. Aspect-oriented programming [KLM+97]
and aspect-oriented design [CW02] may provide efficient means of extending a com-

156 13 Components and Contracts

ponent with contract monitors when those are designed as aspects weaved with the
component architecture [HJPP02].

Predicting System Properties from Component Properties

Model-Based Approaches
We here survey techniques for statically analyzing system performance properties. A
workable modelling and analysis approach to embedded systems QoS is based on the
observation that networks, interfaces, and even circuits on chips [Con02, Ten00,
Ray02] can be understood and modelled as discrete systems exhibiting stochastic
behaviour, such as error rates, response time distributions, or message queue lengths.

Mathematically speaking, the QoS characteristics of a given embedded system in-
duce families of stochastic decision processes, e.g. Markov chains or semi-Markov
decision processes. However, these mathematical objects are too fine grained to be
directly specifiable by an average embedded systems designer. Therefore, one must
rely on modelling techniques and tools for stochastic processes.

Stochastic modelling and analysis research has given birth to many diverse formal-
isms, most of them accompanied with tools supporting a QoS-oriented design. This
section gives a brief account of the most prominent representatives.

Queuing Networks
Rooted in the early approaches to QoS estimation for analogue telecommunication
networks, queuing networks have since then been used to quantify the quality of
many communication system and multiprocessor networks. Queuing networks pro-
vide traffic-oriented modelling, where flows of jobs travel through a static structure
consisting of queues and processing units [Kle75, Kle76]. Various tools for modelling
and analysis of queuing networks exist, such asQnap2 (http://www.simulog.fr/
eps/mod1.htm), and Opnet (http://www.opnet.com/), both being commercial products.

Stochastic Petri Nets
Stochastic Petri nets [Mol82, MCB84, SM91] are extending Petri nets with means to
specify stochastic phenomena, and hence allow one to build QoS models. They can
alternately be viewed as extension of queuing networks with dedicated means to
model resource contention and several other features which are difficult to model in
plain queuing networks [Chi98]. In this sense they are more appropriate for contem-
porary embedded and concurrent system design. Various academic tools exist, among
them GreatSPN (http://www.di.unito.it/greatspn/) and Möbius (http://www.crhc.uiuc.
edu/PERFORM/mobius.html).

Hierarchical Models
Modular and hierarchical design has been one of the challenges in QoS modelling.
Among the first hierarchical methods is Hit [BMW89], which allows one to capture
system functionalities and bind it to system resources in a layered approach (http://ls4-
www.cs.uni-dortmund.de/HIT/HIT.html). Other methods, including Quest (http://www.
cs.uniessen.de/SysMod/QUEST/) [DHMC96] and LQNS (http://www.sce.carleton.ca/
rads/ek-rads-etc/software.html) [WHSB98] have developed this idea further. Among
others [ESCW01] applies this approach to the UML setting.

 13.6 Level 4b – Quality of Service 157

Compositional Models
Another approach to construct complex QoS models is the compositional one, where
systems are incrementally constructed out of smaller components. Typical representa-
tives are Pepa [Hil96], Imc [Her02], and Spades [DKB98]. Tool support exists, e.g. as
an add-on to the CADP toolkit (http://fmt.cs.utwente.nl/tools/pdac/) but is not as ex-
tensive as for the Petri net-based approaches.

Annotated Design Methods
Many formal and semiformal design notations have been decorated with QoS charac-
teristics, in order to allow for a QoS prediction on the basis of an integrated model.
This approach has been followed e.g. for MSC [Ker01], for SDL [DHMC96], and for
Statechart dialects [CHK99, GLM00]. The tools that have apparently been developed
for in-house case studies are not publicly available.

Reliability Modelling Methods
In the reliability analysis domain, slightly different techniques have emerged, which
we briefly review here for completeness. A standard approach is to associate compo-
nents with a reliability model, which involves fault events, error states, fault arrival
rates, and a Markov chain model of how the component responds to fault events. If
the system description describes how errors propagate between components, the reli-
ability models of individual components can be combined into a global Markov chain,
which can be analyzed using a separate tool for Markov chain analysis. This approach
is used in the Meta-H toolset, where the SURE/PAVE/PAWS tool (from NASA
Langley) is used to solve the resulting Markov chain.

Research Agenda

The above discussion suggests the following research strands to strengthen the devel-
opment of embedded systems with predictable QoS.

Integration into the design process.
o Contracts: To enable a modular reasoning about QoS, pre/post condition style

contracts should be developed, allowing one to specify interfaces with re-
quired vs. guaranteed QoS [Sel02] along the work of e.g. QCCS [WPGS02].
Since virtually any QoS measure is a stochastic quantity, both QoS guarantees
and QoS requirements must be expressible in a probabilistic setting (a simple
example would be: “in 95% of the cases an answer must come within 3 sec-
onds”)– as opposed to an absolute setting (“the answer must come within 3
seconds”). In full generality one needs means to express those quantities via
probability distributions which may be parameterized by the component input.

o Compositional reasoning. The size and complexity considerations ask for ma-
jor research endeavours with respect to management of the design for predict-
able QoS. Efforts must be undertaken to strengthen a compositional reasoning
with probabilistic quantities. Compositional methods so far focus on model
construction, while truly compositional analysis has not been tackled success-
fully. Layered analysis methods have received some attention, for instance in
the context of the SPT profile [PW03], but produce notoriously imprecise QoS
results (where the inaccuracy relative to the true QoS can be unbounded). Bet-
ter, and more manageable, compositional methods are needed.

158 13 Components and Contracts

Platform & resource dependency: QoS properties of systems can in general not be
deduced from the QoS characteristics of components alone. Platform dependencies
such as resource constraints, and communication infrastructure aspects play an im-
portant role usually not reflected at the component level. This makes it imperative
to reconsider the architectural approaches in such a way as to at least reduce the
dependencies of different parts of systems, or to make the platform dependencies
explicit parameters of the models.
Semantics: A seamless QoS design process relies on a smooth but solid integration
of the QoS modelling and analysis concepts into a well-designed integrated formal-
ism, which is semantically deeper than a shallow annotational extension of the
UML. The existing QoS contract languages are useful for best effort-based runtime
policies, but do not possess a precise interpretation that can be used for rigid as-
sessment of contractual obligations. Put differently, we need QoS contract lan-
guages with precise semantics.
Tools: Industrial-strength tools supporting an integrated QoS design process are
needed. On the long run, these tools are expected to emerge as extensions of exist-
ing component-oriented modelling and analysis tools. However, there is a disturb-
ing gap between component-oriented design methods, and the mainstream QoS
analysis tools which are flow oriented, as in Petri nets or queuing networks (where
tokens or jobs flow through a static structure). These are closer to scenario-based
notations, such as sequence diagrams, but do not fit so well to component-based
design. This gap hampers a seamless integration in the design process.

13.7 Specifying and Reasoning About Contracts: Summary and Analysis

From the various information of this section 13, it is clear that the main difficulties of
the contract based specification, verification and validation fall into a few general
categories:

1. Specification & Monitoring
o Harmonization of Specification Techniques: Current contract-based specifica-

tion techniques use notations and models that are quite different. In order to
fully support all aspects of component based design, these notations and mod-
els must be harmonized. This not a simple task: for instance, crossbreeding no-
tations and research results on behaviour specification and performance analy-
sis is not obvious; one needs a time model that is compatible with the behav-
iour notation as well as the component framework.

o Run-Time Monitoring: Contracts must in general be monitored during compo-
nent execution, unless there are guarantees that a component satisfies a con-
tract. For embedded systems, techniques for (automatically) constructing effi-
cient (using limited resources) monitors from contracts must be further devel-
oped. Aspect oriented programming [KLM+97] may provide structuring tech-
niques for adding monitors to a system

2. Environment Dependency
o Specifying Generic Contracts: Many component properties are highly depend-

ent on the environment, including other system parts as well as the system

 13.7 Specifying and Reasoning About Contracts: Summary and Analysis 159

platform. It is highly non-trivial to express component properties in such a way
that these properties can be applied in a variety of environments. As an exam-
ple, properties of execution times of components depend crucially on the tim-
ing properties of the underlying platform. There are currently no widely usable
solutions for specifying the timing behaviour of a component in a platform-
independent way

o Implementing Generic Contracts: Platform-independent notations, techniques
and tools must be related to platform-dependent frameworks. As component
infrastructures are very different from one application domain (e.g. automotive
systems) to another (e.g. network based information systems), this is a nontriv-
ial issue: e.g. a network model may not match a real protocol implementation
on some platform, from both the behavioural and quality of service points of
view. One potential solution to this platform dependency problem could be the
implementation of architecture transformations along the lines of the MDA
approach.

o Measuring Extra-Functional Component Properties: Timing and performance
properties are usually obtained from components by measurement, usually by
means of simulation. Problems with this approach are that the results depend
crucially on the environment (model) used for the measurements and may not
be valid in other environments. Techniques should be developed for overcom-
ing these problems to obtain more reliable component property specifications.

3. Design & Analysis
o Adapting Well-Understood Design Principles: Many advances in component

technology have been obtained by adaptation of well-understood design tech-
niques to the component-based setting. An example is the use of classical
schedulability analysis and reliability analysis in some component technolo-
gies for real-time systems. There are many other practical techniques that
could potentially be adapted to and enrich component technology.

o Formal Verification: Functional, and some extra-functional, component prop-
erties can in principle be inferred by formal analysis of the software itself, us-
ing techniques like e.g. model checking, although this is often still difficult in
practice. The success of recent advances for functional and real-time system
properties prompt for further work to enlarge the scope of formal analysis
techniques. This should include also system diagnosis in the form of analysis
techniques that can identify the “bottlenecks” in a design, i.e. the components
that “cause” poor system behaviour

o Guidelines for Tractable Analysis of System Properties: The verification and
prediction of system properties from component properties is in the general
case an intractable problem, i.e., general techniques can cope only with sys-
tems of small or medium complexity. To master this complexity, we need
guidelines for structuring assemblies, in other words software methodologies
that help the designer to build “tractable” architectures by enforcing well cho-
sen restrictions.

4. Tool Development: Effective tool support must be developed for all the tasks
listed in this section

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 160 – 193, 2005.
© Springer-Verlag Berlin Heidelberg 2005

14 Component Models and Integration Platforms:
Landscape

This section provides an overview of existing component models and component
integration platforms. In some cases, particularly for proprietary component models,
there is a tight connection between the component model and a particular integration
platform, and sometimes also a particular ADL. In such cases we combine the de-
scriptions. Thereafter follow descriptions of (some) available toolsets and platforms
that support the component model.

The section considers each model under the following headings, as discussed in the
previous section:

the component model, including its support for describing different properties in
component interfaces;
component composition;
verification and validation tools and techniques;
supporting integration platforms.

Aspects of real-time middleware aspects are also covered in section 23.

14.1 Widely Used Component Models

In this subsection, we survey component models and platforms that have been devel-
oped not primarily for embedded systems. The deployment and composition of com-
ponents is typically performed at run-time.

Java Beans

Sun Microsystems initially introduced a client-side (or desktop) component model
(JavaBeans), and subsequently a server-side (or enterprise) component model (Enter-
prise JavaBeans). Both of these build on the Java-based approach to distributed appli-
cations [Mic02]. In the JavaBeans specification a bean is a reusable software compo-
nent that can be manipulated visually in a builder tool; this differentiates beans from
class libraries which cannot benefit from visual manipulation even if providing the
equivalent functionality. Some of the unifying features of JavaBeans are support for
property customisation (to control the appearance and programmatic behaviour of
beans), event handling (a communication metaphor based on delegation and event
listeners), persistence (serialisation of a bean’s state for later reloading or transmis-
sion over a network) and introspection (analysis and manipulation of a beans internal
structure: e.g. properties, events, methods and exceptions). A key characteristic of the
Java Beans component model is its simplicity – the specification of the model is only
114-pages long [Mic97].

 14.1 Widely Used Component Models 161

JavaBeans was primarily designed for the construction of graphical user interfaces
(GUIs). Customization of components plays an essential role and was originally em-
phasised to enable incremental specialization of GUIs from generic exemplars.

Technical Description
Component types: A bean is a self-contained, reusable software unit that can be
visually composed into applets, applications, servlets, and composite components,
using visual application builder tools.

Programming a Java component requires definition of three sets of data: i)
properties (similar to the attributes of a class); ii) methods; and iii) events which
are an alternative to method invocation for sending data. A bean wishing to re-
ceive an event (listener) registers at the event source (the component launching the
event). In Java, events are objects created by a source and propagated to all regis-
tered listeners. For example: an alarming device (listener) asks a temperature
probe (source) to send it a message when the temperature value exceeds a certain
threshold so that a bell can be sounded.
Syntactic Support in Interfaces: The model defines four types of interaction
points, referred to as ports:
o methods, as in Java;
o properties, used to parameterize the component at composition time, or as a

regular attribute in the object-orientation sense of the term during run time;
o event sources, and event sinks (called listeners) for event-based communication.
Other Support in Interfaces: JavaBeans does not support behavioural or QoS
properties.
Support for Introspection: A bean can be dynamically queried for its characteris-
tics (operations, attributes, etc.), through an introspection mechanism available to
all Java classes.

The component programmer can restrict the amount of information made available.
To do so, the Java component implements a BeanInfo interface whose methods return
a list of properties, operations, etc.

Supported Programming languages: code must be written in Java.
Required “Middleware”/Framework Support: None.

Tools
There are several commercial programming environments, e.g., Sun’s Net Beans,
IBM’s Visual Age, and Borland’s JBuilder. These builders build assemblies visually
as a graph of components, where ports between beans are connected. Note that the
JavaBean component model by itself does not specify how to connect components;
this is done by the builder tool.

EJB (Enterprise Java Beans)

The EJB model is a server-side component model, which is rather different from
JavaBeans. The EJB specification defines its component architecture in terms of a
scalable runtime, based on containers (see below), that provides runtime services for

162 14 Component Models and Integration Platforms: Landscape

managing component activation, concurrency, security, persistency and transactions
[JF00]. The EJB specification defines a component model by standardising the con-
tracts (context and callback interfaces) and services offered by the runtime environ-
ment, and the patterns of interaction between components.

Technical Description
Component types: There are three types of EJB beans defined:
o Entity beans are application elements that embody data and are by nature

transactional and persistent; these beans may handle the persistency them-
selves (bean managed persistence) or delegate it to the container (container-
managed persistence);

o Session beans are used to model business processes in a transactional and se-
cure manner without the need for persistent storage (i.e. they last for the dura-
tion of a session);

o Message-driven beans are created by containers to asynchronously handle
messages from the Java Messaging Service (JMS) sent, for example, to a
queue transparently associated with the bean.

Syntactic Support in Interfaces: Depending on the bean type, developers must
implement associated, pre-defined, call-back interfaces (e.g. EntityBean, Session-
Bean, MessageDrivenBean).

These callback interfaces are used by containers to manage and notify beans about
certain events (e.g. bean activation or passivation, instance removal, transaction com-
pletion, etc.). Moreover, each type of bean expects a specific interface or context from
the container (e.g. EntityContext, SessionContext, MessageDrivenContext) for getting
an entity bean’s primary key, identifying the bean’s caller, transaction demarcation,
etc.

Other Support in Interfaces: The container provides a uniform interface to ser-
vices such as naming (Java Naming and Directory Service), security (pub-
lic/private key authentication and encryption), transactions (based on the Java
Transaction Service or OMG Object Transaction Service), and messaging (Java
Messaging Service).
Support for Introspection: A bean can be dynamically queried for its characteris-
tics (operations, attributes, etc.), through an introspection mechanism available to
all Java classes. The component programmer can, however, restrict the amount of
information made available. To do so, the Java component implements a BeanInfo
interface whose methods return a list of properties, operations, etc.
Supported Programming languages: code must be written in Java.
Required “Middleware”/Framework Support: Containers provide a level of indi-
rection between clients and bean instances. Each container provides objects, called
EJB objects, that expose bean functionality and intercept every method call before
delegating it to the bean. This EJB object is automatically generated and embodies
container-specific knowledge about bean activation, transactions, security and
networking [RAJ01]. Additionally, each EJB object implements the remote inter-
face that enumerates all business methods exposed/ implemented by the respective
bean.

 14.1 Widely Used Component Models 163

EJB relies heavily on the Java Remote Method Invocation (RMI) platform to
support dynamic class loading, automatic activation, remote exceptions and dis-
tributed garbage collection [RAJ01]. RMI is a distributed architecture that uses a
RPC-based protocol to support inter-process communication. For example, the
EJBHome and EJBObject remote interfaces rely on the RMI infrastructure for
transparent distribution of component functionality.
Deployment: The deployment of beans is in terms of EJB-jar files that package
bean classes, remote interfaces, home interfaces and bean property files, together
with an XML-based deployment descriptor that contains information on all the
packaged beans (e.g. home name, bean class name, primary key, container fields,
etc.) and their dependencies. Deployment descriptors also declare the middleware
services needed by components (e.g. lifecycle policy, persistence handling, trans-
action control), thus avoiding the non-standard manifest files that are used by
JavaBeans. [RAJ01].

Tools
The Java Development Kit (JDK) includes a set of classes and development tools (e.g.
an RMI compiler) to support the automatic generation of distribution classes (e.g.
stubs), glue code (e.g. container policies) and deployment descriptors, thus alleviating
developers’ efforts and responsibilities.

Summary
EJB standardises a distributed architecture for building component-based business
applications. EJB builds on the previous JavaBeans client-side component model and
particularly on the Java language, and essentially realises the WORA principle (Write
Once Run Anywhere) (albeit in a language-dependent manner). EJB also relies on the
RMI architecture, and simplifies and automates the development and distribution
process. In contrast to CORBA (see below), RMI not an open standard (although it
has the advantage over CORBA that it fully supports objects passed by value (via
serialisation). However, efforts have been made to make EJB portable to CORBA
systems, particularly through standard connectors (vendor specific bridges that link
different architectures) along with RMI-IIOP mappings [RAJ01]. Most crucially, the
EJB software engineering process is grounded in a set of tools and code generators
that automate the development and deployment process by hiding the cumbersome
details of handling distribution and component management policies (e.g. lifecycle,
security, transactions, persistence).

COM, DCOM, COM+

Microsoft’s Component Object Model [Cor95] dates back to 1995, and is typical of
early attempts to increase program independence and allow programming language
heterogeneity. COM has roots in Microsoft’s OLE (Object Linking and Embedding:
first version in 1991), which provided a standard way to embed or link data objects
(e.g. text, graphics, images, sound, video, etc.) inside document files, hence support-
ing the creation and management of compound documents. Unlike EJB and CORBA
(see below), COM provides a binary solution to interoperability and extensibility
[Bro96, Gos95] (see below). The Distributed Component Object Model (DCOM),

164 14 Component Models and Integration Platforms: Landscape

which supported inter-process communication across distributed machines through an
RPC-based protocol called Object RPC (ORPC) [Pat00], was introduced with Win-
dows NT 4.0. More recently, the component model was extended (and renamed
COM+) and integrated with Windows 2000 to support the development, configuration
and administration of distributed systems with automatic and integrated (Windows-
based) control over several aspects of business applications (e.g. security, synchroni-
sation, transactions, queues and events).

The COM component model is fundamentally an intra-address space model. COM
extends object-oriented design principles by hiding a component’s implementation
behind its interface(s) (encapsulation) and allowing components to be replaced by
different implementations of the same set (or super set) of interfaces (polymorphism)
without the need to recompile their clients. These principles are possible in COM
because component services (collections of interfaces) are separated from their im-
plementation through a binary-level indirection mechanism called a virtual table (cf.
C++ virtual functions or vtables) [Szy98]. This is the basis of the binary solution
referred to above. At runtime, an interface is a typed pointer (known as an Interface
Identifier or IID) to a specific virtual table that references the functions (methods)
implementing the services exposed by the interface. This binary interface convention
allows interoperability between software components written in different languages as
long as compilers can translate language structures into this binary form [Gos95].

Technical Description
Component types: A COM component can be seen as an object at the binary level;
the implementation is hidden behind the component’s interface(s).
Syntactic Support in Interfaces: COM defines interfaces at the level of binaries,
consisting of data and function declarations. There are standard protocols for call-
ing an interface, and for dynamically discovering and creating objects and inter-
faces. Independent development raises the possibility of naming conflicts between
interfaces and their implementations. To avoid this, COM requires developers to
assign a unique Interface Identifier (IID) and Class Identifier (CLSID) to each
newly specified interface and class implementation, respectively.

COM does not support inheritance; basic component composition is available
through:
o containment, in which a COM object contains other COM objects: the outer

object declares some of the inner object’s interfaces; at run-time it delegates
calls to these interfaces to the inner objects;

o delegation, this employs wrappers that insert behaviour before or after delegat-
ing method calls to inner classes;

o aggregation, in which the interface of the inner object is exposed without the
overhead of call indirection; aggregation requires the source code of both the
inner and outer objects to be changed.

Other Support in Interfaces: COM does not support behavioural or QoS properties.
Support for Introspection: components can be queried to discover their supported
interfaces.
Supported Programming languages: code can be written in any programming
language as long as its compiler generates code that follows the binary interopera-

 14.1 Widely Used Component Models 165

bility convention. Component interfaces are defined using Microsoft’s Interface
Definition Language (MIDL) which is an OSF/DCE-based adaptation of CORBA
IDL. The MIDL compiler generates marshalling classes and the type-related in-
formation (e.g. proxies, stubs, header files, type libraries) needed to accomplish
binary compatibility – i.e. joint deployment of components developed in different
languages.
Required “Middleware”/Framework Support: component interfaces are separated
from their implementation through an indirection mechanism called a virtual table
(cf. C++ virtual functions or vtables) [Szy98]. At runtime, an interface is a typed
pointer to a specific virtual table that references the functions (methods) imple-
menting the services exposed by the interface. The framework employs a run time
engine that creates COM objects. COM objects are also automatically garbage col-
lected.

DCOM (1996) extends COM with distribution, based on the DCE RPC mechanism.
The component model itself is unchanged.

COM+ (1999) is an extension of DCOM that employs the container approach (see
text on EJB and CCM in sections 14.2.2 and 14.2.5), using the Microsoft Transaction
Server (MTS) runtime platform. The container intercepts calls to a component, and
can execute pre- and post-processing actions to implement various services. Typical
services offered include transactions, concurrency control, load balancing and role-
based security checks.

COM/COM+ Tools
The COM framework is rather specific to Windows platforms (although it is also
implemented on VxWorks). It is supported by several development tools on Windows
platforms, such as Visual Studio.
Summary. The COM+ component model focuses on the construction of enterprise
distributed applications. It tries to take domain-neutral aspects out of source code and
expose them through declarative attributes that can be used to control service context
(e.g. process synchronisation, security profiles, automatic transactions) [Box00]. Nev-
ertheless, it is not possible to add new attributes, hence limiting this mechanism for
the majority of COM developers. Additionally, COM+ type information management
is rather cumbersome, i.e. it uses disparate information formats (e.g. IDL, type librar-
ies, MIDL-generated strings embedded in proxy DLLs), sometimes with no mappings
between them. Furthermore, COM+ runtime type information (in the type library)
permits us to advertise only the types exported by a component but not component
dependencies [Box00].

.NET

Microsoft’s .NET component model and framework supports the development of
distributed applications in different programming languages, and provides a run-time
platform with a number of services. .NET departs from the binary-level interoperabil-
ity adopted by COM/ COM+ as this was felt to be too limiting. Instead, a .NET com-
piler translates source code into an intermediate language called the Microsoft Inter-
mediate Language (MSIL), which is similar to Java Byte Code. The common lan-

166 14 Component Models and Integration Platforms: Landscape

guage runtime (CLR), which is similar to a Java Virtual Machine then takes the in-
termediate language and, on the fly, converts it into machine-specific instructions.

The CLR is able to recognise and execute portable executable (PE) files, which are
image files that combine MSIL code with metadata (stored in metadata tables and
heaps). This approach avoids the need for multiple and disparate metadata formats
(e.g. type libraries, headers and IDL files) and enables the generic use of reflection,
serialisation and dynamic code generation in a type safe manner [MG02].

MSIL compilers are responsible for automatically emitting metadata into the PE
file (e.g. information describing types, members, references, inheritance, etc.). The
runtime environment then uses this binary metadata information (cf. managed data) to
locate and load classes, control memory usage, resolve invocation targets, manage
runtime context boundaries, enforce security and compile to a particular computer
architecture by using specific just-in-time (JIT) compilers. Metadata is .NET’s lan-
guage-neutral way of providing binary information describing: assemblies (e.g.
unique identification, dependencies on other assemblies, security permissions), types
(e.g. base classes, implemented interfaces, visibility), members (e.g. methods, fields,
properties, events) and attributes (i.e. extra metadata that modifies the properties of
types and members).

.NET particularly addresses the programming of services for Web-based software
development. For this purpose, The .NET framework is complemented by a set of
unified class libraries for standard programming (e.g. I/O, math, etc.), for accessing
operating system services (e.g. network, thread, cryptography, etc.), for debugging
and for building enterprise services (e.g. transactions, events, messaging, etc.). These
libraries include a set of classes (called ASP.NET), which are tailored to the devel-
opment of Web-based applications. ASP.NET provides an infrastructure with a set of
controls that simplify both the server side (web forms that mirror the typical HTML
user interface, e.g. buttons, list boxes, etc.) and client-side programming (check client
capabilities and choose the appropriate interface). The ASP.NET infrastructure also
includes an HTTP runtime (different from the CLR) which is an asynchronous multi-
threaded execution engine that processes HTTP commands. The HTTP runtime em-
ploys a pipeline of HTTP modules that route HTTP requests to a specific handler (a
managed .NET class).

Technical Description
Component types: the assembly is the .NET abstraction that most resembles a
component. The manifest is the component descriptor; it gathers in a single place
all the information about an assembly: exported and imported methods and events,
code, metadata and resources. Because of the programming language approach,
the main .NET programming language, C#, which looks very much like Java, in-
cludes some features of a component model: e.g., (first class) events and extensi-
ble metadata. The compiler not only produces MSIL byte code but also generates,
in the manifest, the interface description of the component (the assembly), in the
form of a list of import and export types.
Syntactic Support in Interfaces: the Common Type System (CTS) supports the
definition and use of types across different languages. Metadata provides a uni-
form mechanism for storing and retrieving information about types. Together,
these two facilities provide the basis of multilingual integration. Additionally,

 14.1 Widely Used Component Models 167

.NET provides a Common Language Specification (CLS) that describes a set of
language features (e.g. primitive and composite types, natural-sized types, refer-
ences, exceptions) and rules for using these features (e.g. defining, creating, bind-
ing and persisting types). This specification expresses a set of naming and design-
ing guidelines for mapping features between different languages [Cor01].
Extra-functional properties: .NET does not provide any support for analysing
extra-functional properties. It supports metadata at run-time, which gives some
possibilities for checking properties at run-time. For example, contract-based in-
terfaces with pre- and post-conditions can be implemented using this feature.
.NET does not provide any support for real-time applications. Further, it’s mem-
ory requirements and relatively poor performance have so far excluded it from the
embedded systems domain.
Lifecycle: Unlike when using traditional DLLs, the .NET model includes visibility
control, which allows assemblies (and their modules) to be local to an application,
and thus different DLLs with same name can run simultaneously. Further, each as-
sembly has versioning information about itself and about the assemblies it de-
pends on, provided either in the form of attributes in the code source or as com-
mand line switches provided when building the manifest. Version control is dele-
gated to the dynamic loader, which selects the right version, local or distant, based
on the assembly’s version information and on a set of default rules.

Overview of .NET Environments
Supported languages: in contrast to the (open) OMG approach (see below)
wherein separate formalisms (and files), are used to indicate component related in-
formation, languages and compilers being unchanged, .NET is a proprietary ap-
proach, in which the program contains information relevant to relationships with
other components, and the compiler is responsible for generating the information
needed at run-time. Current platforms include support for the C# and Visual Basic
languages among others.
Availability: .NET is used in Microsoft Windows 2000 and XP platforms. Some
parts of it are ported to Windows CE. The Mono initiative (http://go-mono.com) is
developing an open source implementation of the .NET Development Framework.
Mono also includes a C# compiler, a runtime for the Common Language Infra-
structure and a set of class libraries. In addition, Rotor is a ‘shared source’ CLI
implementation (see http://www.microsoft.com/downloads/details.aspx?Family-
Id=3A1C93FA-7462-47D0-8E56-8DD34C6292F0&displaylang=en) that is sup-
ported by Microsoft.

Summary
.NET is Microsoft’s new paradigm for service development. It uses self-describing
components (assemblies) and a common language runtime to tackle the limitations of
COM/ COM+. Each .NET assembly sets the scope for type names, and explicitly
represents component dependencies. Moreover, assemblies avoid the fragmentation of
disparate meta-information sources because the metadata is automatically compiled
into the image PE file. Finally, .NET type information is extensible (via system at-
tributes), can be applied to different elements (e.g. classes, methods, properties) and is
available at runtime via reflection.

168 14 Component Models and Integration Platforms: Landscape

CORBA and CCM

The Common Object Request Broker Architecture (CORBA) is standardised by the
Object Management Group (OMG) as a middleware infrastructure and programming
model for assembling and deploying distributed applications. It is part of the Object
Management Architecture (OMA) [St00] which consists of

the CORBA bus which maintains information about the location of components
and delivers requests and responses in a standard way.
CORBAservices which are predefined objects supplying functions required by
most distributed applications (naming, events, security, etc.).
CORBAfacilities that are object frameworks that standardise data management and
user interfaces.
domain interfaces that are objects for specific domains such as finance, the health
industry, etc.
application objects that are objects specific to the application.

CORBA has evolved over the years as reflected in the release of three main versions
of the standard. The first version simply defined a distributed object model that sepa-
rated interfaces from implementations. CORBA v1 also specified a common set of
services and facilities that aided in the development of distributed applications by
integrating mechanisms for naming, event communication, lifecycle management, etc.

CORBA version 2 focused on ORB interoperability (v1 did not impose an inter-
ORB protocol), and object activation management by defining the Internet Inter-ORB
Protocol (IIOP) which enables interoperability across multiple ORB products, and the
Portable Object Adapter (POA; see more below) which renders server objects port-
able and also offers various server-side configuration policies. The use of an IDL
compiler combined with the runtime ORB manages cross-language, cross-platform
and cross-location interoperation, while the TCP/IP-based IIOP protocol assures cross
vendor interoperability.

Finally, CORBA version 3, adopted in 2001, standardises the CORBA Component
Model (CCM) which adds features and services that enable the implementation, con-
figuration, assembly and deployment of distributed component-based applications.

The first two CORBA versions tackled interoperability through a distributed object
model, whereas v3 standardises a full component model. CCM increases integration
and flexibility by automating tedious and error prone tasks that are usually solved by
developers in ad hoc ways (e.g. deploying and installing implementations activating
and configuring services, performing lifecycle management, etc.). CCM has been
designed on the basis of much accumulated experience of using CORBA services.

The CCM is a server-side component model that is used to assemble and deploy
multilingual components. CCM standardises and automates the component develop-
ment cycle (from specification to deployment) by defining a middleware infrastruc-
ture and a set of support tools. The architecture supports the definition of interfaces
supported by the components, automates their implementation and packs the compo-
nents in assembly files (cf. JARs, DLLs) that can be automatically deployed on server
hosts. The architecture uses proven design patterns [GHJV94] that enable the automa-
tion of code generation and associated usage of a container infrastructure that medi-
ates component access to system services for handling security, transactions, events

 14.1 Widely Used Component Models 169

and persistence [Cob00]. CCM focuses on the provision of the generic system ser-
vices required by server applications and implemented by the container, thus freeing
applications from complex and error prone tasks and allowing developers to concen-
trate on business logic details. In short, the goals of CCM are very closely related to
those of EJB.

Technical Description
Component types: these are similar to the corresponding EJB categories; i.e. ses-
sion and entity categories are supported.
Syntactic Support in Interfaces: A component interface is composed of ports,
which can be of several types:
o facets: named interfaces;
o receptacles: named connection points representing external dependencies on

other components’ facets (cf. required interfaces);
o event sources: emit events;
o event sinks: consume events;
o attributes: named values, intended primarily for use in component configura-

tion.
Other Support in Interfaces: None.
Support for Introspection: This is available via the Interface Repository which
maintains meta-information on available interfaces.
Supported Programming languages: CCM is a language independent model.
Required “Middleware”/Framework Support: CCM, like EJB, is based on the
notion of a container. A container is automatically generated for each component
implementation and constitutes the component’s view of the surrounding envi-
ronment [CCM]. The container shields components from the details of the under-
lying platform, and provides a framework (a standard runtime API) for seamless
and automatic integration of core services [Cob00]. The container provides a set
of uniform interfaces (called internal interfaces) that support communication with
standard system services like transactions, security, persistence, and event notifi-
cation). The types of internal interfaces available depends on the component cate-
gory (i.e., service, session, process and entity; cf. the related EJB definitions). The
container is also responsible for using callbacks to notify its hosted components of
certain events (e.g. related to persistence, transactions) [WSO00].
Extra-functional properties: CCM does not provide any support for analysing extra
functional properties.
Lifecycle: For each component type there is an associated ‘home’ component that
is responsible for attributing primary keys and instantiating components. Further-
more, the container uses an activation framework (e.g. ServantActivater, Servant-
Locator) that exploits CORBA’s POA to control a component’s lifecycle (e.g. ac-
tivation, deactivation, lookup) according to a chosen policy. This way it is possi-
ble to control (depending on the component category) the activation and passiva-
tion of components, in co-operation with the persistence service, on a per-method,
per-transaction, per-component (via specific call-backs) or per-container basis
(this is slightly more general than the related EJB facility). Along with these life-
cycle policies, CCM also standardises management policies that determine the

170 14 Component Models and Integration Platforms: Landscape

way containers handle (on a component’s behalf) transactions, security, events and
persistence. The container intercepts requests from clients and, according to re-
quirements declared in the components XML configuration file, enables and exe-
cutes pre-processing strategies (e.g. activation, transaction, persistence, pooling,
caching) before delegating requests to the component. CCM explicitly supports
the development process with automated mechanisms to generate and configure
the runtime container [CCM]. Specifically, the CCM Component Implementation
Framework (CIF) defines a set of APIs and tools that automate the code genera-
tion of several management strategies (e.g. lifecycle, transactions, security, events
and persistence policies). This framework automatically exposes different aspects
of the implementation that may be embedded in a component’s implementation
[WSO00]. CCM also standardises a declarative language, called the Component
Implementation Definition Language (CIDL), that is used to describe component
implementations and associated persistence requirements [WSO00]. A CIF com-
piler reads a component’s CIDL description and generates default component be-
haviour (e.g. introspection, activation, state management). The resulting imple-
mentations are called executors and provide hook methods that may be used by
developers to later add custom behaviour and adapt the default implementation
[WSO00].

The CIDL compiler is also responsible for generating component descriptors, which
are XML files used to define the component category (e.g. entity, session), features
(e.g. ports), policies (e.g. lifetime, transactions, security, events and persistence) and
segmentation (i.e. delineation of independently-deployable units). CCM defines sev-
eral XML descriptor file-types, i.e. component descriptor, software package descrip-
tor, assembly descriptor and property file descriptor, which conform to the WWW
Consortium’s Open Software Description (OSD). Component segments and descrip-
tors are joined in a package file, i.e. a archive file that contains one or more imple-
mentations of a component and the associated UML description files. Component
packages may be installed or grouped with other packages in an assembly file. De-
scriptor files are used at deployment-time to automatically create and configure the
required POA hierarchy and to resolve component dependencies.

CCM Environments
Few commercial implementations of EJB have been developed. To date, the most
prominent implementation has been developed in the context of the TAO CORBA
platform by the University of Washington [WSO00].

Real-Time CORBA

Real-time CORBA (RT-CORBA) is an optional extension to CORBA that is designed
for applications with real-time requirements, such as avionics mission computing, as
well as those with stringent adaptive real-time requirements, such as telecommunica-
tions call processing. It is integrated with the CORBA 2.5 specification. RT-CORBA
provides standard interfaces and policies that allow applications to configure and
control the following system resources:

 14.1 Widely Used Component Models 171

Processor resources: thread pools, priority mechanisms, intra-process mutexes,
and a global scheduling service for real-time applications with fixed priorities.
Communication resources: protocol properties and explicit bindings to server
objects using priority bands and private connections.
Memory resources: buffering requests in queues and bounding the size of thread
pools.

RT-CORBA has the advantage of being platform independent, in that a wide variety
of programming languages support CORBA interfaces. RT-CORBA has a particular
potential benefit to the embedded, real-time systems market, as until recently, many
such systems have had to define highly platform specific approaches to implementing
many of the features proposed by the CORBA standard.

Analysis
RT-CORBA in itself only supports very general and abstract control over system
resources. It is up to the system designer to use the standard to configure the target
system to meet application requirements in a predictable way. In addition, RT-
CORBA has some shortcomings, such as not being suitable for dynamic real-time
systems since it is only focused on fixed-priority based systems, and such as not ad-
dressing consistency issues.

The OMG’s Dynamic Scheduling proposal [OMG01a] aims to overcome the limi-
tations imposed by RT-CORBA in terms of dynamic scheduling. Static scheduling
systems can only cope with applications for which resource requirements are known a
priori. In such systems, offline analysis allows developers to predict the workload that
will be imposed. In contrast, dynamic systems are susceptible to experiencing unex-
pected dynamic changes at runtime.

The proposal also provides a framework that allows for the development of port-
able schedulers.

Overall Analysis

The models described in this section represent an evolution from initial light-weight
component models with support for component composition, to which support for
distribution is added. Later, to support common needs in business applications, the
models are extended to support an integrated container-based environment for auto-
mating the management of generic, extra-functional, properties such as transactions,
security, persistence and event notification. Only one of the models discussed, CCM,
is not tied to a particular language (such as Java) or operating system (such as Win-
dows). CCM was designed to align closely with the EJB specification and, apart from
language independence, these component models can broadly be considered concep-
tual equivalents [CCM]. Both support different types of components which automati-
cally determine the available container interfaces and the policies for managing com-
ponent state and persistence (component managed or container-managed). Further-
more, CCM and EJB define three approaches to the demarcating of transactions (i.e.
client-managed, container-managed and server-managed) while COM+ supports only
automatic transactions (MTS-managed). Moreover, COM+ defines only one type of
component. This leads to a simpler programming model, but also leads to limited
expressiveness and a deep dependence on the MTS environment. Despite being more

172 14 Component Models and Integration Platforms: Landscape

difficult and complex to learn and manage, CCM and EJB may be considered more
flexible and open than COM+ which builds of top of proprietary operating system
services. Nevertheless, COM+ is a binary standard that allows the integration of sev-
eral languages without compromising the performance.

Another significant aspect is the recurrent use of meta-information for describing
the structure and behaviour of components. Meta-information is widely used in CCM
(e.g. the interface repository), EJB (e.g. bean descriptors) and COM+ (e.g. type librar-
ies) but is particularly visible in .NET where the metadata is embedded in the image
files and then extracted using reflection to reason about the system and control as-
sembly, enforce security, manage serialisation, perform compiler optimisations, etc.
The combination of meta-information and reflection is an interesting approach for
managing type evolution.

Finally, it must be emphasised that these component models are inherently heavy-
weight and complex. In their present form they are not suitable for deployment in
most embedded environments. Nevertheless, they exhibit many potentially interesting
features that would clearly be of interest to developers of embedded systems. Re-
search is required to make such features available in component model environments
that are considerably more lightweight and which, probably, can be tailored to spe-
cific environments on a highly configurable what-you-want-is-what-you-pay-for ba-
sis.

Some initial work in this area has been carried out. For example, THINK (‘THINK
Is Not a Kernel’, http://sardes.inrialpes.fr/research/think.shtml) from Inria Alpes is a
minimal, low-level, component model that has been used to flexibly build software
configurations at the operating system level. This develops earlier OS-level efforts
such as Knit from the University of Utah, and the Spring Kernel, but adds modern
notions of independent run-time deployment of components, and support for multiple
interfaces. Similarly, the OpenCOM component model from Lancaster University,
UK, is a lightweight component model that is being used to develop low-level pro-
grammable networking software. This model incorporates lightweight reflective
mechanisms to assist in the run-time deployment and dynamic reconfiguration of
component compositions. Both of these component models (THINK and OpenCOM)
have the potential to be applied in embedded environments, although work is required
to validate this approach. Finally, Washington University, St Louis, has carried out
interesting research on slimlining the CCM for application to embedded environ-
ments. This has also involved extending the CCM with support for QoS specification
and validation.

14.2 Component Models for Embedded System Design

As the next step in this overview, we survey component models and platforms that
have been developed specifically for application to embedded systems. Typically,
component implementations are given in a compilable language (C being the most
common) and are composed before compilation (unlike the models examined in sec-
tion 14.1). Execution semantics are given by a run-time executive or a simple RTOS.

 14.2 Component Models for Embedded System Design 173

Programmable Logic Controllers: The IEC 61131-3 Standard

Introduction
In the area of Industrial Automation, PLCs (Programmable Logic Controllers) are a
widely-used technology. However, for the last twenty years, the corresponding appli-
cations have been written in many different languages, resulting in problems for tech-
nicians, maintenance personnel and system designers. For instance, there are numer-
ous versions of the so-called ladder diagram language, and furthermore this language
is poorly equipped with facilities such as control over program execution, definition
and manipulation of data structures, arithmetic operations, and hierarchical program
decomposition.

These problems led to the constitution of a working group within the IEC (Interna-
tional Electrotechnical Commission), with the aim of defining a standard for the com-
plete design of programmable logic controllers. While previous efforts have been
made, IEC 61131 has received worldwide international and industrial acceptance. The
first document introducing the general concepts was published in 1992 and this was
followed by the definition of equipment requirements and tests. The core of the stan-
dard is now in its third part, published in 1993, which describes the harmonisation and
coordination of the already existing programming languages. The eight parts of the
standard are available at http://www.iec.ch.

Note that, due to the fact that there are many types of hardware, the aim is not to-
ward a single programming system for all controllers. Instead, certified IEC 61131-3
programming systems have an agreed degree of source code compatibility and have a
similar look and feel. Yet they will differ in debugging features, speed, etc.

PLCopen (www.plcopen.org) was founded in 1992 as an international organisation
of users and producers, with the aim of promoting the development and use of com-
patible software for PLCs. PLCopen offers tests for IEC 61131-3 compliance, but also
a course, designed for experienced or beginner PLC programmers who want to de-
velop software according to IEC 61131-3 and for support and implementation engi-
neers who modify systems programmed according to IEC 61131-3. There are also
smaller user-only organisations, e.g. EXERA, which propose tests for the compliance
of programming environments.

Technical Description
Component types: An application is divided into a number of blocks.
Supported languages: A block is written in any of the languages proposed in the
standard. There are two textual languages (ST, IL) and three graphical languages
(FBD, LD, SFC).
o Function Block Diagram (FBD) is used for the description and regulation of

signal and data flows through function blocks. It can nicely express the inter-
connection of control system algorithms and logic;

o Structured Text (ST) is a high level textual language, with a Pascal-like syntax;
o Instruction List (IL) is an assembler-like language, found in a wide range of

PLC’s;
o Ladder Diagram (LD) is a graphical language based on relay ladder logic,

which allows the connection of previously defined blocks; for historical rea-
sons, it is the most frequently used in actual PLC programs;

174 14 Component Models and Integration Platforms: Landscape

o Sequential Function Chart (SFC) is used to combine in a structured way units
defined in the four languages above; it mainly describes the sequential behav-
iour of a control system and defines control sequences that are time- and event-
driven. It can express both high-level and low-level parts of a program.

Visibility of Underlying Hardware: While it aims at enhancing portability of PLC
programs, the IEC 61131-3 has several features referring to the actual underlying
hardware (variables can be linked to physical addresses, etc.)
Syntactic Support: Each functional block has a set of in-ports and out-ports. IEC
61131-3 also requires strong data typing and provides support to define data struc-
tures which can be used to transmit information as a whole between different
units. More precisely, while a function simply computes its output from its input,
without internal variables, a function block consists of a set of data, together with
the algorithms handling these data, similarly to the definition of a class in an ob-
ject-oriented framework (no further comparison can be made, though). Input and
output parameters are formally defined to ensure a clean interface between differ-
ent function blocks. This notion thus appears as an important feature, meant to en-
courage the development of well-structured software: blocks can be viewed as the
basic components of a program. Since it is re-usable within a given program, but
also from outside, an increased use of such blocks can lead to the construction of
powerful libraries.
Support for Functional/Extra-Functional Properties: Function block execution
may be periodic or event-driven. There is no support for analysing properties other
than syntactic properties.

Tools for the IEC 61131-3 Standard

Introduction
Today, all large suppliers of PLCs have announced IEC 61131-3 compliant develop-
ment systems. They propose different programming environments for code generation
for various hardware, with some architectural aspects as parameters. For instance:
Siemens with STEP7; Allen Bradley with Control Logic; and Schneider-Electric with
PL7PRO.

There are also smaller suppliers, either for PLCs only, or for programming plat-
forms only. Of course, due to developments in the industrial market producers may
not always be 100% standard compliant.

Assessment and Further Needs
The IEC 61131-3 standard is widely adopted. Compared with traditional program-
ming systems, it appears to be a major step forward. The new set of languages is said
[Lew98] to significantly improve the quality of PLC software, and in particular to
overcome the weaknesses of previous versions, especially with respect to the above
mentioned Ladder Programming. The improvement also concerns the communication
and software model. Finally, a major benefit for end-users using IEC 61131-3 com-
pliant products will be inter-system portability.

However, the IEC 61131-3 standard is not fully mature and the portability issue
remains an important problem. For instance, users feel the need to have textual files
that can be used to connect different platforms. Furthermore, some ambiguous seman-

 14.2 Component Models for Embedded System Design 175

tics remain for the languages. Finally, new requirements emerge: systems will become
more distributed with more parallel processing. Therefore, new standards are under
development, such as the function block standard IEC 1499, not to replace the former
but to work in conjunction with it.

Koala

Introduction
Koala is a component model and an architectural description language that success-
fully works for consumer electronics devices. Koala is developed and used at Philips.
It was designed to build software control units for consumer products such as televi-
sions, video recorders, CD and DVD players and recorders, and combinations of these
(e.g. TV-VCRs). Koala is currently in use by a few hundred software engineers for
the creation of a family of televisions. More information on Koala can be found in
[vO02], [vOvdLK00], and [FEHC02].

Technical Description
Component types: A Koala component is a piece of code that can interact with its
environment through explicit interfaces only. As a consequence, a basic Koala
component has no implicit dependencies to other Koala components.
o A Component Implementation is a directory containing a set of C and header

files that may use each other in arbitrary ways, but communication with other
components is routed only through header files generated by the Koala com-
piler, based upon the binding between components;

o The directory also contains a component definition file, describing among
other things the interfaces of the component;

Visibility of Underlying Hardware: The Koala component model itself is abstract
and hardware-independent. Hardware dependency is encapsulated in particular
components. The entire development environment is tailored for the development
of particular product families which improves the efficiency of the development
process at the expense of generality.
Syntactic Support: Connections between components are expressed in terms of
interfaces which are described as a small set of semantically related functions.
Koala identifies two types of interface: provides interfaces and requires interfaces.
Koala provides interfaces are similar to those known from COM and Java. A com-
ponent may provide multiple interfaces, which is a useful way of handling evolu-
tion and diversity. Koala requires interfaces identify interfaces of other compo-
nents and interfaces required from the environment of the component. All commu-
nication is routed through such requires interfaces. Koala interfaces can be
optional. An optional requires interface need not be connected – an optional pro-
vides interface need not be implemented. This allows components to fine tune
themselves to their environment, by observing what the environment can and can-
not deliver.

Connectors connect requires interfaces of one component to provides interfaces
of another component. Naturally, in compound components it is also possible to

176 14 Component Models and Integration Platforms: Landscape

connect provides interfaces of subcomponents to provides interfaces of the com-
pound component, and similarly for requires interfaces.
o Interface Compatibility: it is possible to connect a requires interface to a pro-

vides interface of a wider type; the provides interface should implement all of
the functions of the requires interface, but it may implement more than that;

o In addition, glue code can be added to the binding between interfaces. Simple
glue code can be written in an expression language within Koala; more com-
plicated code can be written in C. This allows the programmer to easily to
overcome a certain category of syntactic and semantic differences. A special
case of glue code is code that switches a binding between components. Such a
mechanism to select between components can be implemented in C, but it oc-
curs so frequently that a special concept for this is defined in the language: the
switch. The compiler converts a switch internally to a set of Koala expressions,
which has the advantage that it can perform certain optimisations, such as re-
ducing the switch to a straight binding if the switch is set to a position that is
known at compile time. The binding through the glue module and the switch
are examples of connectors. The Koala language defines no other connectors.

Support for Behavioural Properties: No extra-functional properties are specified
in the interfaces of components. In a system design, it is possible to specify the
ordering of tasks using precedence relations and mutual exclusion. There is also
support for deriving some system properties from components. For example, the
memory consumption of the system can be calculated form the memory consump-
tion of the constituent components, which is a parameterised value.
Support for Timing Properties: There is no support for timing properties.
Support for Performance Properties: There is no support for modelling perform-
ance properties.

Koala Tools
Supported languages for component implementations: A component resolves to an
implementation in C language. Koala uses the “Koala language” for constructing
applications from components by connecting component interfaces.
Supported development platforms: A proprietary development platform exists that
includes the Koala language and a C compiler which composes components.
Supported target platforms: Proprietary platforms only.
Status: The use of Koala is growing within Philips. There are plans to build addi-
tional development environment tools, such as visual composition and visual com-
ponent selection.
Availability: There are plans to publish Koala as an open source standard.
Degree of Automation: The Koala compiler composes components and makes
optimisations such as removing unused interfaces and resolving connections of
conditional types. Component binding is static based on C code. The compiler can
also optimise the memory usage of the application (the so-called footprint), by
eliminating functionality in a component that is not used. Most of the documenta-
tion (header files, etc.) must be created manually. This has not been seen as a large
overhead, although there are plans to improve this process by building a set of
supporting tools.

 14.2 Component Models for Embedded System Design 177

Run-Time Infrastructure: As in many small embedded systems, a system using the
Koala component model is a single-process image, built on a top of a small real-
time kernel with pre-emptive scheduling, which separates high frequency from
low frequency tasks. Separate activities can be allocated to light-weight threads,
which are managed by the kernel.
Analysis Support for:
o Memory Footprint: The Koala component model and its implementation to

some extent allows calculating and predicting resource consumption. For ex-
ample, memory consumption can be estimated at composition time (compile
time) as mentioned; and this feature is built into the Koala compiler. For tech-
nical detail see [FEHC02]. Using this calculation model it is possible to budget
the memory for particular components and, by a parameterisation of the inter-
face, to define the particular properties of the components.

o Library Support: Koala components are stored in a repository. The repository
is a set of packages, where each package is a set of component and interface
definitions, some of which are public, and some of which are private.

Summary
Koala is an example of the implementation of the component-based approach that
works successfully in a large industrial company. It is a good example of an evolu-
tionary approach to component-based development. The design and implementation
fulfils the following requirements [CL02, Ch. 12] related to the component-based
approach:

It devises a technique with which components can be freely composed into prod-
ucts, as the main approach to deal with diversity in a product population. The tech-
nique must work in resource-constrained environments such as televisions and
video recorders (which are typically 10 years behind PCs in computing power).
Make the product architectures as explicit as possible, to manage complexity.
Let components make as few assumptions as possible about their environment.
Allow for parameterised components that are, when instantiated, as efficient as
dedicated components.
Allow for various ways of connecting components; more specifically, allow for
adding glue code to connections between components.

These requirements are valid for many embedded and RT systems. Does this mean
that the Koala component model is so general that it is possible to use it in other do-
mains? In many aspects this appears to be the case. The basic principles, which are
derived from widely-acknowledged principles of Component Based Development, are
valid in general for embedded systems. In implementation, in some parts, domain
knowledge is implicitly built in (due to various reasons, e.g. to improve development
efficiency and performance). In order to use Koala as a general component-model for
embedded systems, some parts should be removed or explicitly separated as domain-
specific. The Koala component model provides a good basis for further improvement
of achieving predictability of extra functional properties.

The strong points of Koala are:

178 14 Component Models and Integration Platforms: Landscape

Separation of the provided from the required interfaces of a component.
Interaction with the environment, including the underlying hardware-dependent
services is exclusively via interfaces.
There is a strict definition of the component development process, including qual-
ity assurance, and a form of component certification.

The weak points of Koala do not lie in the component model itself, but to a large
extent in the lack of tools supporting efficient development on a large scale. Cur-
rently, Koala developers must conform to rules that can be violated, unless checked
automatically. Potential tool functionality could include the following.

tools that manage components (component repositories, component browsers,
visual environments, etc.);
checks that a component has no other dependencies than through its explicit inter-
faces;
generation of glue could to some extent be automated;
support for the analysis and composition of timing and performance (and some
other properties) is rudimentary and can be further developed. One obstacle is that
many of these properties are hardware and platform dependent and thus cannot be
a part of a general model.

Rubus Component Model

Introduction
Rubus is a small Real-Time Operating System, developed by Arcticus Systems AB
(http://www.arcticus.se/). Rubus is divided into one part supporting time-triggered
execution, and one part supporting event-triggered execution. The time-triggered
execution part is intended to support hard real-time applications with a deterministic
execution mechanism. In order to support component-based development of hard real-
time systems, Arcticus Systems AB, together with Department of Computer Engi-
neering at Malardalen University, have developed a component model and associated
development tools for use with the Rubus operating system [IN02]. The component
model is used in projects within Volvo Construction Equipment Components AB. We
include a short description of this model, in order to illustrate how a component
model can be developed on top of a runtime execution platform.

Technical Description
Component types: A basic Software Component consists of behaviour, persistent
state, a set of in-ports, a set of out-ports and an entry function. The entry function
provides the main functionality. A task provides the thread of execution for a
component. The entry function takes as an argument a set of in-ports, the persis-
tent state, and references to the out-ports. In [NGS+01], it is stated that entry func-
tion code may not contain any call to communication services. Instead, the com-
piler that compiles the system description automatically generates the communica-
tion infrastructure. For example, if an out-port of a component A is connected to
an in-port of a component B, the generated code (system task) will copy the in-
formation automatically under given synchronisation and timing requirements.

 14.2 Component Models for Embedded System Design 179

The attributes of a task are Task Id, Period, Release Time, Deadline, and WCET.
In addition, precedence and mutual exclusion ordering between tasks can be speci-
fied.
Visibility of Underlying Hardware: System descriptions do not mention hardware
configurations; they are intended to be used by a schedule synthesis tool.
Syntactic Support: Each Component has in-ports and out-ports for communica-
tion. Tasks in the safety-critical part communicate without buffering. There is a
type system for data.
Support for Behavioural Properties: No functional properties are specified in the
interfaces of components. In a system design, it is possible to specify the ordering
of tasks using precedence relations and mutual exclusion.
Support for Timing Properties. Timing requirements are specified by release-time,
deadline, WCET and period. There is a tool for schedulability analysis.

Rubus Tools
Supported languages: The functionality of a system can be mode-dependent.
Temporal coordination between tasks is specified for each Mode by a software
circuit or dataflow model which specifies the output-input connections between
tasks, and timing constraints on tasks and their composition. Precedence/exclusion
information can also be included.
Supported languages for component implementations: C.
Supported development platforms: Available on Windows and Linux platforms.
Supported target platforms: Rubus OS is ported to a number of target and pro-
gram development tools.
Status: Commercial product.
Degree of Automation: A tool designated “Rubus Visual Studio” exists. This man-
ages the components available and their associated source files, so that compo-
nents can be fetched from a library and instantiated into new designs.
Analysis Support for Timing Properties: Scheduling is derived automatically from
component descriptions, using task attributes and precedence/exclusion informa-
tion. Time-triggered tasks are statically scheduled, and event-triggered tasks are
scheduled on-line by fixed-priority pre-emptive scheduling. There is currently no
support for performance properties, reliability or safety analysis.
Support for Distribution: Rubus supports distribution over buses that support time
synchronisation (such as TTP and TT-CAN)

Summary
Rubus is an example of how a component model can be developed on top of an exist-
ing RTOS. The model makes system integration easier by allowing timing analysis to
be performed based on a system description. The development of the Rubus compo-
nent model has been a significant improvement for software development inside
Volvo CE. For future development, the Rubus platform may face a shortage of tools
that support component-based system development, in a similar way as was discussed
for Koala. There are currently no automated checks for:

confirming that components use only explicit interfaces for communication;
WCET (worst-case execution time) analysis of components;

180 14 Component Models and Integration Platforms: Landscape

allocation of tasks to processing nodes.

PECOS

Introduction
The PECOS project (http://www.pecos-project.org/) [CL02, NAD+02, WZS02, PEC],
funded by the EC under the IST Program (project number: IST-1999-20398), aims to
enable component-based software development for embedded systems such as smart
cell phones, PDAs, and industrial field devices. In order to validate component-based
software development (CBSD) for embedded devices the project has developed
hardware and software for a field device as a case study of embedded systems with
real-time requirements.

The project has pursued four main activities:

CBSD processes: The PECOS process aims to enable CBSD for embedded sys-
tems, specifically for field devices. It addresses the major technological deficien-
cies of state-of-the art component technology with respect to extra-functional re-
quirements, such as limited CPU power, memory and hard real-time.
Component Model:
o Interfaces are defined by input ports and output ports, and connectors connect

compatible ports. Ports have basic types.
o Component Types: active components (with their own threads), passive com-

ponents (encapsulating behaviour without threads), event components (trig-
gered by events).

o The attributes of a component can specify memory consumption, WCET, cy-
cle time, priority.

ADL: The CoCo Component Language is used for the specification of compo-
nents, entire embedded devices, and architecture and system families. In CoCo, a
composite active component (with a thread) specifies execution rules (a so-called
schedule) for its subcomponents.
Lightweight composition techniques: CoCo provides the concept of abstract com-
ponents, and composition rules to allow composition checking.
Platforms and tools: A translation from CoCo to target languages such as C++ and
Java has been developed. The PECOS model is mapped to a prioritised, pre-
emptive, multithreaded system to realise the different components: passive, active
and event. A technique has been introduced to enable data exchange between
components. The developed tools are embedded in the open source ECLIPSE
framework as plug-ins.

Other Characteristics
Supported Languages: Includes a composition language CoCo that is translated to
C++ and Java. A CoCo component structure is mapped to a corresponding class
structure. Connectors are mapped to shared instance variables in the enclosing ob-
ject. Ports map to set and get methods.

 14.3 Integration Platforms for Heterogeneous System Design 181

Scheduling: The model does not specify anything regarding the scheduling of
components, what scheduler can be used and how schedules can be checked to see
if they are actually feasible. It only assumes that there is a scheduler.
Availability: It is embedded in the ECLIPSE open source framework
http://www.eclipse.org/ as plug-ins. It can include any proprietary integration plat-
forms (developed by companies such as ABB, Boeing, Dassault, EADS, Thales).
To date, ABB has started to integrated the model with its proprietary platform.

Summary
PECOS is unique in the sense that it addresses several aspects of component-based
software engineering: development and lifecycle process, the provision of a compo-
nent model that deals with temporal and other extra-functional attributes, architectural
modelling and development tools. However the model is still not fully developed and
it remains to be seen how successful its implementation will be.

14.3 Integration Platforms for Heterogeneous System Design

In this section, we review some platforms that are intended for the modelling of sys-
tems that are typically composed of heterogeneous components. A system design is
represented as an architecture populated by interconnected components. Components
can often be represented in different languages, formalisms, or even modelling para-
digms.

Composition is performed at design time, and typically glue code is generated
automatically. The software components are wrapped with a run-time executive,
which schedules the (compiled and linked) components.

A major emphasis here is that the architecture description should be executable; so
that simulation can be used as the major tool for design V&V. Analysis techniques
can use information visible at the architectural level. Typical attributes could be pe-
riod, deadline, and execution time for schedulability analysis, code size, etc.

Meta-H

Introduction
Meta-H (http://www.htc.honeywell.com/metah/) is a domain-specific ADL dedicated
to avionics systems which was developed at Honeywell Labs in 1993 under the spon-
sorship of DARPA and the US Army. A significant set of tools (graphical editor,
typing, safety, reliability, and timing/loading/schedulability analyzers, code generator,
etc.) has already been prototyped and used in the context of several experimentation
projects. In 2001, Meta-H was taken as the basis of a standardisation effort aiming at
defining an Avionics Architecture Description Language (AADL) standard under the
authority of SAE. This emerging AADL is a domain-specific ADL developed to meet
the special needs of embedded real-time systems such as avionics systems. In particu-
lar, the language can describe standard control and data flow mechanisms used in
avionics systems, and important extra-functional aspects such as timing requirements,
fault and error behaviours, time and space partitioning, and safety and certification
properties.

182 14 Component Models and Integration Platforms: Landscape

Technical Description
Meta-H in itself is only an ADL, and furthermore it is still under development. The
rules for producing conformant component implementations are given by the current
Toolset. In this description, we therefore describe Meta-H together with this toolset.

Component types include:
o Macro, which is a hierarchical composition of connected parts.
o Application, which is the highest level composition, and combines a software

architecture and a hardware architecture.
o processes, units of scheduling with a protected address space in a partitioned

system, and a unit of binding to a processor. The control structure of a process
must have a main outer loop, which calls the Meta-H dispatcher on each itera-
tion.

o packages and monitors (as in Ada).
Visibility of Underlying Hardware: The underlying platform can be described by
means of a hardware architecture in terms of processors, memories, channels, and
devices. A mapping from Component types to Hardware may be provided.
Syntactic Support: The interface of a process or macro contains declarations of
ports, packages, monitors, subprograms, out events, and in events. Components
are connected by connection declarations, giving:
o port connections that provide message transfer between ports.
o event connections that control signals, events, to an aperiodic process (process

dispatch), or to modes (for mode switch).
o equivalences that offer shared data and resources in terms of monitors and

packages. Connections are strongly typed. There is no inheritance.
Support for Behavioural Properties: No functional properties are specified in the
interface of components. A system can be described in terms of modes which are
run-time configurations of active processes and connections. Mode interfaces con-
tain events. The run-time semantics describe how the run-time executive works
when invoking the processes in a system.
Support for Timing Properties: Components of type process can have (worst-case)
execution times specified. This is the duration of the main outer loop on one invo-
cation. Processes can be given periods and deadlines in a given system. There is a
tool for schedulability analysis.
Support for Performance Properties: None.
Support for Reliability Analysis: Components can be equipped with reliability
models, which are Markov chains that relate fault events and error states. System
descriptions must describe how errors propagate between components. A reliabil-
ity analysis tool combines the reliability models of individual components into a
global Markov chain, and uses a separate tool (in this case SURE/PAVE/PAWS
tool from NASA Langley) or Markov chain analysis.
Support for Safety Analysis: Each process has its own address space in an imple-
mentation. Safety levels and memory allocation properties can be declared for
components. The Meta-H partitioning analyzer tool can partially verify that no er-
ror in a component with lower safety level can propagate to a process with higher
safety level. In terms of safety/security modelling and analysis, the tool can check

 14.3 Integration Platforms for Heterogeneous System Design 183

if the safety/security mechanisms provided by Meta-H will enforce a specified
safety/security policy. (e.g., rights of objects to access other objects.

Rubus Tools
Some are available at http://www.rl.af.mil/tech/programs/dasada/tools.html.

Supported languages: Rubus accepts ADL specifications written in the emerging
SAE standard Avionics Architecture Description Language (AADL) in both
graphical and textual formats.
Supported languages for component implementations: Ada, C; many concepts are
closely inspired by Ada.
Supported development platforms: Windows NT and Solaris.
Supported target platforms: Portable Ada 95 and POSIX targets are available;
application source code may be written in C or Ada.
Status: Core toolset are fairly mature (beta-quality); but reliability analysis and
general system safety specification/analysis are at the proof-of-concept stage;
technologies for blended time driven/ event-driven workloads, dynamic reconfigu-
ration, and distributed hard real-time scheduling are the subject of ongoing re-
search.
Availability: Available under zero fee license; ITAR.
Degree of Automation: Automatic production of the executable image is possible.
Rubus can perform software/ hardware allocation, and generate tailored/efficient
middleware to integrate a system.
Analysis Support for:
o Syntactic Properties: AADL syntax/semantic checking can translate textual to

graphical and graphical to textual AADL, and check compliance of source
components with AADL specifications.

o Functional Properties: It is currently being investigated how to (automatically)
extract hybrid automata models from the generated code in order to analyse the
target system.

o Timing Properties: Real-time schedulability modelling and analysis.
o Reliability Properties: See above.
o Safety Properties: See above.

Ptolemy II

Introduction
Ptolemy (http://www.ptolemy.eecs.berkeley.edu/) is a simulation and rapid prototyp-
ing framework for heterogeneous systems. The focus is on embedded systems, par-
ticularly those that mix technologies, including for example analogue and digital
electronics, hardware and software, and electronics and mechanical devices. The
focus is also on systems that are complex in the sense that they mix widely different
operations, such as signal processing, feedback control, sequential decision making,
and user interfaces. An overview of the Ptolemy project can be found in [Hyl03].

The Ptolemy software environment has been used for a wide range of applications
including signal processing, telecommunications, parallel processing, wireless com-
munication, network design, investment management, modelling of optical communi-

184 14 Component Models and Integration Platforms: Landscape

cation systems, real-time systems, and hardware/ software co-design. The Ptolemy
software has also been used as a laboratory tool for signal processing and communica-
tions courses. Currently, the Ptolemy software has hundreds of active users at various
sites worldwide in industry, academia, and government.

The first generation of Ptolemy, now called Ptolemy Classic, was written in C++.
The current version, Ptolemy II, is written in Java, and produces code in Java.

Since Ptolemy has to cater for many different modelling languages, it cannot de-
fine a component model with standardised of component interfaces and composition
at the implementation level (C or Java).

Technical Description
Component types: Components, called Actors, are created in different Models of
Computation (MoC). Existing MoCs include:
o CSP with synchronous rendezvous as a communication mechanism.
o Continuous time, where components are described by algebraic or differential

relations between inputs and outputs.
o Discrete Events, where Actors communicate via events (consisting of a value

and a time stamp). Execution of an actor is typically event-triggered. The exe-
cution semantics is realised by a discrete-event simulator, which maintains a
global time-stamp-sorted queue of pending events. There is an experimental
Distributed DE model of computation, using ideas from distributed DE-
simulation:

Finite State Machines, which can be used in different contexts.
Process networks: these are Kahn process networks.
Synchronous Dataflow: globally synchronous (discretely clocked) systems.
Synchronous/Reactive: this is similar to the synchronous paradigm.
Giotto: the time triggered approach developed in [HHK01].

Syntactic Support: Actors send and receive data through ports. Ptolemy Classic
can perform type conversions as in C. In the latest versions of Ptolemy II, there is
a polymorphic type system [LX01].
Support for Behavioural Properties: Each Model of Computation defines an ab-
stract execution semantics. These can be used in simulation. Some support for
specifying behavioural properties as part of interfaces has been developed [LX01].
Support for Timing Properties: Some Models of Computation have an explicit
notion of time. This can be used in simulation to estimate execution times.
Support for Performance Properties: Simulations may also be used to assess per-
formance.
Support for Reliability Analysis: This has not been directly addressed.
Support for Safety Analysis: This has not been directly addressed.

Ptolemy II Tool
Supported languages: There is a rich family of notations for graphical definition
of system structure.
Supported languages for component implementations: In Ptolemy Classic, the
implementation language is C++. In Ptolemy II, this has changed to Java.

 14.3 Integration Platforms for Heterogeneous System Design 185

Supported development platforms: Windows, Linux, MacOS, X, Solaris. There is
one installation that runs entirely in applets. There are on-going experiments with
a distributed simulation platform.
Supported target platforms: In Ptolemy Classic, C implementations can be de-
rived. Ptolemy Classic can generate assembly code for some programmable DSPs.
Ptolemy II can generate Java code from a design.
 Status: Research Prototype under development.
Availability: Free for download.
Degree of Automation: The Java Definitions of Components is parsed, and there is
support for the construction of code generators.
Analysis Support: Analysis support is mainly by the ability to simulate a system.
o Functional Properties: In principle, Models in the FSM MoC can be parsed

and used by external model checking tool.
o Timing Properties: Timing properties are analysed by simulation. Some means

must be devised for importing the timing properties of the actual platform. In
some applications, one can use an external hardware simulator.

Analysis
Ptolemy has an important message for Model Based Development: the importance of
simulation in embedded systems design. Simulation of functionality and behaviour is
often the most practical approach to assess vague requirements like “pleasing” inter-
faces to human operators, and it may often be the only feasible way to assess per-
formance properties, because these are emergent and not deducible from individual
component properties. With respect to the latter properties, it is a research challenge
to develop methods that allow us to predict actual performance from simulation re-
sults.

Another important point about Ptolemy is that it demonstrate that heterogeneous
semantic models can and will exist in systems. There is no need to have a unified
computational model. The various models need only be linked, when they communi-
cate through interfaces, and they need only agree on the meaning of entities that are
part of the defined interface. Such a minimal agreement is exemplified in the Ptolemy
type system.

Metropolis

Introduction
Metropolis (http://www.gigascale.org/metropolis/) is a research project coordinated at
UC Berkeley. It is not a mature design environment; it is included here as an example
of a research effort which involves a component model, where components are com-
posed at a model level, which is at a higher level of abstraction than C or Java. Me-
tropolis develops an infrastructure such that heterogeneous components of a system
can be represented uniformly, and tools for formal methods can be applied naturally.

The core of the infrastructure is a meta-model of computation, which allows one to
model various communication and computation semantics in a uniform way. The
meta-model is defined in a variant of timed automata. By defining different commu-
nication primitives and different ways of resolving concurrency, the user can, in ef-

186 14 Component Models and Integration Platforms: Landscape

fect, specify different models of computation (MoCs). The meta-model is used to
represent the function of a system being designed, to generate executables for simula-
tion, and as input to formal methods built in Metropolis for both synthesis and verifi-
cation at various design stages. There are stated plans to translate specifications given
in many existing languages automatically to an appropriate semantics specified using
the meta-model.

A set of coordinated tools is being developed as part of the Metropolis project.

Analysis
Metropolis shares objectives with Ptolemy; but is much more ambitious with respect
to integration. It aims to replace the individual Java simulation classes for different
computational models with a uniform meta-model. Metropolis thus goes beyond a
conventional component concept, because it takes source level components and trans-
lates them into its own meta language before any simulation, verification, or code
generation takes place. Thus it eliminates some of the difficulties in specifying com-
ponent properties, at the expense of requiring translators from the respective source
languages.

A potential difficulty with the Metropolis approach is that the meta-model must be
very rich to encompass all desirable properties that one may want to analyse, e.g.,
performance of a final implementation might not be directly derivable from an opera-
tional semantics.

14.4 Hardware/Software Modelling Languages

In this section, we briefly mention some languages that are not component models,
but can be used to model embedded systems in a modular way. The models here are
mainly included to describe a part of the landscape that is adjacent to component
models.

SystemC

SystemC (http://www.systemc.org/) is intended to be a standardised, highly portable
technology for system-level models: an alternative to languages such as Verilog or
VHDL.

Similar to HDLs, users can construct structural designs in SystemC using modules,
ports, and signals. Modules can be instantiated within other modules, enabling struc-
tural design hierarchies to be build. Ports and signals enable communication of data
between modules, and all ports and signals are declared by the user to have a specific
data type. Commonly used data types include bits, bit vectors, characters, integers,
floating point numbers, vectors of integers, etc. As in VHDL, concurrent behaviour is
modelled using processes.

SystemC 2.0 aims at enabling system-level modelling, i.e., modelling of systems
above the RTL level of abstraction. One of the challenges in providing a system-level
design language is that there are a wide range of design-level models of computation.

 14.5 Component Models and Integration Platforms: Summary and Conclusions 187

VHDL

VHDL is a hardware description language. It is used in a wide variety of contexts that
range from complete systems like personal computers on one hand to the small logical
gates on their internal integrated circuits on the other. It supports a module concept,
such that abstract behavioural models may hide implementation details. The language
VHDL covers the complete range of applications and can be used to model (digital)
hardware in a general way.

14.5 Component Models and Integration Platforms: Summary and
Conclusions

Current Trends

With respect to the evolution of different component technologies for real-time and
embedded systems, we can observe the following: A clear trend is to use widely
adopted component technologies for embedded systems. Examples are COM [LCS02]
and CORBA (or its adaptation to RT-CORBA). One tries to avoid the cost (in terms
of run-time resources) of these technologies by using only those parts of the technol-
ogy that are necessary. An advantage is that there is already infrastructure available
for these technologies, and that systems can interoperate with other system that use
these technologies. A disadvantage is that these technologies do not a priori support
several properties that are essential for embedded systems.

Specialized Technologies. There are many efforts underway to define component
technologies for embedded systems, often dedicated to applications in a certain
domain. Examples are Koala and PECOS. These component models seem not to
spread very rapidly outside the organisation in which they were created. They
serve the purpose of improving the software development process of their organi-
sation. Some of these models define interfaces that are not just syntactic, but in-
clude some properties that are essential for their application domain.

An advantage of these models is that they can be tailor-made for their applica-
tion domain. Disadvantages are the lack of synergy across application domains,
that it is costly to develop tool support, and that such development is harder to jus-
tify for proprietary component technologies.
High Level Integration Platforms. In the landscape, we have also included design
tools, in which systems are designed by putting together pieces that might be
termed components. Examples are Meta-H and Ptolemy. The functions of these
tools are in some sense analogous to, e.g., MATLAB/Simulink. The advantage is
that they support a variety of design notations. However, “components” can be as-
sembled only in the supporting tool, meaning that different developments must all
be developed in the same environment. In this perspective, these tools have simi-
larities to tools like SCADE or UML/SDL-based tools.
Advanced Aspects are Still Evolving. Many efforts are dedicated to a proper han-
dling of extra-functional properties, including timing and QoS properties. There is
a variety of developments, and no clearly identifiable “mainstream winner”.

188 14 Component Models and Integration Platforms: Landscape

Summary and Conclusions

To summarise section 14, let us consider how the existing component technologies in
this section address the industrial needs described in section 12.6.

The existing component technologies contribute to structuring of system develop-
ment, but in different ways. Widely used component technologies offer infrastructure,
middleware, and tool support that solve tricky problems of component composition
and communication. They allow a separation between the component development
and system development processes. They do not give adequate support for alleviating
integration problems or support system predictability. The more specialised technolo-
gies focus on imposing a programming structure that supports reuse, the use of prod-
uct-line architectures, and in some cases allow global timing problems to be handled
in the system design phase.

Let us summarize technical contributions of existing component technologies.

Rich interfaces: Few existing component technologies support specification of
functional or extra-functional component properties. There are some solutions,
developed in the context of specific operating systems, that utilise well-understood
principles of real-time scheduling, but they can be used only inside specific devel-
opment contexts. Some integration platforms allow components to be associated
with the specification of some properties in interfaces, but systems can be assem-
bled only in the context of a specific development environment..
Constrained Resources: Widely used component technologies are not focused on
implementations on small platforms. However, using only a small part of a tech-
nology, or a simple one such as COM, is feasible in some embedded systems.
Some specialised technologies are built in the context of a static composition envi-
ronment, where the mapping and compilation onto the target platform can be op-
timized with respect to resource consumption. The same holds for more advanced
integration platforms, which differ in how much effort has been invested in gener-
ating small executables. Efficient implementations of component platforms for
smaller systems is still not a very advanced area.
Predictability of system properties:
o Prediction of global system properties has been implemented using techniques

from real-time scheduling theory (e.g., in Rubus), and using simulation tech-
niques (for integration platforms). There is quite limited use of more advanced
system analysis techniques described in section 13.

o Checking non-interference between components is a problem for which sup-
port has not been adequately developed. Many technologies insist that all in-
teraction between components happen through explicit interfaces, but this is
not enough for guaranteeing component non-interference.

o Determination of QoS, timing, and resource properties of components, is
mostly done by measurement and simulation. There is some progress on static
analysis. The problem that these properties depend on the underlying platform
has not been adequately solved.

Support for safety, reliability, availability, etc. has not been properly addressed.
There are implementation platforms that address these issues in specific contexts

 14.6 Component Libraries: Approaches to Component Retrieval 189

(e.g., the TTP technology), but in many contexts, these problems are still solved in
an ad hoc manner, without adequate support from generic technologies. We are
still waiting for widely-applicable technologies that solve these problems in a
component environment.
Wide adoption of a component technology for embedded systems is still not
emerging. There is a variety of developments, but no clearly identifiable “main-
stream winner”.
o Interoperability between different component technologies has not been ad-

dressed to a large extent.
o Middleware implementations for embedded systems exist in the form of oper-

ating systems, and some network technologies, but do not yet give full support
to a component technology and are not really widely adopted.

o Tools for component technologies in the embedded domain have not reached
sufficient maturity.

14.6 Component Libraries: Approaches to Component Retrieval

Software component reuse subsumes three basic subtasks: (1) Software component
library construction – collection, selection, homogenization of a central, well-
maintained artefact repository, (2) Component indexing – attaching specifications to
the components, (3) Software component retrieval – tools which mechanize the iden-
tification process. The process of the component retrieval has become especially im-
portant since the first successes of selling GUI-components via internet, when a num-
ber of internet markets have appeared with rising sizes of the component repositories
([HM02, TUC03]).

The modern component markets provide simplified ways for the specification of
the search requirements, which can be easily understood and used, but hardly take
into account any specific characteristics of the software [MMM98]. Since one has
currently quite restricted possibilities to define technical requirements on a desired
component, the search results have a quite small precision. In combination with re-
stricted descriptions of the available components (which are often not unified, incom-
plete, ambiguous, and in most cases informal) this makes the task of automatic re-
trieval ineffective for general applications and especially for the field of embedded
systems, where complicated behaviour of (reactive) components is of the most inter-
est, not only the signatures of the provided operations.

Library construction. Identification of appropriate software components by their
specifications in a library has been investigated in [JC93, Mit93, YWRS92] and
others. From the reuse point of view, it is important to find the correct level of
granularity. Components of a large granularity usually require more external
components than components of a small granularity. Although fine-grained com-
ponents have less strong external dependencies, they introduce many unnecessary
interfaces into the system (which degrades its performance). Besides, they are
very specific, so less reusable.
Library Organization. A premise for the search and final choice between the
found components is the availability of the appropriate abstraction, which pro-
vides the understanding, assessment and comparison of components. A library

190 14 Component Models and Integration Platforms: Landscape

storage structure is an ordering on the (key, surrogate)-pairs, where key is an ab-
stract representation of the asset’s contents and surrogate is a unique abstract rep-
resentations of an actual asset. The abstraction process from the assets to the sur-
rogates is known as indexing or classification. Match predicates can be used to
order components by generality and organize a library hierarchically. A. Mili, R.
Mili, and R. Mittermeir [MMM97] described such library organization in which
the components can be stored in a lattice-like fashion, using relational subsump-
tion as ordering in such a way that the most specific components become maximal
elements. J. Jeng and B. Cheng [JC94] described a two-tiered library organization.
The lower tier uses their modified subsumption test to order the library compo-
nents into disjoint clusters called sets of lattices. The upper tier applies a conven-
tional hierarchical clustering algorithm to combine these sets of lattices into a sin-
gle connected hierarchy. In J. Penix’s feature-based indexing method [Pen98], a
predefined set of features is used to construct an index. This set is checked off-line
against the library, using conditional plug-in as match condition, and each compo-
nent is indexed with the set of all matching features. In contrast to the other two
methods, feature-based indexing is an external library organization method, be-
cause it relies on the explicit and external set of features and not on any intrinsic
relation between the library components. T. Teschke [Tes03] developed a compo-
nent description language (CDL), concepts of the behavioural-subtyping-relation
match and introduced the specialization relation to compare the specific semantics
of activities and operations. This allows to improve the results of component
search in a repository by taking into account requirements from the models of
business processes.
Component retrieval The retrieval policy describes how components must be
related to the original user’s goal to be considered relevant. In exact retrieval,
components are considered relevant only if they satisfy the user’s goal exactly,
while proper retrieval also allows for more general components. In an approxi-
mate retrieval, a component is already relevant if it satisfies the user’s goal par-
tially. A partial solution can be defined semantically or syntactically.

When comparing the component search with the classical information retrieval
[SM83], one can observe their similarity (both are essentially the processes of the
content-based, goal-directed extraction of relevant text documents – assets – from
large collections), as well as differences between them: in the search space and in
the definition of the search requirements. While the current component markets
can provide at most 10 000 components in the observable search space, the infor-
mation retrieval approaches can provide the access to a larger amount of informa-
tion in effective way. The component search and information retrieval differ also
in their requirements on the quality of the obtained results. Two main characteris-
tics assessing the quality of the search results are precision – the rate of the rele-
vant documents in the set of all found documents – and recall – the rate of the
found relevant documents from the set of all available relevant documents. A task
within the classical information retrieval is to reach an appropriate compromise
between two measures. For the component retrieval, the precision is of the supe-
rior importance, because one is interested in the first turn on the best suitable
component(s) which can be integrated with minimal adaptation efforts [BR89,
GI94a, ZW97].

 14.6 Component Libraries: Approaches to Component Retrieval 191

Most component retrieval systems use a variety of methods developed within
the information retrieval which form a kind of continuum bounded, from one side,
by “controlled vocabulary” of the component specification, and from other side,
by “free vocabulary” ([Fis01]). For example, in signature matching [ZW93] the
types of the applied programming language are used: a component is retrieved if
its type is “compatible” under the applied type discipline to the query. The main
conceptual difficulty in this approach is an adequate definition of “compatible”
types which abstracts away “irrelevant” implementation details. Considering dif-
ferent levels of abstraction leads to different forms of signature matching, based
on the specialization/generalization of parameter types or their reordering.

Since signature matching is based on the syntax of the components (i.e., syntax
of their operations, attributes etc.), these methods alone are not sufficient for the
usage with embedded systems. Specification matching [ZW97] or deduction-
based software component retrieval exploit formal semantics extending the com-
ponent signatures with specifications of pre- and post-conditions. This kind of re-
trieval methods uses formal specifications and an automated theorem prover to
check whether a component matches a query. Deduction-based software compo-
nent retrieval has a unique conceptual advantage over all other component re-
trieval methods – it is the only method which retrieves proven matches only. The
disadvantage of this approach is their rising complexity problem. An integration
approach of the deduction based retrieval into deductive synthesis is introduced in
[FW99], based on a higher order logic interpretation of the deductive tableau ap-
proach.

Another existing approach to the component retrieval, behaviour sampling
[PP93], takes the basic assumption that already a sample of a few (input, output)-
pairs of an operation characterizes a component sufficiently. In practice, all behav-
iour sampling methods involve non-trivial up-front costs because the sampling
process requires a controlled environment. The precision of such methods can not
be guaranteed, since an operation can have unexpected behaviour on other inputs
from the environment. A similar approach was proposed in [MMM97], where an
additional refinement-relation is considered between the specifications as well as
correctness-relation between specifications and available components. Built out of
the behaviour sampling, [Poz01] proposed two-phased approach with automatic
generation of the component descriptions based on the analysis of the test results.
In the first phase, stateless components – individual operations – are partitioned in
the repository using generalized signature matching. Then components with states
are considered as modules with multiple operations, where abstract behaviour
sampling is applied abstracting from the values of the corresponding inputs and
outputs.
Adaptation phase. It is often the case that a component has to be adapted to
achieve interoperability with the environment. Adapters can be generated based on
a finite state machine interface semantics [SR02,YS97]]. Parameterized contracts
[Reu01]] are used to restrict a component’s provides- and requires-interface,
hence adapting the component to specific reuse contexts, which allows to perform
automatically a certain class of component adaptations without changing the code.
This also eases the granularity-reuse-problem by mapping of the functionality
which is actually requested from a component by a system to the functionality

192 14 Component Models and Integration Platforms: Landscape

which the component really requires to provide this requested functionality. By in-
tegrating deductive synthesis into the framework proposed by J. Penix [Pen98],
the automatic adaptation tries to combine a component-oriented approach with a
generator-oriented approach to achieve a higher degree of reuse of components.

Nevertheless, the necessity of the component adaptation seems to be unaccept-
able for some development processes, since it violates the main principle of the
component-based methodology – allowing flexible adaptation of software to spe-
cific requirements by multiple reuse of the available components [Has02]. The
modern component repositories with retrieval methods could win more efficiency
by taking into consideration specific technical requirements from the development
processes.
Research results and tools. Most work on deduction-based retrieval is of theoreti-
cal nature, or describes only proof-of-concept “implementations” which are ex-
perimentally validated only with a small number of selected example proofs. Mitra
et al. [MRB96] proposed an informal algorithm to automatically map a design
function to a system level component. The complexity of the algorithm was expo-
nential in the worst case. Smith and de-Micheli [SM98] proposed methods for
component matching and verification of circuits using polynomials. Also, low
level component such as ALUs have been successfully reused [JD96]. In the con-
text of embedded systems the best result has been obtained in [RS00], a polyno-
mial-time component matching algorithm for system level components. Manna &
Waldinger [MW92] have already shown that in theory a notion of component re-
use can be built-into deductive tableaux.

Several component documentation systems, used in practice, show how the in-
formation retrieval technology can be applied to the component search. As an ex-
ample, LaSSIE [DBSB91] developed for the telecommunication branch provides a
natural language interface with a set of technical terms and compatibility-
relations. The domain knowledge is represented in form of frames, ordered in a
generalization/specialization hierarchy. Although the system does not allow a sat-
isfactory representation of the “part-whole” relation and has quite weak precision
of the component description, it allows to find also components which partially fit
the requirements. ROSA [GI94a, GI94b] is a classification system, which provides
automatic extraction of lexical, syntactic, and semantic information from the natu-
ral language descriptions used for component indexing and in the process of com-
ponent search based on the similarity relation between requirements and compo-
nent descriptions. OntoSeek [GMV99] combines the usage of linguistic ontology
– to allow coupling between the user’s vocabulary and that of the repository – and
a structural formalism for the knowledge representation with a restricted
expressiveness. This leads to a higher precision and recall rates, based on the key-
words and (attribute, value)-pairs.

The AMPHION system [SWLPU94] follows the Manna-Waldinger-approach
to combine synthesis and retrieval but works in the very domain-specific setting of
astronomical subroutines. REBOUND-system [PA99] is an example of a working
prototype which is a combined component retrieval and adaptation system. Its re-
trieval subsystem is based on feature-based indexing. The original REBOUND-
system uses HOL-prover for classification, a later re-implementation (SOCCER)
relies on PVS. NORA/HAMMR [SF97, Fis01] is an advanced prototype retrieval

 14.6 Component Libraries: Approaches to Component Retrieval 193

system based on the specification matching approach. To overcome the complex-
ity problem, the authors proposed a pipeline architecture with a number of filters
of increasing deductive strength. Dedicated rejection filters are used “upstream” to
rule out non-matches as early as possible and thus to prevent the “downstream”
confirmation filters (at the theorem proving process) from overflowing. The inte-
gration of a retrieval system with synthesis can only be semi-automatic even if re-
trieval works fully automatically, as shown in [FW99].

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 194 – 203, 2005.
© Springer-Verlag Berlin Heidelberg 2005

15 Standardization Efforts

This section provides an overview of standards that are relevant to the ARTIST com-
ponents working group. It is broadly split into two main sections: specification stan-
dards and implementation technology standards. The aim is to distinguish between
standards for specification and modelling, such as UML, that define modelling con-
cepts related to real-time modelling and components, and implementation standards,
which are focused at realizing these concepts at the implementation level.

15.1 Specification Standards

Over the last decade, there has been an increasing emphasis on the development of
modelling and specification languages appropriate for describing software engineer-
ing concepts. The Unified Modelling Language (UMLTM) was one of the first model-
ling languages to standardize software engineering concepts and related OMG stan-
dards are currently the de-facto route for incorporating new concepts into the software
industry. This section briefly introduces some of these key standards and describes
work currently being done to incorporate real-time components into existing stan-
dards such as UML.

UML 2.0

The Unified Modelling Language (UML) is now the de-facto industry language for
specifying and designing software systems. Since its inception in 1997, the scope of
the language has become ever wider. UML now provides support for a wide variety of
modelling domains, including real-time system modelling.

Unfortunately, the success of UML has come at a cost, resulting in a bloated and
complex language, as new modelling concepts have been repeatedly “mud-packed”
into the definition. Furthermore, the specification of the language (a meta-model of its
abstract syntax with weakly defined semantics) has also become difficult to manage
and hard to understand due to its size and complexity.

The UML 2.0 effort is an attempt by the OMG to address these shortcomings. The
aim is that UML should become a family of languages, each based on a common
semantic core. Thus, specific variants of UML will be defined for specific application
areas: e-business, real-time, systems engineering, warehouse meta-data and so on.
Another important aim is that UML 2.0 should be defined more precisely in order to
facilitate the more rigorous use of the language.

A number of consortia have submitted a variety of proposals to the OMG for the
revised standard, and the main difficulty was then to find a consensus among every
proposition. The work has been split into four main areas: infrastructure (the core
modelling concepts supported by UML), superstructure (the modelling concepts that
are used to model specific views of a system, e.g., state behaviour), OCL (the Object
Constraint Language that supports the semi-formal specification of constraints) and
diagram interchange (tool interchange of diagrammatical syntax). The intention is that

 15.1 Specification Standards 195

the infrastructure model will define the semantics for the core concepts used by UML.
The superstructure will then be defined in terms of this core, thus providing a firmer
interpretation of the UML language as a whole.

The task involved in refractory UML as a family of languages is not straightfor-
ward. Much work needs to be done to define an infrastructure that will successively
support the definition of a wide spectrum of languages. Furthermore, first class exten-
sion mechanisms are required to support the incremental extension and combination
of language components to create new languages. Finally, defining a semantic for
these language components is a significant challenge in itself – necessitating that
UML has a well defined semantic domain and appropriate semantic mappings.

Beside restructuring its architecture and improving its usability, the UML 2.0 lan-
guage has also been enriched with:

Possibilities to organize interactions through interaction overview diagram. This
latter are very closed to the high-level message sequence chart.
Activity diagram was revisited and is know a language by itself and is not more a
subset of usual state machines.
Finally, the component concept was promoted and is gone from a just a peace of
code to a part of models (see next section for more details).

Component-Based Modelling with the UML

Components being the now most widespread structuring entities at implementation
level (seen as executables, binaries or library elements), the component paradigm
tends also to play such role at the modelling stage. One of the motivations is related to
the difficulty to have reusable components having totally known and mastered
dynamics, in particular, on real-time and concurrency aspects. Incoming component-
based approaches ([DW99, HS99, ABM00, GPJ02]) tend to use components as a
higher-level modelling artefact that may be used whatever the nature of the model
(specification design, implementation) and derived throughout the system develop-
ment through to implementation. Implementation part of a component becomes one of
its aspects only relevant for the implementation stage.

The evolution of this concept from UML1.x to UML 2.0 confirms this tendency.
Components in UML 2.0 are likely to get a more extensive treatment than in previous
versions of UML. Considered as a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a set of interfaces in the
UML1.x, components become more abstract structuring entities in UML 2.0. They
will be defined in the superstructure of UML 2.0. UML 2.0 components are then a
modular part of a system that may be modelled and refined throughout the develop-
ment lifecycle. A component is viewed as an autonomous unit within a system or
subsystem. It has one or more ports, and its internals are hidden and inaccessible other
than as provided by its interfaces. As a result, the aim is that components and subsys-
tems can be flexibly reused and replaced by connecting (“wiring”) them together via
their provided and required interfaces. Components also support reuse through an
import mechanism, which permits the elements of a component to be imported into
another component. UML 2.0 component model is very close to the main frame of the

196 15 Standardization Efforts

component model described in previous section 11 allowing thus to use very easily
UML as modelling language or ADL to support a CBSE methodology.

Although, this approach is not yet mature, at least due to the introduction of the
concept only in the incoming version of UML standard, some proposals already intro-
duce this notion in relation with real-time preoccupation through attaching real-time
QoS to the component interfaces [GPJ02]. In this context, component composition
issue at design stage becomes a question of QoS composition among the component
models. This raised a strong interest on MDA techniques that facilitate: model weav-
ing (http://www.qccs.org/) for the component composition; and the mapping and
transformation of abstract models into detailed models for the implementation synthe-
sis [GTT02].

UML Profiles for Real-Time

The UML contains in native some capabilities to support real-time aspects: either for
qualitative aspects such as concurrency (Active objects, concurrent states, etc.) or for
quantitative aspects such as time event. Nevertheless, these real-time features of the
UML are not enough. For that reason, OMG has initiated a work dedicated to define a
UML profile specific to real-time systems development.

UML Profile for Scheduling, Performance and Time Specification
The UML profile for Scheduling, Performance, and Time Specification (in short SPT)
[OMG01c] defines standard paradigms of use for modelling of time-, scheduling-, and
performance-related aspects of real-time systems. The intentions are to:

Enable the construction of models that could be used to make quantitative predic-
tions regarding these characteristics.
Facilitate communication of design intent between developers in a standard way.
Enable inter operability between various analysis and design tools.

To support this, the specification defines (as a meta-model) a complete, but generic
model of some of the key concepts association with scheduling, performance model-
ling and times events. Main concepts introduced in the SPT profile are Quality-of-
Service (in short QoS) and Resource. From these concepts, it then defines in specific
sub-profiles more adequate concepts for performance and schedulability analysis.
Thus it includes models of the semantics and mappings to common real-time middle-
ware standards such as real-time CORBA.

To illustrate the usage of the SPT profile, one may consider the package dedicated
to model time and time values. Among other concepts, this package contains both
concepts of TimeValue and TimedAction.

The TimeValue concept is defined as follow: “It corresponds to a particular physi-
cal instant in time as measured by some reference clock in some inertial frame of
reference”. To use this conceptual element, the SPT profile proposes both following
possibilities:

the «RTtime» stereotype – it enables to specify that model elements (e.g. Attrib-
utes of a class) are time values. This involves that such tagged elements have a
time semantics (see Figure 6.2).

 15.1 Specification Standards 197

the RTtimeValue Tagged-Value Type (in short TVL) – this latter may be sued only
to type tagged values of stereotype. For example, the tagged value RTstart of the
stereotype «RTaction» denotes a time value and is also typed with the TVL
RTtimeValue (Figure 16.2).

Figure 16.1. Example of usage of the stereotype «RTtime»

The TimedAction concept support the concept of activities that either have known
start and end times or that have a known duration. Its usage in UML models is
achieved through the stereotype «RTaction». This latter has several tagged value:
RTstart and RTend if the stereotyped element is characterized with start and end
times, and RTduration otherwise. All these tagged values are typed as RTtimeValue as
previously defined (Figure 16.2).

Figure 16.2. Example of usage of the stereotype «RTaction» in a sequence diagram

The «RTaction» stereotype may be applied on a large scale of base classes of the
UML such as Message, Action, Method, etc. This last point is actually one of the
issues of the current standard version of the SPT profile that should be solved in the
next incoming version 2 of the profile (see later in this section about SPT v2). Indeed,
the semantics specified for each stereotype defined I the profile applies for all the
base class it can stereotyped. But sometimes it should be better to clarify some points
depending of the base class on which the stereotype is applied. For example, the se-
mantics of a Message element stereotyped by «RTaction» could mean that the action
attached to the message should have the RT features specified in the stereotype at-
tached to the message. Whereas the semantics of a Method element also stereotyped
«RTaction» applies directly on the method itself.

198 15 Standardization Efforts

UML Profile for SPT Specification
The UML profile for Scheduling, Performance and Time has been adopted and in use
since mid of 2003. In parallel some other OMG standards have been adopted such as
the UML profile for QoS and Fault Tolerance, UML2, etc.

All these new profiles have an influence on the current version of the Scheduling,
Performance and Time profile. Moreover, the profile has also been used in various
projects (AIT-WOODDES, OMEGA…) and a lot of feedback for improvement and
consolidation has been produced by these experiments. Finally, some of the issues
raised against the SPT version 1 has been deferred to new version of the profile be-
cause out of the scope of a simple revision task force of the profile. All these points
are arguments in favour of having a new version of the UML profile for SPT.

To achieve this purpose, the SPT2 will have to solve the following mandatory re-
quirements: (i) Express analysis profiles in terms of QoS Profile; (ii) Express profile
using UML 2 profile meta-model ; (iii) Harmonize the performance and schedulabil-
ity sub-profiles; (iv) Clarify Relationship with UML2; (v) And improve usability of
the profile. It is expected that the new version of the UML profile for SPT will be
available in the mid of 2005.

UML Profile for QoS and Fault Tolerance
This profile is a specification of UML extensions dedicated to adorn models with
Quality of Service (QoS) and Fault-Tolerance (FT) concepts (UML Profile for QoS
and FT Draft Adopted Specification, ptc/04-01-05). It is organized around five main
chapters. Both chapters 7 and 8 describe respectively the meta-model of the QoS
Framework and its resulting UML profile. The chapter 10 is a catalogue of QoS cov-
ering throughput, latency, security, etc. The chapter 12 enables the description of
models of risk analysis with UML, whereas the last chapter is dedicated to the de-
scription of fault tolerant architectures. In the rest of the section we will focus on the
three first chapters which are more related to real-time features modelling. This sec-
tion is then split in two sections respectively related to the framework and the cata-
logue of QoS.

QoS Framework
The QoS framework is described at the abstract level through the definition of its
meta-model in the one hand. But the framework is also described at the concrete level
via a projection of its meta-model in the UML technological space. This projection is
achieved by defining the UML profile matching the meta-model of the QoS frame-
work.

The meta-model of the QoS framework consists of three sub-packages describing
respectively characteristics, constraints and levels of QoS.

The QoS characteristics package provides the basics for defining specific QoS:

QoS characteristics – this views defines the concepts enabling to model quantifi-
able extra-functional features (latency, safety, etc.) independently, or or-
thogonally, to functional features. QoS characteristics may have values that may
be quantified under different dimensions (absolute values, max. or min. values,
etc.). When defining one QoS characteristics for quantification of extra-functional
becomes too much complex it is then possible to cluster several more basic QoS

 15.1 Specification Standards 199

characteristics into QoS categories. This latter concept is different with character-
istics in the sense that categories are not directly quantifiable, one need to go
through their clustered characteristics.
QoS values –previous concepts provide a type view of the QoS framework. QoS-
Value and QoSDimensionSlot defined here are respectively instances of Qo-
SCharacteristic and QoSDimenssion.
QoS context – this enables to describe the context of QoS characteristics, that is to
say the QoS characteristics and related model elements involved in a QoS con-
straint. It may be useful to do so when QoS expressions or constraints involve
several QoS characteristics.

The QoS constraint package provides means to limit the possible values of QoS char-
acteristic. The generic concept of QoSContraint is reified into the three following
concepts:

QoS required – this ensures a client to specify which QoS it requires for a server
when operating the required service.
QoS offered – this ensures to define the QoS associated to services provided by
model element (e.g. at the interface level of components).
QoS contract – when linking a client and a server, respective required and offered
QoS has to match or connection has at least to result from a negotiation to map the
required with offered QoS. QoS contract is the proposed concept to support this
king of contact modelling.

The QoS level package provides facilities to model different running modes of appli-
cation in function of level of QoS it may offer or require.

The concrete syntax of the QoS meta-model is rendered under the form of a UML
profile. That means that from the QoS meta-model previously described, a set of
UML extensions (stereotypes and associated values) are defined in order to ensure
UML modelling of the QoS framework. The architecture of the UML profile follows
the architecture of the meta-model. It consists then of three sub-profiles. For example,
QoS categories are modelled with package stereotyped with «QoSCategory». Our
purpose is not here to describe in the minute the details of the profile but just to give
enough information to understand the pros. and cons. of the profile. For more details
about the UML extensions proposed in the context of the UML profile for QoS and
FT, the reader is pleased to refer to the OMG’ specification.

QoS Catalogue
The QoS catalogue consists in introducing specific QoS categories (e.g. performance,
latency, etc.). Every category is denoted through a UML design pattern using stereo-
types defined in the QoS framework.

For example, two types of latency characteristics could be:

Latency as a generic characteristic for latency modelling on any kind of software
element
Latency as an absolute limit on the time needed to accomplish a sub-task.

200 15 Standardization Efforts

MDA

The Model Driven Architecture (MDATM) is the OMG’s new flagship architecture
that aims to integrate its (and other) standards within a model driven approach to
system development [SOM00a, SOM00b, SOM02, MM01]. MDATM encapsulates
many important ideas – most notably the notion that real benefits can be obtained by
using modelling languages to integrate the huge diversity of languages used in the
development of systems.

In MDATM, modelling languages are categorized as being platform independent
(i.e. specification oriented) and platform independent (i.e. implementation oriented).
Note that a modelling language can be a language at any level of abstraction. Exam-
ples of platform independent languages include UMLTM itself (when used for specifi-
cation). Middleware standards such as CORBA and programming level languages
(e.g. Java Beans) are examples of platform specific languages.

Mappings (a key component of MDATM) define the relationships between these
languages. By abstracting away from platform specific details, the intention is that
system development is driven through platform independent models that can be semi-
automatically translated into any platform specific language for which a standard
mapping has been defined. Thus, platform independence is obtained along with
greater flexibility in deployment – if a new technology emerges (e.g. .Net), then all
that is required is to apply a new set of mappings.

Platform independent and platform specific mappings are good examples of verti-
cal transformations. However, MDATM goes potentially far beyond this. For example,
horizontal mappings between platform specific languages may be defined as a means
of integrated different modelling perspectives at the specification level (e.g. process
models, system artefacts, software specifications). In short, MDATM offers a frame-
work that has the potential to model and integrate all aspects of system development.

Many vendors are already claiming support for MDATM (e.g. a code generator
could be viewed as a mapping tool!). However, in practice there are significant issues
to be addressed. Mechanisms must be defined that support executable, but declarative
mappings between languages. The semantics of these languages must be defined well
enough to ensure that mappings are semantic preserving, whilst more powerful exten-
sion mechanisms are required to support the reuse of mappings. These and many
other issues are all currently being debated within the OMG (see www.omg.org/mda).

MDA and Current Industrial Real-Time UML Tools

In the real-time application area, this model-oriented trend is also very active and
promising. Currently, there are four main model-oriented industrial approaches sup-
ported by tools: UML-RT used with Rose-RT, ROPES with Rhapsody, ARTiSAN
and UML/SDL with the Tau UML/SDL suite.

Within UML-RT, an application is seen as a set of entities called “capsules”‘
which support logical concurrency. These capsules have a state machine as behaviour
specification and may exchange signals to communicate. Models built in this way are
said to be executable, meaning that at any moment in design, it is possible to produce
an executable application matching the UMLTM model. In this case, the mapping is
achieved via code generation.

 15.1 Specification Standards 201

For ROPESTM and ARTiSANTM approaches, real-time application modelling is a
3-stage process: i) building a “functional”‘ model with class and state diagrams; ii)
building a specific tasking model with class diagrams containing only active objects (
execution tasks); iii) describing the mappings between the two models. The main
drawback of this “family” of methods is that it requires advanced real-time develop-
ment skills to build the tasking model and map it with the “functional” model. While
there are some “shortcuts” available ([AKZ97 p. 482]) to facilitate this activity, no
transformation rules are provided as could be done within a fully MDATM-based ap-
proach.

The approach proposed by TelelogicTM is based on the use of both UMLTM and
SDLTM languages. It consists of building UMLTM models at the analysis stages using
active objects as concurrency supports and SDLTM within design-time. Reference
document [ITU99] defines modelling rules for mapping a UMLTM-oriented model
into an SDL-oriented model. When SDL models are finished, the engineer may gen-
erate code to produce an executable application.

All these methodologies may be considered as MDATM-based approaches for
mainly two reasons. Firstly, they clearly promote the model paradigm to develop
applications; and secondly, they provide code generation taking into account struc-
tural and behaviour specifications for model mapping to implementation languages
such as C, C++, JAVA, etc.

Nevertheless, they do not exploit all the potentialities of MDATM. Their application
models are often only PSM-like for “executable” reasons.

For modelling purposes, the user is thus led very quickly to resort, for an executa-
ble model, to a programming language such as C++. Although action semantics have
been standardized by OMG [OMG02] there are still only a few tools that have inte-
grated this feature, which allows building of executable models independently of any
programming language. While these approaches are usually based on a several stage
process, they do not provide the refinement mapping rules that could facilitate appli-
cation development and, above all, be highly useful in promoting seamless develop-
ment processes. Finally, the existing UML-based methods for real-time applications
still require considerable knowledge of real-time software technology (and the differ-
ent programming models promoted by these tools) to develop real-time systems.

Towards MDA Components

MDA approach has given rise to a particular interest of the RT community (e.g., edi-
tions of the Summer School on MDA for embedded systems held in Brest, Sept. 2002
and 2004, http://sancy.ensieta.fr/mda/). However, this subject remains largely open, in
particular, to identify and structure the various artefacts related to MDA, such as:
dedicated met models (e.g., for business domain and technical domain), specific target
models (also called PSMs Platform Specific Models), transformation procedures,
model weaving, mapping and transformation rules, in particular, concerning RT QoS,
but also for implementation synthesis, test generation, proof synthesis.

Incoming MDA-based workbenches will consist of various parts that may interoper-
ate:

Documents (method book, guide lines, user guides, etc.).

202 15 Standardization Efforts

Profiles (SPT, SPEM, EDOC, etc.).
Tools (UML modeller, code generator, model transformer, etc.).

Moreover, these MDA parts may be plug on a bus in order they interoperate. For
example, the Eclipse initiative (www.eclipse.org) provides a specific plug-in, EMF
(Eclipse Modelling Framework), ensuring the construction of UML-based MDA
plug-ins of Eclipse.

Even if it is not well defined today, it seems logical that components will also play
this structuring role [BG02]. And near future should give rise to “MDA-Components”
whose nature could be clarified thanks standard stereotypes such as «Tool», «UML
Profile», «Document», etc.

In fact, currently not a lot of things have been set related to MDA and it still re-
mains a lot of work to do to clarify MDA and its related concepts. In particular, as
CBSE methodologies have been developed to support more efficient use of the com-
ponent artefact, model driven engineering methodologies have to be define to exploit
all the potentialities of the MDA technologies and related concepts.

15.2 Implementation Technology Standards

The majority of implementation standards relevant to components tend to focus on
middleware, i.e. the communication and interface aspects of components. Each of
these standards emphasizes the important of independence from the technology use to
implement the internal functionality of components. Because of this, we will not dis-
cuss the plethora of programming languages that can be used to implement compo-
nents in this section.

SOAP

SOAP provides a simple and lightweight mechanism for exchanging structured and
typed information between peers in a decentralized, distributed environment using
XML. As such, SOAP can be seen as an important standard for interchanging date
between distributed components. SOAP does not itself provide implementation spe-
cific semantics; rather it defines a simple mechanism for expressing application se-
mantics by providing a modular packaging model and encoding mechanisms for en-
coding data within modules. This allows SOAP to be used in a large variety of sys-
tems ranging from messaging systems to RPC.

SOAP consists of three parts:

The SOAP envelope defines an overall framework for expressing what the content
of a message is.
The SOAP encoding rules defines a serialization mechanism that can be used to
exchange instances of application-defined data types. These may be simple or
structured data types.
The SOAP RPC representation defines a convention that can be used to represent
remote procedure calls and responses. Just as with CORBA, the key advantage of
SOAP is that it is platform independent and is not tied to any implementation spe-
cific messaging mechanism or software architecture.

 15.3 Conclusions and Challenges 203

15.3 Conclusions and Challenges

All the above standards are relevant to the ARTIST component working group as they
each attempt to standardize a variety of aspects of real-time and component based
design in isolation. As a result, there are many opportunities for additional work to
unify both the real-time and component perspectives and also to provide a stronger
foundation for their definition and deployment. These include the following:

Integration of real-time and embedded QoS within the UML2 component model:
Currently, little consideration has been given to the expression of real-time and
QoS aspects in UML component models. Such an approach would require the
definition of additional notational facilities to facilitate the capture of these as-
pects, along with a definition of their semantics.
Traceability management/control of real-time QoS of a component all along the
development process: By providing a model of change management/control it
should be possible to provide support for the management of components
throughout its lifetime (an essential requirement for change management and up-
grades). Such a facility could potentially be based on an extension to emerging
process management modelling languages being developed in the industry such as
SPEM.
Definition of performance / schedulability analysis methodology well-suited for
such MDA component-based approaches: It is clear that the deployment of com-
ponents within an MDA lifecycle could be developed whereby components could
be specified in a platform independent way, and then mapped to various compo-
nent technologies. In order to achieve this, significant work needs to be done to
develop models of platform specific component languages and to define rules for
mapping from platform independent components to platform specific models or to
middleware standards such as CORBA and SOAP. These mappings must be
shown to be correct with respect to certain semantic preserving properties, includ-
ing QoS.
Link between extra-functional engineering requirements and real-time/embedded
QoS of UML-based models: By modelling extra-functional properties of real-time
systems, it should be possible to build rich component based modelling languages
that capture a variety of system engineering perspectives. This would tie in nicely
with work going on in the OMG to define a UML profile for systems engineering.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 204 – 215, 2005.
© Springer-Verlag Berlin Heidelberg 2005

16 References

[AAG95] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descrip-
tions of software architecture. ACM Trans. on Software Engineering and Method-
ology, 4(4):319-364, 1995.

[ABM00] C. Atkinson, J. Bayer, and D. Muthig. Component-based product line development
: The KobrA approach. In Software Product Lines: Experience and Research Di-
rections, Proc. 1st Int. Software Product Line Conference (SPLC-1), Denver, CO,
USA, Aug. 2000, pages 289-309. Kluwer Academic, 2000.

 [Abr96] J.-R. Abrial. The B book – Assigning Programs to Meanings. Cambridge University
Press, 1996.

[ACB84] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalised stochastic
Petri nets for the performance evaluation of multiprocessor systems. ACM Trans.
on Computer Systems, 2(2):93-122, 1984.

[AFM+02] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: A tool
for modelling and implementation of embedded systems. In Proc. 8th Int. Conf.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’2002),
Grenoble, France, Apr. 2002, volume 2280 of Lecture Notes in Computer Science,
pages 460-464. Springer Verlag, 2002.

[AG94] R. Allen and D. Garlan. Formalizing architectural connection. In Proc. 16th Int.
Conf. on Software Engineering (ICSE’94), Sorrento, Italy, May 1994, pages 71-80.
IEEE Comp. Soc. Press, 1994.

[AH96] R. Alur and T. A. Henzinger, editors. Proc. 8th Int. Conf. Computer Aided Verifi-
cation (CAV’96), New Brunswick, NJ, USA, July-Aug. 1996, volume 1102 of Lec-
ture Notes in Computer Science. Springer Verlag, 1996.

[AKZ97] M. Awad, J. Kuusela, and J Ziegler. Object-Oriented Technology for Real-time
Systems: A Practical Approach Using OMT and Fusion. Prentice Hall, 1997.

[Bal98] R. Balzer. An architectural infrastructure for product families. In Proc. 2nd Int.
ESPRIT ARES Workshop on Development and Evolution of Software Architectures
for Product Families, Las Palmas de Gran Canaria, Spain, Feb. 1998, volume
1429 of Lecture Notes in Computer Science, pages 158-160. Springer Verlag, 1998.

[BBB+00] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert,
R. Seacord, and K. Wallnau. Technical Concepts of Component-Based Software
Engineering, Volume II. Technical Report CMU/SEI-2000-TR-008, Software En-
gineering Institute, Carnegie-Mellon University, May 2000.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture In Practice. Addison
Wesley, 1998.

[BCP+01] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and
S. Yovine. Taxys = Esterel + Kronos. A tool for verifying real-time properties of
embedded systems. In Proc. 40th IEEE Conf. on Decision and Control
(CDC’2001), Orlando, FL, USA, Dec. 2001. IEEE Comp. Soc. Press, 2001.

[Ber99a] G. Berry. The constructive semantics of Pure Esterel. Centre de Mathématiques
Appliquées, École des Mines and INRIA, Sophia-Antipolis, France, July 1999.

[Ber99b] G. Berry. The Esterel v5 language primer. Centre de Mathématiques Appliquées,
École des Mines and INRIA, Sophia-Antipolis, France, April 1999.

[BG02] J. Bézivin and S. Gérard. A preliminary identification of MDA components, 2002.
Position Paper, OOPSLA 2002 Workshop: Generative Techniques in the context
of Model Driven Architecture.

 16 References 205

[BGM02] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation environment for compo-
nent-based real-time systems. In Proc. 14th Int. Conf. Computer Aided Verification
(CAV’2002), Copenhagen, Denmark, July 2002, volume 2404 of Lecture Notes in
Computer Science, pages 343-348. Springer Verlag, 2002.

[BGS00] S. Bornot, G. Gössler, and J. Sifakis. On the construction of live timed systems. In
Proc. 6th Int. Conf. Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’2000), Berlin, Germany, Mar.-Apr. 2000, volume 1785 of Lecture
Notes in Computer Science, pages 109-126. Springer Verlag, 2000.

[BJP99] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making components contract
aware. IEEE Computer, 32(7):38-45, 1999.

[BK98] N. Brown and C. Kindel. Distributed component object model protocol –
dcom/1.0. Internet-draft, IETF, January 1998.

[BLP+02] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, Y. Watanabe,
and G. Yang. Concurrent execution semantics and sequential simulation algo-
rithms for the Metropolis meta-model. In Proc. 10th Int. Symp. on Hard-
ware/Software Codesign (CODES’2002), Estes Park, CO, USA, Apr. 2002. ACM
Press, 2002.

[BMW89] H. Beilner, J. Mater, and N. Weissenberg. Towards a performance modeling envi-
ronment: News on HIT. In Proc. 4th Int. Conf. Modeling Techniques and Tools for
Computer Performance Evaluation, Palma de Mallorca, Spain, Sep. 1998, pages
57-75. Plenum Press, 1989.

[Box00] D. Box. House of COM: Is COM dead? MSDN Magazine, December 2000.
[BR89] T. J. Biggerstaff and C. Richter. Reusability framework, assessment, and direc-

tions. In T. J. Biggerstaff and A. J. Perlis, editors, Software Reusability Volume I:
Concepts and Models, pages 1-17. ACM Press & Addison Wesley, 1989. Also ap-
peared in IEEE Software, 4(2):41-49, 1987.

[Bro95] K. Brockschmidt. Inside OLE (2nd ed.). Microsoft Press, 1995.
[Bro96] K. Brockschmidt. What OLE is really about, 1996.
[Cas95] G. Castagna. Covariance and contravariance: Conflict without a cause. ACM

Trans. on Programming Languages and Systems, 17(3):431-447, 1995.
[CCD+01] P. Combes, L. Castaignet, F. Dubois, B. Nicolas, and B. Renard. Feature-driven

service analysis and design in an open architecture. In Proc. 7th Int. Conf. Intelli-
gence in next Generation Networks (ICIN’2001), Bordeaux, France, Oct. 2001,
2001.

[CCM] The CORBA & CORBA Component Model (CCM) page.
http://www.ditec.um.es/~dsevilla/ccm.

[CdAH+02] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Jurdzinski, and F. Y. C. Mang.
Interface compatibility checking for software modules. In Proc. 14th Int. Conf.
Computer Aided Verification (CAV’2002), Copenhagen, Denmark, July 2002,
volume 2404 of Lecture Notes in Computer Science, pages 428-441. Springer
Verlag, 2002.

[CDN01] P. Combes, F. Dubois, and B. Nicolas. Une démarche associant UML et SDL pour
l’analyse, la conception et la validation de services de télécommunication. In Actes
3ième Congrès Modélisation des Systèmes Réactifs (MSR’2001), Toulouse, France,
Oct. 2001, pages 309-324. Hermès Science Publications, 2001.

[Chi98] G. Chiola. Petri nets versus queueing networks: similarities and differences. In
Performance Models for Discrete Event Systems with Synchronisations: Formal-
isms and Analysis Techniques, pages 121-134. KRONOS, 1998.

[CL02] I. Crnkovic and M. Larsson. Building Reliable Component-Based Software Sys-
tems. ArtechHouse, 2002.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

206 16 References

[Cob00] E. Cobb. CORBA Components: The industry’s first multi-language component
standard, June 2000. OMG meeting tutorial available at http://www.omg.org/cgi-
bin/doc?omg/00-06-01.

[Con02] C. Constantinescu. Impact of deep submicron technology on dependability of
VLSI circuits. In Proc. 2002 Int. Conf. on Dependable Systems and Networks
(DSN’2002), June 2002, Bethesda, MD, USA, pages 205-214. IEEE Comp. Soc.
Press, 2002.

[CPP+01] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine. Taxys:
A tool for the development and verification of real-time embedded systems. In
Proc. 13th Int. Conf. Computer Aided Verification (CAV’2001), Paris, France,
July 2001, volume 2102 of Lecture Notes in Computer Science, pages 391-395.
Springer Verlag, 2001.

[CPP+02] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil. SAXO-RT, interpreting
Esterel semantics on a sequential execution structure. In Proc. 1st Workshop on
Synchronous Languages, Applications, and Programming (SLAP’2002), Grenoble,
France, Apr. 2002, volume 65(5) of Electronic Notes in Theor. Comp. Sci. Elsevier
Science, 2002.

[CRTM98] L. Casparsson, A. Rajnák, K. Tindell, and P. Malmberg. Volcano – a revolution in
on-board communications. Volvo Technology Report, 1998.

[CW02] S. Clarke and R. J. Walker. Towards a standard design language for AOSD. In
Proc. 1st Int. Conf. on Aspect-Oriented Software Development (AOSD’2002),
Univ. Twente, Enschede, NL, Apr. 2002, pages 113-119. ACM Press, 2002.

[DBSB91] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W. Ballard. LaSSIE: a knowl-
edge-based software information system. Communications of the ACM, 34(5):34-
49, 1991.

[DH01] W. Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts.
Journal of Formal Methods in System Design, 19(1):45-80, 2001.

[DHK99] M. Dal Cin, G. Huszerl, and K. Kosmidis. Evaluation of safety-critical systems
based on guarded statecharts. In Proc. 4th IEEE Int. Symp. on High Assurance Sys-
tems Engineering, Washington, DC, USA, Nov. 1999, pages 37-45. IEEE Comp.
Soc. Press, 1999.

[DHM96] M. Diefenbruch, J. Hintelmann, and B. Müller-Clostermann. The QUEST-
approach for the performance evaluation of SDL-systems. In Proc. IFIP TC6
WG6.1 Int. Conf. on Formal Description Techniques IX / Protocol Specification,
Testing and Verification XVI (FORTE’96), Kaiserslautern, Germany, Oct. 1996,
pages 229-244. Kluwer Academic, 1996.

[DKB98] P. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the speci-
fication of stochastic systems. In Proc. IFIP Working Conference on Programming
Concepts and Methods (PROCOMET’98), Shelter Island, NY, USA, June 1998,
pages 126-147. Chapman & Hall, 1998.

[Don00] P. Donohoe, editor. Software Product Lines: Experience and Research Directions,
Proc. 1st Int. Software Product Line Conference (SPLC-1), Denver, CO, USA,
Aug. 2000. Kluwer Academic, 2000.

[Dou02] B. P. Douglass. Model driven architecture and Rhapsody. Technical report, I-
Logix, 2002.

[DW99] D. F. D’Souza and A. C. Wills. Objects, components, and frameworks with UML :
the catalysis approach. ACM Press and Addison-Wesley, 1999.

[EAS03] EAST_EEA. http://www.east-eea.net, 2003.
[ECW01] H. El-Sayed, D. Cameron, and C. M. Woodside. Automation support for software

performance engineering. ACM SIGMETRICS Performance Evaluation Review,
29(1):301-311, 2001.

[Erl] Erlang. http://www.erlang.org/.

 16 References 207

[ESC] ESC Java webpage. http://research.compaq.com/SRC/esc/.
[FEHC02] A. V. Fioukov, E. M. Eskenazi, D. K. Hammer, and M. R. V. Chaudron. Evalua-

tion of static properties for component-based architectures. In Proc. 28th
EUROMICRO Conference, Dortmund, Germany, Sep. 2002, pages 33-39. IEEE
Comp. Soc. Press, 2002.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-
life processor. In Proc. 1st Int. Workshop on Embedded Software (EMSOFT’2001),
Tahoe City, CA, USA, Oct. 2001, volume 2211 of Lecture Notes in Computer Sci-
ence, pages 469-485. Springer Verlag, 2001.

[Fis01] B. Fischer. Deduction-Based Software Component Retrieval. PhD thesis, Univer-
sität Passau, Germany, November 2001.

[FK98] S. Frolund and J. Koistinen. Quality-of-Service specifications in distributed object
systems. Distributed Systems Engineering, 5(4):179-202, 1998.

[FLV00] P. H. Feiler, B. Lewis, and S. Vestal. Improving predictability in embedded real-
time systems. Special report CMU/SEI-2000-SR-011, Carnegie Mellon Software
Engineering Institute, December 2000. 2000.

[FW98] C. Ferdinand and R. Wilhelm. On predicting data cache behaviour for real-time
systems. In Proc. ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES’98), Montreal, Canada, June 1998, volume 1474
of Lecture Notes in Computer Science, pages 16-30. Springer Verlag, 1998.

[FW99] B. Fischer and J. Whittle. An integration of deductive retrieval into deductive
synthesis. In Proc. 14th IEEE Int. Conf. on Automated Software Engineering
(ASE’99), Cocoa Beach, Florida, USA, Oct. 1999, pages 52-62. IEEE Comp. Soc.
Press, 1999.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6):17-26, 1995.

[GHG+93] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.
Larch: Languages and Tools for Formal Specification. Texts and Monographs in
Computer Science. Springer Verlag, 1993.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GI94a] M. R. Girardi and B. Ibrahim. Automatic indexing of software artifacts. In Proc.
3rd Int. Conf. on Software Reuse, Rio De Janeiro, Brazil, Nov. 1994, pages 24-32.
IEEE Comp. Soc. Press, 1994.

[GI94b] M. R. Girardi and B. Ibrahim. A similarity measure for retrieving software arti-
facts. In Proc. 6th Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE’94), Jurmala, Latvia, June 1994, pages 478-485. Knowledge Systems Insti-
tute, 1994.

[GJS96] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Addison-
Wesley, 1996.

[GLM00] S. Gnesi, D. Latella, and M. Massink. A stochastic extension of a behavioural
subset of UML statechart diagrams. In Proc. 5th IEEE Int. Symp. on High-
Assurance Systems Engineering (HASE’2000), Albuquerque, NM, USA, Nov. 2000,
pages 55-64. IEEE Comp. Soc. Press, 2000.

[GMV99] N. Guarino, C. Masolo, and G. Vetere. OntoSeek: Content-based access to the
web. IEEE Intelligent Systems, 14(3):70-80, 1999.

[Gos95] C. Goswell. The COM programmer’s cookbook, 1995.
[Gös01] G. Gössler. Prometheus – a compositional modeling tool for real-time systems. In

Proc. 1st Workshop on Real-Time Tools (RT-TOOLS’2001), Aalborg, Demark,
Aug. 2001, 2001. Published as Technical report 2001-014, Uppsala University,
Department of Information Technology.

208 16 References

[GPJ02] S. Gérard, P. Petterson, and B. Josko. Methodology for developing real-time em-
bedded systems. Pub IST-1999-10069, CEE, Paris, France, 2002.

[Gri03] K. Grimm. Software technology in an automotive company: major challenges. In
Proc. 25th Int. Conf. on Software Engineering (ICSE’2003), Portland, OR, USA,
May 2003, pages 498-505. IEEE Comp. Soc. Press, 2003.

[GS02a] G. Gössler and A. Sangiovanni-Vincentelli. Compositional modeling in Metropo-
lis. In Proc. 2nd Int. Conf. on Embedded Software (EMSOFT’2002), Grenoble,
France, Oct. 2002, volume 2491 of Lecture Notes in Computer Science, pages 93-
107. Springer Verlag, 2002.

[GS02b] G. Gössler and J. Sifakis. Composition for component-based modeling. In Proc.
1st Int. Symp. Formal Methods for Components and Objects (FMCO’2002), Lei-
den, The Netherlands, Nov. 2002, volume 2852 of Lecture Notes in Computer Sci-
ence, pages 443-466. Springer Verlag, 2002.

[GTT02] F. Gérard, F. Terrier, and Y. Tanguy. Using the model paradigm for real-time
systems development: ACCORD/UML. In Proc. Workshops on Advances in Ob-
ject-Oriented Information Systems (OOIS’2002), Montpellier, France, Sep. 2002,
volume 2426 of Lecture Notes in Computer Science, pages 260-269. Springer Ver-
lag, 2002.

[Gur95] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 9-36. Oxford University Press, 1995.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic,
1993.

[Has02] W. Hasselbring. Component-based software engineering. In S. K. Chang, editor,
Handbook of Software Engineering and Knowledge Engineering Vol. 2: Emerging
Technologies, pages 289-306. World Scientific Publishing, 2002.

[Hen01] T. A. Henzinger. Giotto: A time-triggered language for embedded programming.
In Proc. 1st Int. Workshop on Embedded Software (EMSOFT’2001), Tahoe City,
CA, USA, Oct. 2001, volume 2211 of Lecture Notes in Computer Science, pages
166-184. Springer Verlag, 2001.

[Her02] H. Hermanns. Interactive Markov Chains and The Quest for Quantified Quality,
volume 2428 of Lecture Notes in Computer Science. Springer Verlag, 2002.

[Hil96] J. Hillston. A Compositional Approach to Performance Modeling. Cambridge
University Press, 1996.

[HJPP02] W.-M. Ho, J.-M. Jézéquel, F. Pennaneac’h, and N. Plouzeau. A toolkit for weaving
aspect oriented UML designs. In Proc. 1st Int. Conf. on Aspect-Oriented Software
Development (AOSD’2002), Univ. Twente, Enschede, NL, Apr. 2002, pages 99-
105. ACM Press, 2002.

[HM02] M. Hau and P. Mertens. Computergestuetzte Auswahl komponentenbasierter An-
wendungssysteme. Informatik Spektrum, 25(5):331-340, 2002.

[HS99] P. Herzum and O. Sims. Business Component Factory: A Comprehensive Over-
view of Component Based Development for the Enterprise. John Wiley and Sons,
1999.

[Hyp] Hyperformix. http://www.hyperformix.com.
[IEC95] IEC. Application and implementation of IEC 61131-3. Technical report, IEC,

Geneva, 1995.
[Ilo] Ilogix rhapsody. http://www.ilogix.com.
[IN02] D. Isovic and C. Norström. Components in real-time systems. In Proc. 8th Int.

Conf. on Real-Time Computing Systems and Applications (RTCSA’2002), Tokyo,
Japan, Mar. 2002, 2002.

[ITE] Technology Roadmap of Software Intensive Systems, the vision of ITEA. ITEA
Office Association, http://ww.itea-office.org.

 16 References 209

[ITU96] International Telecommunications Union, ITU-TS. Recommendation Z.120: Mes-
sage Sequence Chart (MSC96), April 1996.

[ITU99a] International Telecommunications Union, ITU-T. Recommendation Z.100: Speci-
fication and Description Language (SDL). http://www.sdl-forum.org, November
1999.

[ITU99b] International Telecommunications Union, ITU-T. Recommendation Z.109: Lan-
guages for telecommunications applications – SDL combined with UML, Novem-
ber 1999.

[JC93] J.-J. Jeng and B. H. C. Cheng. Using formal methods to construct a software com-
ponent library. In Proc. 4th European Software Engineering Conference
(ESEC’93), Garmisch-Partenkirchen, Germany, Sep. 1993, volume 717 of Lecture
Notes in Computer Science, pages 397-417. Springer Verlag, 1993.

[JC94] J.-J. Jeng and B. H. C. Cheng. A formal approach to reusing more general compo-
nents. In Proc. 9th Knowledge-Based Software Engineering Conference
(KBSE’94), Monterey, California, USA, Sep. 1994, pages 90-97. IEEE Comp. Soc.
Press, 1994.

[JD96] P. K. Jha and N. D. Dutt. High-level library mapping for arithmetic components.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):157-169,
1996.

[JF00] H. Jubin and J. Friedrichs. Enterprise JavaBeans by Example. Prentice Hall, 2000.
[JKK+01] C. Jones, M.-O. Killijian, H. Kopetz, E. Marsden, N. Moffat, M. Paulitsch,

D. Powell, B. Randell, A. Romanovsky, and R. Stroud. Revised version of DSoS
conceptual model. Project Deliverable for DSoS (Dependable Systems of Sys-
tems), Research Report 35/2001, Technische Universität Wien, Institut für Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2001.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In Proc.
IFIP Congress (Information Processing’74), Stockholm, Sweden, Aug. 1974, pages
471-475. North-Holland, 1974.

[Ker01] L. Kerber. Scenario-based performance evaluation of SDL/MSC-specified sys-
tems. In Performance Engineering – State of the Art and Current Trends, volume
2047 of Lecture Notes in Computer Science, pages 185-201. Springer Verlag, 2001.

[KK94] K. H. Kim and H. Kopetz. A real-time object model RTO.k and an experimental
investigation of its potential. In Proc. 18th Int. Computer Software and Applica-
tions Conference (COMPSAC’94), Taipei, Taiwan, Nov. 1994, pages 392-402.
IEEE Comp. Soc. Press, 1994.

[KK00] M. Kolberg and K. Kimbler. Service interaction management for distributed ser-
vices in a deregulated market environment. In Proc. 6th Int. Workshop on Feature
Interactions in Telecommunications and Software Systems (FIW’2000), Glasgow,
Scotland, May 2000, pages 23-37. IOS Press, 2000.

[Kle75] L. Kleinrock. Queueing systems – Volume 1: Theory. John Wiley and Sons, 1975.
[Kle76] L. Kleinrock. Queueing systems – Volume 2: Computer Applications. John Wiley

and Sons, 1976.
[KLM+97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proc. 11th European Conf. Object-
Oriented Programming (ECOOP’97), Jyväskylä, Finland, June 1997, volume
1241 of Lecture Notes in Computer Science, pages 220-242. Springer Verlag,
1997.

[KM96] B. B. Kristensen and D. C. M. May. Component composition and interaction. In
Proc. Int. Conf. on Technology of Object-Oriented Languages and Systems
(TOOLS PACIFIC’96), Melbourne, Australia, 1996.

210 16 References

[KR93] H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: A solution to a
real-time synchronization problem. In Proc. 14th Real-Time Systems Symposium
(RTSS’93), Raleigh-Durham, NC, Dec. 1993, pages 131-137. IEEE Comp. Soc.
Press, 1993.

[KS03] H. Kopetz and N. Suri. Compositional design of RT systems: A conceptual basis
for specification of linking interfaces. In Proc. 6th IEEE Int. Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC’2003), Hakodate, Hokkaido,
Japan, May 2003, pages 51-60. IEEE Comp. Soc. Press, 2003.

[Lam94] L. Lamport. The temporal logic of actions. ACM Trans. on Programming Lan-
guages and Systems, 16(3):872-923, 1994.

[LB99] G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition technique for
more expressive specifications. In Proc. World Congress on Formal Methods in
the Development of Computing Systems (FM’99), Toulouse, France, Sep. 1999,
vol. II, volume 1709 of Lecture Notes in Computer Science. Springer Verlag, 1999.

[LCS02] F. Lüders, I. Crnkovic, and A. Sjögren. Case study: Componentization of an indus-
trial control system. In Proc. 26th Int. Computer Software and Applications Con-
ference (COMPSAC’2002), Oxford, UK, Aug. 2002, pages 67-74. IEEE Comp.
Soc. Press, 2002.

[Lee03] E. A. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL
M03/25, University of California, Berkeley, July 2003.

[Lew98] R. W. Lewis. Programming industrial control systems using IEC 1131-3. IEE,
1998.

[Loo] Loop project webpage. http://www.cs.kun.nl/~bart/LOOP/.
[LX01] E. A. Lee and Y. Xiong. System-level types for component-based design. In Proc.

1st Int. Workshop on Embedded Software (EMSOFT’2001), Tahoe City, CA, USA,
Oct. 2001, volume 2211 of Lecture Notes in Computer Science, pages 237-253.
Springer Verlag, 2001.

[Mau96] S. Mauw. The formalization of message sequence charts. Computer Networks and
ISDN Systems, 28(12):1643-1657, 1996.

[MDA] Model Driven Architecture. \www.omg.org/mda/.
[MDVC03] W. Monin, F. Dubois, D. Vincent, and P. Combes. Looking for better integration

of design and performance engineering. In SDL 2003: System Design, Proc. 11th
Int. SDL Forum, Stuttgart, Germany, July 2003, volume 2708 of Lecture Notes in
Computer Science, pages 1-17. Springer Verlag, 2003.

[Mer03] Mercedes. Innovation – Research & Technology. http://www.mercedes-
benz.com/com/e/home/innovation/, 2003.

[Met] Meta-H homepage. http://www.htc.honeywell.com/metah/.
[Mey91] B. Meyer. Eiffel: The Language. Prentice Hall, 1991.
[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997. Second

edition.
[MFN04a] A. Möller, J. Fröberg, and M. Nolin. Industrial requirements on component tech-

nologies for embedded systems. In Proc. Int. Symp. on Component-Based Software
Engineering (CBSE7), Edinburgh, Scotland , May 2004, Lecture Notes in Com-
puter Science. Springer Verlag, 2004. To appear.

[MFN04b] A. Möller, J. Fröberg, and M. Nolin. Requirements on component technologies for
heavy vehicles. MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-150/2004-1-
SE, Mälardalen Real-Time Research Centre, Mälardalen Univ., January 2004.

[MG02] E. Meijer and J. Gough. Technical overview of the Common Language Runtime,
2002. White paper.

[Mic95] Microsoft Corporation. The component object model specification, October 1995.
24th ed.

 16 References 211

[Mic01] Microsoft Corporation. .NET framework developer’s guide.
http://msdn.microsoft.com/library/default.asp, 2001.

[MM01] J. Miller and J. Mukerji. Model driven architecture (MDA), July 2001. OMG,
Draft Specification ormsc/2001-07-01.

[MMM93] R. T. Mittermeir, R. Mili, and A. Mili. Building a repository of software compo-
nents: A formal specifications approach. In Proc. 6th Workshop on Institutionaliz-
ing Software Reuse (WISR’93), Owego, NY, USA, Nov. 1993, 1993.

[MMM97] A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software conponents: A
refinement based system. IEEE Transactions on Software Engineering, 23(7):445-
460, 1997.

[MMM98] A. Mili, R. Mili, and R. Mittermeir. A survey of software reuse libraries. Annals of
Software Engineering, 5:349-414, 1998.

[MN98] N. Maiden and C. Ncube. Acquiring COTS software selection requirements. IEEE
Software, 15(2):46-56, 1998.

[Mol82] M. K. Molloy. Performance analysis using Stochastic Petri Nets. IEEE Trans. on
Computers, C-31(9):913-917, 1982.

[MOS99] MOST Cooperation, MOST specification framework Rev 1.1,
http://www.oasis.com/support/downloads/mosttechnology/MOSTSpecification_Fr
amework_1V1.pdf , 1999.

[MRB96] R. S. Mitra, P. S. Roop, and A. Basu. A new algorithm for implementation of
design functions by available devices. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 4(2):170-180, 1996.

[MS97] L. Mikhajlov and E. Sekerinski. The fragile base class problem and its solution.
Technical Report 117, Turku Centre for Computer Science, Turku, Finland, May
1997.

[MSP+00] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft, and S. E. Condon.
Investigating and improving a COTS-based software development. In Proc. 22nd
Int. Conf. on Software Engineering (ICSE’2000), Limerick, Ireland, June 2000,
pages 32-41. ACM Press, 2000.

[MSZ01] P. Müller, C. Stich, and C. Zeidler. Components work: Component technology for
embedded systems. In Proc. 27th EUROMICRO Conference: A Net Odyssey, War-
saw, Poland, Sep. 2001, pages 146-153. IEEE Comp. Soc. Press, 2001.

[MT89] M. D. Mesarovic and Y. Takahara. Abstract Systems Theory, volume 116 of Lec-
ture Notes in Control and Information Sciences. Springer Verlag, 1989.

[MW92] Z. Manna and R. J. Waldinger. Fundamentals of deductive program synthesis.
IEEE Transactions on Software Engineering, 18(8):674-704, 1992.

[NAD+02] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. P. Black, P. O. Müller,
C. Zeidler, T. Genssler, and R. van den Born. A component model for field de-
vices. In Proc. IFIP/ACM Working Conference on Component Deployment
(CD’2002), Berlin, Germany, June 2002, volume 2370 of Lecture Notes in Com-
puter Science, pages 200-209. Springer Verlag, 2002.

[Nee91] S. Neema. System-Level Synthesis of Adaptive Computing Systems. PhD thesis,
Vanderbilt University, Nashville, TN, USA, May 1991.

[NGS+01] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and N.-E. Bånkestad.
Experiences from introducing state-of-the-art real-time techniques in the automo-
tive industry. In Proc. 8th IEEE Int. Conf. on Engineering of Computer-Based Sys-
tems (ECBS’2001), Washington, DC, USA, Apr. 2001, pages 111-118. IEEE
Comp. Soc. Press, 2001.

[Nic02] B. Nicolas. MDA experiment in telecom industry. 1st MDA Summer School,
Brest, France, September 2002.

[Ome] IST 33522 OMEGA project on Correct Development of Real-Time Embedded
Systems. http://www-omega.imag.fr/.

212 16 References

[OMG01a] OMG. The COmmon Object Request Broker: Architecture and specification,
February 2001.

[OMG01b] OMG. Dynamic scheduling, joint final submission, August 2001.
[OMG01c] OMG. Response to the OMG RFP for schedulability, performance, and time (re-

vised submission), June 2001. OMG, RFP ad/2001-06-14.
[OMG01d] OMG. A UML profile for enterprise distributed object computing, June 2001.

ptc/2001-12-04.
[OMG02] OMG. UML 1.4 with action semantics, 2002. OMG ptc/02-01-09.
[OPC03] OPC Foundation. \www.opcfoundation.org/, 2003.
[OPN] OPNET. http://www.opnet.com/.
[OS95] OMG and R. Soley. Object management architecture guide, revision 3.0, 1995.
[OSE] OSEK/VDX OS 2.2. http://www.osek-vdx.org.
 [PA99] J. Penix and P. Alexander. Efficient specification-based component retrieval.

Automated Software Engineering, 6(2):139-170, 1999.
[Pat00] T. Pattison. Programming Distributed Applications with COM+ and Microsoft

Visual Basic 6.0, 2nd edition. Microsoft Press, 2000.
[PEC] PECOS project. http://www.pecos-project.org.
[Pen98] J. Penix. Automated Component Retrieval and Adaptation Using Formal Specifica-

tions. PhD thesis, Univ. Cincinnati, Ohio, USA, 1998.
[Per98] D. E. Perry. Generic architecture descriptions for product lines. In Proc. 2nd Int.

ESPRIT ARES Workshop on Development and Evolution of Software Architectures
for Product Families, Las Palmas de Gran Canaria, Spain, Feb. 1998, volume
1429 of Lecture Notes in Computer Science, pages 51-56. Springer Verlag, 1998.

[Pet02] P. Peti. The concepts behind time, state, component, and interface – a literature
survey. Research Report 53/2002, Technische Universität Wien, Institut für Tech-
nische Informatik, Vienna, Austria, 2002.

[PP93] A. Podgurski and L. Pierce. Retrieving reusable software by sampling behaviour.
ACM Trans. on Software Engineering and Methodology, 2(3):286-303, 1993.

[PW03] D. C. Petriu and C. M. Woodside. Performance analysis with uml: layered queue-
ing models from the performance profile. In L. Lavagno, G. Martin, and B. Selic,
editors, UML for Real: Design of Embedded Real-Time Systems, pages 221-240.
Kluwer Academic, 2003.

[RAJ01] E. Roman, S. Ambler, and T. Jewell. Mastering Enterprise JavaBeans. John Wiley
and Sons, 2001. 2nd edition.

[Ray02] J. T. Rayfield. Keynote presentation. CASES/EMSOFT’2002, October 2002.
[Reu01] R. H. Reussner. The use of parameterised contracts for architecting systems with

software components. In Proc. 6th Int. Workshop on Component-Oriented Pro-
gramming (WCOP’2001), Budapest, Hungary, June 2001, 2001.

[RL02] H. J. Reekie and E. A. Lee. Lightweight component models for embedded systems.
Technical Report UCB ERL M02/30, Electronics Research Laboratory, University
of California at Berkeley, October 2002.

[RNHL99a] H. J. Reekie, S. Neuendorffer, C. Hylands, and E. A. Lee. Software practice in the
Ptolemy project. Technical Report GSRC-TR-1999-01, Gigascale Silicon Research
Center, April 1999.

[RNHL99b] H. J. Reekie, S. Neuendorffer, C. Hylands, and E. A. Lee. Software practice in the
Ptolemy project. Gsrc-tr-1999-01, Gigascale Silicon Research Center, 1999.

[RNR03] Positionnement du RNRT par rapport aux grandes “Roadmaps” Européennes du
secteur des Télécommunications.
http://www.telecom.gouv.fr/rnrt/qdn/roadmap_technopolis.pdf, December 2003.

[RS00] P. S. Roop and A. Sowmya. A formal approach to component-based development
of embedded systems. Tech. Report UNSW-CSE-TR-0004, Univ. South Wales,
Sydney, Australia, May 2000.

 16 References 213

[SBK01] Natasha Sharygina, James C. Browne, Robert P. Kurshan: A Formal Object-
Oriented Analysis for Software Reliability: Design for Verification. In Proc. FASE
2001, Italy, April 2001 pp. 318-332. LNCS 2029, Springer Verlag, 2001.

[SD98] J. Smith and G. De Micheli. Polynomial methods for component matching and
verification. In International Conference on Computer Aided Design (ICCAD-98),
San Jose, CA, USA, Nov. 1998, pages 678-685. ACM Press and IEEE Comp. Soc.
Press, 1998.

[Sel96] B. Selic. Real-time object-oriented modeling (ROOM). In Proc. 2nd IEEE Real-
Time Technology and Applications Symposium (RTAS’96), Boston, MA, USA, June
1996, pages 214-219. IEEE Comp. Soc. Press, 1996.

[Sel02] B. Selic. Physical programming: Beyond mere logic. In Proc. 2nd Int. Conf. on
Embedded Software (EMSOFT’2002), Grenoble, France, Oct. 2002, volume 2491
of Lecture Notes in Computer Science, pages 399-406. Springer Verlag, 2002.

[SF97] J. Schumann and B. Fischer. NORA/HAMMR: Making deduction-based software
component retrieval practical. In Proc. Int. Conf. on Automated Software
Engineering (ASE’97), Lake Tahoe, CA, USA, Nov. 1997, pages 246-254. IEEE
Comp. Soc. Press, 1997.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[SM91] W. H. Sanders and J. F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE Journal on Selected Areas in Communications,
9(1):25-36, 1991.

[SMB97] B. Steffen, T. Margaria, and V. Braun. The Electronic Integration Platform: Con-
cepts and design. Journal of Software Tools for Technology Transfer, 1(1-2):9-30,
1997.

[SOM00a] R. Soley and the OMG Staff Strategy Group. Model Driven Architecture (Draft
3.2), November 2000. OMG, White paper.

[SOM00b] R. Soley and the OMG Staff Strategy Group. Overview of the proposed Model
Driven Architecture to augment the Object Management Architecture. omg/00-11-
05, 2000.

[SOM01] J. Siegel and the OMG Staff Strategy Group. Developing in OMG’s Model-Driven
Architecture, November 2001. OMG, White paper, Revision 2.6.

[SR02] H. W. Schmidt and R. Reussner. Generating adapters for concurrent component
protocol synchronisation. In Proc. 5th Int. Conf. Formal Methods for Open Object-
Based Distributed Systems (FMOODS’2002), Univ. Twente, Enschede, NL, Mar.
2002, volume 209 of IFIP Conference Proceedings, pages 213-229. Kluwer Aca-
demic, 2002.

[Ste93] J.-B. Stefani. Computational aspects of QoS in an object based distributed architec-
ture. In Proc. 3rd Int. Workshop on Responsive Computer Systems, Lincoln, NH,
USA, September 1993.

[Sun97] Sun Microsystems.Javabeans.
http://java.sun.com/products/javabeans/docs/spec.html, July 1997.

[Sun02] Sun Microsystems. Enterprise JavaBeans specification.
http://java.sun.com/products/ejb/index.html, 2002.

[SWL+94] M. E. Stickel, R. J. Waldinger, M. R. Lowry, T. Pressburger, and I. Underwood.
Deductive composition of astronomical software from subroutine libraries. In
Proc. 12th Int. Conf. Automated Deduction (CADE’94), Nancy, France, June-July
1994, volume 814 of Lecture Notes in Computer Science, pages 341-355. Springer
Verlag, 1994.

[Szy98] C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM
Press and Addison-Wesley, 1998.

[Tel99a] Telelogic. ObjectGEODE 4.1 Reference Manual, 1999.

214 16 References

[Tel99b] Telelogic. TAU Reference Manual, 1999.
[Tel02] Telelogic. TAU Generation 2 Reference Manual, 2002.
[Ten00] D. Tennenhouse. Proactive computing. Communications of the ACM, 43(5):43-50,

2000.
[Tes03] T. Teschke. Semantic Component Retrieval Based on Business Process Models

(Semantische Komponentensuche auf Basis von Geschäftsprozessmodellen). PhD
thesis, Carl von Ossietzky Universität Oldenburg, Germany, September 2003. (In
German).

[TG00] F. Terrier and S. Gérard. For a full integration of real-time concern into OO mod-
els, or “how to popularize real-time programming?”. In Proc. 3rd Int. Conf. UML,
The Unified Modeling Language: Advancing the Standard (UML’2000), York, Uk,
Oct. 2000, volume 1939 of Lecture Notes in Computer Science, pages 25-35.
Springer Verlag, 2000.

[TUC03] Information Systems & Management. Component Markets – An overview.
http://www.tu-chemnitz.de/wirtschaft/wi2/projects/components/, 2003.

[U2P03] U2 Partners. UML 2.0: Superstructure, 2nd revised submission. OMG Tech. Re-
port ad/03-01-02, 2003.

[UML] OMG. UML – Unified Modelling Language. http://www.omg.org/uml/.
[USE01] USE, a UML-based specification environment, 2001.
[vO02] R. C. van Ommering. Building product populations with software components. In

Proc. 22rd Int. Conf. on Software Engineering (ICSE’2002), Orlando, FL, USA,
May 2002, pages 255-265. ACM Press, 2002.

[vOvdLK00] R. C. van Ommering, F. van der Linden, and J. Kramer. The Koala component
model for consumer electronics software. IEEE Computer, 33(3):78-85, 2000.

[WBGP01] T. Weis, C. Becker, K. Geihs, and N. Plouzeau. A UML meta-model for contract
aware components. In Proc. 4th Int. Conf. UML, The Unified Modeling Language:
Modeling Languages, Concepts, and Tools (UML’2001), Toronto, Canada, Oct.
2001, volume 2185 of Lecture Notes in Computer Science, pages 442-456.
Springer Verlag, 2001.

[WHSB98] C. M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov. A wideband approach to
integrating performance prediction into a software design environment. In Proc.
1st Int. Workshop on Software and Performance (WOSP’98), Santa Fe, NM, USA,
Oct. 1998, pages 31-41. ACM Press, 1998.

[Wij01] J. G. Wijnstra. Components, interfaces and information models within a platform
architecture. In Proc. 3rd Int. Conf. Generative and Component-Based Software
Engineering (GCSE’2001), Erfurt, Germany, Sept. 2001, volume 2186 of Lecture
Notes in Computer Science, pages 25-35. Springer Verlag, 2001.

[WK99] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling
with UML. Addison-Wesley, 1999.

[WKB04] M. Wirsing, A. Knapp, and S. Balsamo, editors. Proc. 9th Monterey Software
Engineering Workshop on Radical Innovations of Software and Systems Engineer-
ing in the Future (RISSEF’2002), Venice, Italy, Oct. 2002, volume 2941 of Lecture
Notes in Computer Science. Springer Verlag, 2004.

[WPG+02] T. Weis, N. Plouzeau, K. Geihs, A.-M. Sassen, J.-M. Jézéquel, and K. Macédo de
Amorim. QCCS: Quality controlled component-based software development. In
F. Barbier, editor, Business Component-Based Software Engineering, volume 705
of Kluwer Int. Series in Engineering and Computer Science, chapter 9. Kluwer
Academic, 2002.

[WSO00] N. Wang, D. Schmidt, and C. O’Ryan. Overview of the CORBA Component
Model, September 2000. White paper.

 16 References 215

[WZS02] M. Winter, C. Zeidler, and C. Stich. The PECOS software process. In Proc. Work-
shop on Components-based Software Development Processes, Austin, TX, USA,
April 2002.

[YS97] D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM Trans. on Programming Languages and Systems, 19(2):292-333, 1997.

[YWRS92] Guohui Yu, L. R. Welch, W. Rossak, and A. D. Stoyenko. Automatic retrieval of
formally specified real-time software components. In Proc. 5th Workshop on Insti-
tutionalizing Software Reuse (WISR’92), Palo Alto, CA, October, 1992, 1992.

[ZW93] A. M. Zaremski and J. M. Wing. Signature matching: A key to reuse. In Proc.
ACM SIGSOFT Symp. on the Foundations of Software Engineering, Los Angeles,
CA, USA, Dec. 1993, pages 182-190. ACM Press, 1993.

[ZW97] A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM Trans. on Software Engineering and Methodology, 6(4):333-369, 1997.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 216 – 226, 2005.
© Springer-Verlag Berlin Heidelberg 2005

17 Executive Overview on Adaptive Real-Time Systems
for Quality of Service Management

17.1 Motivation and Objectives

The main goal for a Quality of Service management layer in an adaptive embedded
system is to provide predictability and flexibility for systems and environments where
requirements on resources are inherently unstable and difficult to predict in advance.
Such a difficulty is due to different causes. First of all, modern computer architectures
include several low-level mechanisms that are designed to enhance the average per-
formance of applications, but unfortunately introduce high variations on tasks’ execu-
tion times. In other situations, as in multimedia systems, processes can have highly
variable execution times. As a consequence, the overall workload of a computing
system is subject to significant variations, which can produce an overload and degrade
the performance of the entire system in an unpredictable fashion. This situation is
particularly critical for small embedded devices used in consumer electronics, tele-
communication systems, industrial automation, and automotive systems. In fact, in
order to satisfy a set of constraints related to weight, space, and energy consumption,
these systems are typically built using small microprocessors with low processing
power and limited resources.

For most of these systems, the classical real-time approach based on a rigid off-line
design, worst-case assumptions and a priori guarantee would keep resources unused
for most of the time, therefore is not acceptable for efficiency reasons. When re-
sources are scarce, they cannot be wasted. On the other hand, an off-line design based
on average-case behaviour is also critical, because it would be difficult to guarantee
timing constraints when resources are overloaded.

To prevent unpredictable performance degradations due to overloads, a real-time
system must react to load variations, degrading its performance in a controlled fashion
acting on system, as well as application parameters. The process of controlling the
performance of a system as a function of workload variations is referred to as Quality
of Service (QoS) Management. Performing efficient QoS management requires spe-
cific support at different levels of the system architecture. Hence, new software meth-
odologies are emerging in Embedded Systems, which strictly relates to Real-Time
Operating Systems (RTOS), Middleware, and Networks.
The objective of this document is to provide a complete picture of these elements in
the context of Embedded Systems, and to show how they relate to Quality of Service
Management. After analyzing the state of the art of the available software and meth-
odologies currently used in real-time applications, we describe the limitations of cur-
rent solutions and the new research trends emerging to overcome them.

Before discussing the different topics in detail, we provide some definition of the
main concepts recurring throughout the document, and present some examples of the
most important application domains of real-time embedded systems. Then we de-
scribe the importance of adaptation in modern embedded systems, with particular
emphasis on quality of service management.

 17.2 Essential Characteristics 217

17.2 Essential Characteristics

Throughout this document, the concepts of real-time system, embedded system, and
quality of service recur very frequently. Considering the broad use of these terms in
different research and industrial communities, there is still not a universally accepted
meaning for them. For this reason, we decided to provide a number of definitions that
will help the reader to better understand the rest of this document.

Embedded Computer System
A computer (and its software) is considered embedded if it is an integral component
of a larger system and is used to control and/or directly monitor that system, using
special hardware devices. (From IEEE P1003.13/D2.1, February 2003).

Real-Time System
A real-time system is a system whose performance depends not only on the values of
its outputs, but also on the time at which these values are produced.

A real-time system is a combination of one or more computers, hardware I/O de-
vices and special purpose software in which there is a strong temporal interaction with
the environment. An embedded system acts within – and in many cases on – the
physical environment. Embedded Systems are, by nature, inherently real-time.

The environment changes with time and as a consequence there are timing re-
quirements imposed on the software. Since the system simultaneously controls or
reacts to different parts or subsystems of that environment, it is naturally concurrent.

A common misconception is to consider a real-time system as a fast computer.
This is wrong because, no matter how fast a computer is, its control performance must
always be guaranteed against the characteristics of the environment. The most impor-
tant feature for a real-time system is not speed, but predictability. Typically, in a sys-
tem with several concurrent activities, high-speed tends to minimize the average per-
formance of the task set, whereas a predictable behaviour aims at guaranteeing the
individual timing constraints of each task.

Depending on the consequences of missing timing constraints, real-time tasks are
usually distinguished into hard and adaptive:

A real-time task is said to be hard if missing a single deadline may cause catastro-
phic consequences on the controlled system.
A real-time task is said to be adaptive if missing one or more deadlines does not
jeopardize the correct system behaviour, but only causes a performance degrada-
tion. For adaptive real-time systems, the goal is typically to meet some Quality of
Service (QoS) requirements.

Quality of Service
The quality of service is a collective effect of service performances that determine the
degree of satisfaction by a user of the service. (ITU-T Recommendation E.800 – Ge-
neva 1994).

218 17 Overview on Adaptive Real-Time Systems for Quality of Service Management

Real-Time Operating System
A real-time operating system is an operating system able to provide a required level
of service in a bounded response time. (From POSIX IEEE Std 1003.1:2001).

Hard Real-Time Operating System
A hard real-time operating system is a real-time operating system able to enforce hard
timing constraints on tasks for which there exists a feasible schedule.

Another common misconception is to consider an embedded system as a small com-
puting device. This is not precise, because many embedded systems are large in size
and include several sensors, actuators and computing elements. Examples of large
embedded systems include air traffic controllers, flight control systems, flight simula-
tors, and industrial controllers for assembly chains. Examples of small embedded
systems include cell phones, car engine controllers, smart sensors, and smart cards.

Most of the embedded systems considered above have a tight interaction with the
environment, hence must have real-time features to perform correct operations. For
example, in flight control systems, the dynamic behaviour of the aircraft imposes
stringent timing constraints on the various concurrent activities related to sensing,
actuation, and control. The same is true in flight simulators, with the difference that in
these systems the environment is simulated through a computer program.

In some other cases, the environment is so dynamic that one or more internal
mechanisms of the computing system need to be modified in order to cope with the
changes and achieve the desired level of performance.

Adaptive Embedded System
An embedded system is adaptive if it is able to adjust its internal strategies in re-
sponse to a change in the environment, to keep the system performance at a desired
level.

The implementation of adaptive real-time embedded systems requires several is-
sues to be considered at the same time. They involve predictable scheduling strate-
gies, time-bounded operating systems mechanisms, QoS management policies, adap-
tive middleware software, and expressive programming languages. Moreover, most of
embedded systems work under several resource constraints, due to space, weight,
energy, and cost limitations imposed by the specific application. Often, such limita-
tions also affect memory and computing power. As a consequence, efficient resource
management is a critical aspect in embedded systems, that must be considered at
different architecture levels,

17.3 Role in Future Embedded Systems

Since some years ago, the use of processor-based devices in our daily lives has in-
creased dramatically. Mobile phones and PDAs are used extensively. Consumer Elec-
tronics (Set-top boxes, TVs, DVD players, etc.) are increasingly using microproces-
sors as a core system component, instead of using dedicated hardware. This trend is
expected to continue in the near future. There are extensive research work on topics
such as ambient intelligence, pervasive systems, disappearing computer, home auto-

 17.3 Role in Future Embedded Systems 219

mation, and ubiquitous computing, which deal with integrating computers in our lives
even more, and in a way that they are hidden.

Most of these devices share a number of important properties, such as:

Limited resources. They have limited devices, due to cost constraints related with
mass production, and strong industrial competition. In order to make these devices
cost-effective, it is mandatory to make a very efficient use of the computational
resources.
Demanding quality requirements. Unfortunately, in software industry misbehav-
ing products are commonplace. However, this is not the case with consumer elec-
tronics, home appliances, and mobile devices. Users are accustomed to robust and
well behaved devices. It is obvious that this requirement will not be relaxed be-
cause of the usage of processors in their construction.
Applications with time requirements. Some of the applications to be run in these
devices have time requirements. They can be related with multimedia processing,
process controllers, etc.

The challenge is how to implement applications that can execute efficiently on limited
resources, that meets extra-functional requirements, such as timeliness, robustness,
dependability, performance etc.

This context is where the term Quality of Service applies. There is no clear and
general accepted definition of this topic. The basic aim of QoS is to make it possible
for applications to fulfill some extra-functional requirements or characteristics. The
following two definitions can help to clarify it:

QoS characteristics have been defined as a quantifiable aspect of QoS, which is
defined independently of the means by which it is represented or controlled. They
are extra-functional characteristics of a system or application, affecting the per-
ceived quality results.
QoS mechanisms can be defined as a specific mechanism that may use protocol
elements, QoS parameters or QoS context, possibly in conjunction of other QoS
mechanisms, in order to support establishment, monitoring, maintenance, control,
or enquiry of QoS. Negotiation, optimization, and adaptation are examples of QoS
mechanisms that are usually supported by QoS middleware.

It seems evident, that an application cannot provide a stable QoS characteristics if it
has not some guarantees on available computing power. Then, resource management
for providing resource reserves or budgets is basic for supporting QoS mechanisms.
The operating system or middleware reserves a portion of the system resources to an
application, which has to provide a predefined stable output quality. This has been
precisely the goal of years of research on real-time scheduling and schedulability
analysis: to ensure that are enough resources (CPU, network bandwidth, etc.) for
meeting time requirements. This is the reason for the increment on the interest on
real-time techniques during the last years.

Real-time techniques have been one of the bases for the implementation of re-
source reserves. In particular, the management of CPU has used traditional real-time
scheduling policies, such as fixed priority and earliest deadline first. However, the
nature of the application to run in the mentioned type of devices makes it very diffi-
cult to set an upper bound to the required resources that is usable. In most of the

220 17 Overview on Adaptive Real-Time Systems for Quality of Service Management

cases, this value will be much higher than the average case. If resource reservation is
based on worst case resource usage, an important amount of computational resources
may be wasted. In addition, these are not hard real-time applications.

To effectively assign system resources among applications and achieve predictabil-
ity and flexibility, a number of issues should be further investigated. The most rele-
vant ones include, at the higher abstraction level, protocols for managing quality lev-
els of applications and for middleware QoS managers. Suitable architectures will
allow obtaining flexible systems. Also, it will be an added value to aim at supporting
as many types of applications as possible; therefore, generality is an issue. At a lower
level, further work on resource management algorithms, new task models, admission
control, monitoring, and adaptation algorithms should be done.

Also, a promising research area consists in developing hybrid methods, which in-
tegrate two complementary types of adaptation strategies: the one that is embedded in
the application, and the adaptation scheme that is performed by a QoS manager. Such
integration can be done by controlling the CPU bandwidth reserved to a task, but
allowing each task to change its QoS requirements if the amount of reserved resources
is not sufficient to accomplish the goal within a desired deadline. Using such an inte-
grated approach, the QoS adaptation is performed in a task-specific fashion: each task
can react to overloads in a different way and use different techniques to scale down its
resource requirements. On the other hand, if a task does not react adequately to a lack
of resources, the scheduler will slow it down in order not to influence the other tasks.

In the rest of this document, a number of techniques that are important for support-
ing Quality of Service are described.

17.4 Overall Challenges and Work Directions

Most of today’s embedded systems are required to work in dynamic environments,
where the characteristics of the computational load cannot always be predicted in
advance. Still timely responses to events have to be provided within precise timing
constrains in order to guarantee a desired level of performance. Hence, embedded
systems are, by nature, inherently real-time.

The combination of real-time features in dynamic environments, together with cost
and resource constraints, creates new problems to be addressed in the design of such
systems, at different architecture levels. The classical worst-case design approach,
typically adopted in hard real-time systems to guarantee timely responses in all possi-
ble scenarios, is no longer acceptable in highly dynamic environments, because it
would waste the resources and prohibitively increase the cost.

Instead of allocating resources for the worst case, smarter techniques are needed to
sense the current state of the environment and react as a consequence. This means
that, to cope with dynamic environments, a system must be adaptive; that is, it must
be able to adjust its internal strategies in response to a change in the environment, to
keep the system performance at a desired level.

Implementing adaptive embedded systems requires specific support at different
levels of the software architecture. The most important component affecting adaptive-
ness is the kernel; however, flexibility can also be introduced above the operating
system, in a software layer denoted as a middleware, and also in the programming

 17.4 Overall Challenges and Work Directions 221

language used to develop the application. Some embedded systems are large and
distributed among several computing nodes. In these cases, special network method-
ologies are needed to achieve adaptive behaviour and predictable response. Often
such a support cannot be found in today’s commercial software.

The rest of this section provides a synthesis of the roadmap, summarizing for each
relevant topic those areas in which advances would clearly benefit.

Real-Time Operating Systems

The most important mechanism in the operating system affecting adaptiveness is
scheduling. Unfortunately, however, the majority of today’s commercial operating
systems schedule tasks based on a single parameter, the priority. Recent research on
flexible scheduling showed that a single parameter is not enough to express all the
application requirements. In order to provide effective support to QoS management,
modern operating systems should be:

Reflective. That is, they should reflect the application characteristics into a set of
parameters, which can be used by appropriate scheduling algorithms to optimize
system performance. For example, typical parameters that may be useful for effec-
tive task management include deadlines, periodicity constraints, importance, QoS
values, computation time, and so on.
Resource aware. That is, they should give the possibility of partitioning the re-
sources (e.g., the processor) among the existing activities based on their computa-
tional requirements. Such a partitioning would enforce a form of temporal protec-
tion that would prevent reciprocal interference among the tasks during overload
conditions.
Informative. That is, they should provide information on the current state of exe-
cution to allow the implementation of adaptive management schemes at different
levels of the software architecture. Any difference between the expected and the
actual behaviour of a computation can be used to adjust system parameters and
achieve a better control of the performance.

To achieve these general objectives, further research is needed in the following areas:

Overload Handling
Predictability in dynamic systems is strictly related to the capability of controlling the
incoming workload to prevent overload conditions. In fact, when the computation
exceeds the processor capabilities, breakdown phenomena may cause abrupt perform-
ance degradation. Computational workload can be controlled using different tech-
niques, each requiring deeper investigation:

Selection of different QoS levels. Some computations can be performed using
different algorithms, leading to different computational complexity. In some case,
the complexity can be increased as a function of the desired quality of the result.
Hence the workload can be controlled by selecting the proper quality level for
each system activity.
Adjustable timing constraints. In a real-time system, the workload depends not
only on the amount of computation arriving per each unit of time, but also on the

222 17 Overview on Adaptive Real-Time Systems for Quality of Service Management

timing constraints associated with the computations. Hence, another way to react
to overloads is to relax the timing constraints of the application tasks in the pres-
ence of high computational requirements.
Admission control. A third way to control the load is to filter the incoming re-
quests of computation. This solution is the most drastic one, because is solves the
overload by rejecting one or more tasks. Hence, the effect of such a rejection on
the overall system performance has to be carefully evaluated.

Feedback-Based Scheduling
When application tasks or scheduling algorithms have tunable parameters, finding the
most appropriate values is an important issue to optimize QoS performance. In these
situations, feedback control theory can be used to estimate current workload condi-
tions and perform proper parameter tuning. Integration of real-time and control theory
just begun to be studied and is a promising research area.

Combined Scheduling Schemes
Today’s computers are powerful enough to execute multiple applications at the same
time. This may require partitioning the processor into several “virtual” machines, each
with a proper fraction of computation power and scheduling algorithm. When differ-
ent scheduling schemes are demanded in the same computer, the analysis of the entire
system becomes complex and more theoretical work is needed for providing guaran-
tee tests of multiple concurrent applications.

Energy-Aware Scheduling
In battery-powered devices, reducing energy consumption is crucial for increasing
system lifetime. Modern processors can operate at variable voltage levels for trading
performance vs. duration. In real-time systems, however, decreasing voltage may
cause deadline misses; hence future scheduling algorithms must take voltage into
account to meet timing constraints while minimize energy consumption.

In addition, with the constant evolution of hardware, portability is also a very impor-
tant issue, necessary to run applications developed for a particular platform into new
hardware platforms. The use of standards opens the door to the possibility of having
several OS providers for a single application or company, which also promotes com-
petition among vendors and increases quality and value. However, extensions are
needed in these standards to support application-defined scheduling services and
facilitate the evolution from fixed-priority scheduling towards more flexible schedul-
ing algorithms. This additional flexibility is necessary to provide better support to
systems with quality of service requirements, even though it is expected that most of
the services required by these systems will continue to be implemented in a special-
ized middleware layer.

The ARTIST project can have an important role in this process as a driver for
specifying user requirements, identifying new areas for standardization, and contribut-
ing in the production and the reviewing of these standards.

 17.4 Overall Challenges and Work Directions 223

Real-Time Middleware

Currently, middleware technologies are being widely used in many application areas
to mask out problems of system and network heterogeneity and alleviate the inherent
complexity of distributed systems. However, the recent emergence of new application
areas for middleware, such as embedded systems, real-time systems, and multimedia,
has imposed new challenges which most existing middleware platforms are unable to
tackle. This new application areas impose more demands in terms of resource sharing,
dynamism, and timeliness. Therefore, these areas require additional properties from
the underlying middleware. Some of them are current subject of study and research,
such as middleware support for QoS resource management.

In the last years, some organizations have improved the specifications with respect
to real-time systems issues. This is the case of the OMG with respect to CORBA.
Conventional ORB (one of CORBA’s backbone) specifications present some weak
points. Firstly, conventional ORBs neither define a way for applications to specify
their end-to-end QoS requirements nor provide support for end-to-end QoS enforce-
ment between applications. Secondly, conventional ORBs lack real-time features;
there is no standard programming language mapping for exchanging ORB requests
asynchronously (blocking prone). As last point, it may be said that there is a lack of
performance optimizations; current ORBs have a considerable throughput and latency
overhead. This is due to internal message buffering strategies, long chains of intra-
ORB virtual method calls, and lack of integration with underlying real-time operating
systems and QoS mechanisms.

Over the last decade, research efforts on COTS middleware, such as Real-Time
CORBA, have matured. Former key drawback points in distributed real-time systems
as overhead, non-determinism, and priority inversion of the middleware are no longer
the dominant factor. Recent studies argue that focus has switched to the COTS operat-
ing system and networks, which are responsible for the majority of end-to-end latency
and jitter.

Whereas some important features related to middleware as software portability are
being addressed with the introduction of intermediate code generation, other features
as timely invocations are not resolved. On one hand, the power of software portability
has been sufficiently proven. In this respect, emerging middleware technologies try to
adjust to this feature. Originally Sun’s Java technology and later Microsoft’s .NET
have developed intermediate code generation technologies to address this issue. This
presents some drawbacks for real-time systems that will hopefully be addressed in the
near future. On the other hand, timely invocations are of great importance for distrib-
uted real-time systems. They are not easy to achieve because they involve the net-
work. There are studies that prove the performance QoS that certain RT-CORBA
implementations may achieve for high speed and bandwidth networks. However,
lower level issues that involve the operation of the network protocols to handle re-
transmissions and the effect they have over real-time behaviour have not been fully
supported. On another side, other technologies, such as Jini, provide no specific fea-
tures for real-time systems. It relies on the underlying remote method invocation
mechanism (usually RMI), therefore, its capabilities for timely invocations of remote
services depend on the features that RMI exhibits for real-time. Currently, there is an
ongoing effort to build the specification for Real-Time RMI, which will hopefully

224 17 Overview on Adaptive Real-Time Systems for Quality of Service Management

lead to the fulfillment of some of the requirements of timely invocations for distrib-
uted real-time applications.

Lastly, QoS capabilities and adaptive resource management will play an important
role in next generation middleware, especially in fields like multimedia processing.
This will allow to achieve a high utilization of the system resources such as CPU,
memory and network, in order to enhance the system performance. Also, it will dis-
tribute and allocate system resources according to the application requirements. Re-
source aware middleware systems will need to use QoS management techniques to
ensure that the solicited service requirements are met.

Communication Networks

Technological advances in hardware made possible the embedding of both processing
and communication functions in highly integrated, low-cost components, fostering the
use of a distributed approach in the particular field of embedded systems, either
breaking whole systems into separated nodes interconnected through a network or
connecting together different pieces of equipment to form a new more integrated
system. Both approaches led to the development of many different interconnecting
networks, with protocols and services specifically tailored to embedded systems but,
nevertheless, based on different paradigms and exhibiting different properties, which
are in some cases specifically designed for particular applications.

Mainly along the last decade, distributed embedded systems (DESs) evolved to-
wards highly distributed systems, with growing numbers of nodes, leading to higher
connectivity and scalability requirements. However, it also resulted in higher system
complexity, even with simpler individual nodes, and led to a stronger impact of the
network on the global system properties.

Therefore, the network within a DES plays now a vital role since it supports all the
interactions among the set of interconnected nodes and, in general all global system
services. The network, or generally the communication system, determines, to a great
extent, the support for properties such as composability, timeliness, flexibility and
dependability as well as determines the efficiency in the use of system resources.
Hence, networks with adequate protocols and throughputs must be used in order to
confer those properties to the respective systems, as appropriate.

However, several limitations to the use of networks in embedded systems arise due
to different options concerning conflicting concepts, taken in the design of the respec-
tive protocols. For example, static versus dynamic communication requirements,
shared versus exclusive bandwidth allocation, replica determinism versus low com-
munication overhead, retransmissions versus real-time requirements, replication ver-
sus low cost and power consumption. Proper design of the network can help solving
these conflicts while at the same time keeping the cost of the final system at low level.

Several trends concerning network design for DESs have thus been identified and
discussed. Namely, the continuing move towards higher distribution, the renewed
interest for higher integration, dependability integrated within the lower layers, the
quest for higher flexibility, the efficient integration of time-triggered and event-
triggered traffic, the use of wireless connections and Internet connectivity. These
trends are establishing the basis for supporting a new generation of applications that
are dynamic and exhibit real-time, dependability and efficiency requirements.

 17.5 Document Structure 225

Programming Languages

Embedded real-time systems are mainly small scale but can sometimes be extremely
large. For small embedded applications, sequential languages like C and C++ remain
the most widely used. For the larger real-time high integrity systems, Ada still domi-
nates. In the telecommunications market, CHILL is popular. In Germany, Pearl is
widely used for process control and other industrial automation applications.

Although there is little doubt that the Java language has been immensely successful
in a wide range of application areas, it has yet to establish itself completely in the
real-time and embedded markets. The introduction of a Real-Time Specification for
Java could dramatically alter the status quo. In the future, C# programming language
starts to gain momentum, extensions will inevitably be considered to make it more
appropriate for real-time systems.

The future for Ada is unclear, as it is perceived to be an “old” language in many
areas of computing. This makes it more difficult to obtain funding for research. How-
ever, the Ada real-time community in Europe is still very active and topics currently
being addressed include: subsets for high integrity applications, kernels, and better
support for scheduling. As the need to support more flexible real-time applications
grows, the expressive power of the programming systems (language and OS) may
become a limiting factor. The more advanced features of Ada (requeue, ATC etc) may
then cause a resurgence in interest in Ada.

Interestingly although Ada is considered in some senses ‘out of date’, an even
older language, C, remains very popular. In contrast with Ada, the future for Java
augmented by its real-time extensions is more positive. However, there are still obsta-
cles to be overcome before Java can replace its main competitors in the embedded and
real-time systems application areas. The main issues are in the areas of inconsisten-
cies in the specification, lack of profiles, lack of efficient implementations and lack of
user experience. There is also a need to maintain momentum during the development
of the technology. Ada suffered from high expectations that were slow to be delivered
– the same could occur to Java.

While Java strives to assert itself into engineering practice, the need for a language
that supports the OO paradigm has lead to increased popularity in C++ even though it
is acknowledged that its definition has a number of problems. With C++ (and C) the
support for concurrency and real-time comes not from the language but from the un-
derlying operating system. The debate about language provision or OS provision (in
terms of support for concurrency and real-time) continues with little sign of an early
conclusion.

17.5 Document Structure

The rest of the document is structured as follows. section 18 illustrates a brief over-
view of the general approach used today by the industry to implement adaptive real-
time system. section 19 presents some specific analysis of the current design practice
in some important industrial sectors, including consumer electronics, industrial auto-
mation, and telecommunication systems. Then, the following seven sections are dedi-
cated to specific issues that play an important role for the development of flexible
real-time embedded systems:

226 17 Overview on Adaptive Real-Time Systems for Quality of Service Management

Real-Time Scheduling is devoted to task scheduling, that is, the kernel mecha-
nism that has the most relevant impact on the performance of a real-time system.
Real-Time Operating Systems presents the kernel features that have most influ-
ence for controlling the quality of service of dynamic real-time applications. It
also addresses the problem of portability, by presenting the most widespread oper-
ating system standard interfaces for developing real-time applications. An impor-
tant objective of Action 3 is indeed to actively propose modifications or new addi-
tions to existing standards that simplify the development of adaptive real-time ap-
plications.
Quality of Service Management discusses the different approaches that can be
used for controlling the QoS in a real-time system, organizing them in a hierarchi-
cal architecture.
Real-Time Middleware is devoted to the software layers provided above the
operating system to facilitate the development of distributed real-time applica-
tions.
Communication Networks presents the problem of developing large embedded
systems consisting of multiple computers connected together.
Programming Languages for Real-time Systems concentrates on Ada and Real-
Time Java, which are the most advanced languages used for developing embedded
real-time applications.
Other Issues presents aspects that are currently not addressed with sufficient
depth in current embedded systems development environments, but would be use-
ful for dealing with novel application requirements. They relate with power-aware
computing, multimedia processing, operating systems and middleware support for
micro embedded systems, FPGA technology, and probabilistic execution time
analysis.

For each of these topics, four different aspects are discussed in dedicated subsections:

Landscape describes the state of the art in the topic, the current products available
in the market, their most relevant features and the existing solutions used for de-
veloping adaptive real-time systems.
Assessment describes the main limitations of the current software, and identifies
what would be required to overcome them.
Trends illustrates the novel research directions that are being investigated to in-
crease the flexibility and enhance the functionality of embedded real-time sys-
tems.
Recommendations for research states the most important research priorities that
should be investigated to make a qualitative change in the embedded system do-
main.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 227 – 228, 2005.
© Springer-Verlag Berlin Heidelberg 2005

18 Adaptive Real-Time System Development

Current real-time embedded systems used in today’s industrial products have very
limited capabilities for adaptation. The main reason is due to the fact that they are
built on top of commercial components that do not offer the possibility of being re-
configured at runtime. For example, at the operating system level, most of the internal
kernel mechanisms, such as scheduling, interrupt handling, synchronization, mutual
exclusion, or communication, have a precise behaviour dictated by a specific policy
that cannot be changed, nor adapted.

The typical approach used today at the operating systems level to affect the execu-
tion behaviour is to modify task priorities. This method however does not always
succeed and it is not trivial to predict how the QoS will change as a function of priori-
ties. Assume, for instance, that priorities are assigned based on periods, according to
the Rate Monotonic algorithm, so that tasks with shorter periods receive higher priori-
ties. In this case, a load variation could be achieved by scaling all activation periods
by a constant factor, but such an operation would not have any effect on the priority
order in the task set. In other cases, decreasing the priority of a task could raise the
relative priority of a longer task, so increasing the overall system workload. In addi-
tion to that, task priorities also affect the delays due to blocking on mutual exclusive
resources. If the kernel uses a priority inheritance protocol for accessing shared re-
sources, changing the priority of a task at the “wrong” time instant could interfere
with the protocol and cause very undesirable effects. This examples show that today’s
commercial operating systems are not suited for on-line adaptation because they do
not provide explicit support for QoS management.

At the network level, the notion of QoS is normally associated with two parame-
ters, network latency and bandwidth. In domains where safety-critical issues are at
stake, such as transportation systems, network protocols are typically static without
any on-line adaptability, so that the QoS delivered to the application is fixed and well
established in all foreseeable operating scenarios. However, in other more dynamic
application domains, such as multimedia systems or even telecommunication systems
the network protocols have to support high load variations thus making it impossible,
or highly undesirable, to use static approaches. In this case, several protocols have
been developed that handle dynamic communication requirements on-line with ad-
mission control, performing bandwidth reservation. ATM, IEEE 1394 (Firewire) and
USB are just three examples. Bluetooth also supports the dynamic setup of synchro-
nous channels with reserved bandwidth, and concerning IP networks, RSVP also
supports the dynamic setup of guaranteed bit rate channels. Nevertheless, even with
these protocols we cannot talk about adaptability in a full sense because they do not
generally support adaptation of the current communication requirements. The situa-
tion thus, becomes very similar to the case of operating systems. Current requirements
are handled according to fixed or dynamic priorities, or according to a given order
such as imposed by token-based methods. The issue is that, in case of overload, there
is no adaptation of the current parameters using the referred protocols. Similarly, if
bandwidth is freed, it is not exploited to increase the QoS of the remaining require-

228 18 Adaptive Real-Time System Development

ments. The needs with respect to the support for adaptability are of two types, either
related with the protocol mechanisms, e.g. dynamic QoS management, or related with
the definition of QoS parameters, i.e. semantic issues, that can then be exploited by
those mechanisms.

At the middleware level, there are different issues to be addressed. Existing mid-
dleware technologies address application heterogeneity allowing distributed applica-
tions to communicate, and some even address some real-time characteristics of appli-
cations. However, middleware support for QoS resource management is still under
research. Some specifications, such as RT-CORBA include features for managing
CPU, network, and memory resources. Implementation of such specifications to really
create a QoS resource management-aware middleware is still behind it and there is
some work to do. Open points are, for instance, mechanisms to specify end-to-end
QoS requirements of applications, QoS enforcement mechanisms from the real-time
operating systems and networks, predictable and real-time underlying communication
protocols, and real-time optimized memory management. Also, code mobility and its
security implications is another open research point.

Some adaptation can still be done at the application level. However, it potentially
incurs in low efficiency due to the higher overhead normally introduced by the appli-
cation level services. For example, with some of the network protocols referred
above, the application can adapt the rate of a message stream by removing the stream
and adding it again with the new rate. This not only incurs in a larger overhead but
may also lead to a disruption of the communication service during the process. Nor-
mally, in sake of efficiency, adaptation should be handled at the lower layers of the
system architecture, as close as possible to the systems resources.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 229 – 241, 2005.
© Springer-Verlag Berlin Heidelberg 2005

19 Current Design Practice and Needs in Selected
Industrial Sectors

19.1 Industrial Sector 1: Consumer Electronics in Philips

Industrial Landscape

Consumer Electronics (CE) products range from miniature cameras and MP3 players
to advanced media servers and large displays. In the CE industry, Philips is active at
two levels. Philips Semiconductors (PS) is active in the OEM market, selling hard-
ware and basic software to CE industry at large, whereas Philips CE sells end prod-
ucts to the consumer market.

Mainly driven by Moore’s law, the evolution in the CE industry is very fast. The
software content, measured in ROM size, grows one order of magnitude every 6 to 7
years. To keep up with this speed, the industry moves to families of products based on
retargetable platforms: systems on chip that allow media streaming and featurization.
For example, the roadmap of Philips Semiconductors centers on the Nexperia pro-
gram, which comprises “Highly integrated, programmable systems-on-chip (SoC) and
companion ICs, software, and reference designs for innovating next-generation mul-
timedia appliances” [Nexperia]. Creating new systems at an ever-larger speed requires
a development practice based on fast integration of sub-systems. Increasingly, these
subsystems will be acquired from third-party vendors.

Traditionally, CE products have characteristics of being robust, predictable, and
easy to use. These characteristics tend to get lost in new feature-rich products with
lots of software; maintaining or even regaining them is vital for survival.

Many factors contribute to jeopardizing robustness and predictability. Two of them
are important in the context of this chapter. First, increasing the software share in
systems implies increasing the sharing of hardware resources. Second, in both hard-
ware and software design, the main focus is on improving average-case behaviour.
Countering the effects of these two factors requires manageable and analyzable re-
source sharing between subsystems. Moreover, the subsystems must be able to live
with resource allocations that are less than fully adequate.

Development Context

The development context concerns several fields:

Hardware design:
Many constituent parts of the hardware architecture in a system on chip can be
viewed as resources shared by multiple tasks. Obvious shared resources are fully
programmable processors (with caches, also shared), and weakly programmable
co-processors. Other important shared resources in systems on chip are the central
memory (for cost reasons usually off-chip), the memory access bus, and on-chip
networks.

230 19 Current Design Practice and Needs in Selected Industrial Sectors

Software design:
There are at least three types of software, with different characteristics and re-
quirements with respect to timing and resource sharing, but tightly intertwined.

Control software is typically event driven, and uses only a fraction of the avail-
able resources. Control software is generally subject to tight hard timing require-
ments (deadlines much smaller than inter-arrival distance).

Media processing software is typically data or throughput driven, and is a major
consumer of temporal hardware resources (processing, bandwidth). Audio and
video processing are the main examples in this category, but graphics applications,
and metadata extraction are starting to be used as well. In general, only a few lines
of code are responsible for most of the resource consumption. Due to the large re-
source consumption, close to full system utilization, the sharing of resources is
critical. For practical purposes, high- quality audio and video (HDTV) is treated as
hard real-time.

Interaction software is very complex and vastly increasing in size and complex-
ity. Typical examples are electronic program guide, internet browsing,
photo/music browsing, broadcast enhancement (for example, player info and sta-
tistics in sports games). In a high-end TV set, the total code size currently ap-
proaches 4 Mbytes. For this software, the timing requirements are interactive-
response requirements.

Resource management is a shared hardware/software responsibility. On the software
side, the first responsible are the operating systems. In the hardware, bus arbiters,
network routers and cache controllers are the main players.

State of the Practice

Hardware Design
The relevant hardware-design challenge in the context of this chapter is to make sure
that on-chip data communication and memory transactions meet hard real-time re-
quirements (media I/O) and tight adaptive real-time requirements (cache misses) in a
system that is close to fully loaded. The major quantitative approaches are simulation
and spreadsheet analysis. Real-time analysis techniques are being introduced, but
have limited applicability due to the inherent stochastic behaviour of the major re-
sources.

Software Design
The three types of software (control, media processing and interaction) are integrated
in a single application that runs on a classical third-party RTOS. Large parts of the
media processing are offloaded to media processors, increasingly supported by a
simple real-time kernel. Development support tool set, such as debuggers and analys-
ers, are increasingly integrated with the RTOS/RTK.

Realizing the desired temporal behaviour is to a large extent based on ad-hoc deci-
sions. Quantitative analysis methods are beginning to be applied, mainly in the con-
trol and media domains. Sometimes, real-time specialists are called in for assistance.
In software media-processing algorithms, resource adaptation is beginning to be ap-
plied.

 19.1 Industrial Sector 1: Consumer Electronics in Philips 231

Interactive applications are typically not resource aware, but the insight that re-
source awareness must be an integral aspect of application design for embedded sys-
tems, is growing. Performance is not systematically addressed, mainly focused on the
average case, and without solid quantitative backing.

Links Between Industry and the Research Community

In the domain of this chapter, Philips cooperates (at different levels of intensity) with
several members of the academic community, in ITEA projects (Robocop and
Space4You), EC-funded projects (Fabric and Betsy), or informally. The universities
involved are Målardalen University, the Technical University of Madrid, Carlos III
University Madrid, the Scuola Superiora Sant’Anna, the University of Pavia, and the
University of York. The subjects of cooperation are multiprocessor scheduling, reser-
vation-based resource allocation, probabilistic analysis, QoS management (in systems
on chip and in networks of consumer devices), and resource adaptation in media
processing applications.

Skills and Education for the Future

Education still has to catch up with the present state of the art. In the domain of this
chapter, Philips identifies two major requirements for the basic education of software
engineers for embedded systems. First, resource awareness has to become a major
skill of software application designers, but the resource awareness has to be well
founded, and has to be molded into a consistent set of rules of thumb, which are
founded on sound theory and backed up by well-tested experience. Second, the cur-
rently available quantitative real-time analysis should be integrated in the standard
curriculum for embedded software engineers. An explicit effort is needed in teaching
engineers to model their systems in such a way that this theory can be applied in a
practical situation. For a corroboration of this second requirement, see [Lenc 03].

Challenges and Work Directions

Philips sees the following challenges to advance the state of the practice. Academia
can play an important role in meeting these challenges, provided that their solutions
are applicable in industrial practice.

Development of a reference system-architecture that allows the predictable design
and realization of complex media-intensive applications at low cost. Such a refer-
ence architecture is expected to include QoS-management middleware, QoS-
adaptive media processing, and reservation-based resource allocation with tempo-
ral isolation [Otero 03]. To meet this challenge, the reference architecture must
gain industry-wide acceptance.
An integrated, structural approach to the sharing of resources in systems-on-chip
is required to meet the low-latency and high-utilization requirements of demand-
ing media-processing applications. Since hardware is generally optimized for
throughput rather than predictability, probabilistic analysis will be required.

232 19 Current Design Practice and Needs in Selected Industrial Sectors

A design practice supported by appropriate quantitative methods throughout the
design cycle from system architecting to detailed design, and throughout the sys-
tem, from low-level silicon to high-level applications.

References

[Nexperia] http://www.semiconductors.philips.com/products/nexperia/.
[Lenc 03] R. Lencevicius, A. Ran, “Can fixed priority work in practice?”, in Proc. Real-Time

systems Symposium, Cancun, Mexico, 2003.
[Otero 03] C.M. Otero Pérez, L. Steffens, P. Van der Stok, S. Van Loo, A. Alonso, J.F. Ruiz,

R.J.Bril, M. García Valls, “QoS-based resource management for Ambient Intelli-
gence”, in Twan Basten, Marc Geilen, Harmke de Groot, eds. Ambient Intelli-
gence: Impact on Embedded System Design, Kluwer Academic Publishers, Bos-
ton, 2003.

19.2 Industrial Sector 2: Industrial Automation

Industrial Landscape

In the area of Industrial Automation there are two main and different focus: The focus
on industrial automation solutions providers and the focus on users. About the first,
there is a trend to search distributed solutions and to prepare hardware and software
for connecting the general plant actuators, sensors and the controllers. Distributed
solutions give a natural automation condition to common industrial needs as usually
such plants are physically and topologically distributed. So, having local controllers
with some kind of coordination messaging among them is quite commonly planned
and deployed in actual factories. For the second, there is an increase of demands for
new options and improvements in the automation results, fetching more control of
plant secondary data. This imposes a continuous increment of processing power both
at the equipment level and the functional level.

The continuous increment both in processing power and memory capacity in local
processors gives the opportunity to add new tasks into them, although usually not all
of them are automation tasks (supervision, diagnostics, presentation, communication,
etc.). And also gives the opportunity to include more complex tasks, for example, in
the form of functional blocs, as defined in IEC-1131-3.

Adaptive operation of the tasks execution but preserving the real-time constraints
is a possible way to handle such situation and to give insight about how manage the
complexity of the tight execution of the different tasks in the real-time processing.

Adaptive real-time systems technologies are very much used in many industrial
applications in the area of Industrial Automation. The requirements in typical indus-
trial automation applications, as they are used for example by Equipos Nucleares
S.A., Desin Instruments S.A., MAPS S.A., SPIN S.A., Centre CIM, Lear Automotive
Spain S.L. and other automation companies include:

Distributed architecture
Need to be able to compose the application out of different application compo-
nents, independently developed

 19.2 Industrial Sector 2: Industrial Automation 233

Event-driven software architecture with different kinds of events: periodic, spo-
radic, bursty, unbounded, variable rate (discrete or continuous variation) within a
range, …
Different execution time requirements: variable (discrete or continuous variation)
within a range
Execution of different forms of closed-loop control algorithms, together with
different autotunning schemes
Quality of service requirements, which can be given through a single relative
value, with rapid changes
Different kinds of timing requirements: deadlines (adaptive-real-time and hard-
real-time with offline guarantee) maximize utilization (rate or computation
budget), execution time budget enforcement; usually, the part of the system with
hard real-time requirements has only a small percentage of utilization, and most of
the CPU resources are devoted to the adaptive part of the application
Synchronization requirements: Events and mutual exclusion
Underlying OS is mostly POSIX (fixed priorities + immediate priority ceiling).
The scheduling services used from the OS are: fixed priority scheduling, execution
time budgeting, general purpose timers, mutual exclusion that is free of priority
inversion

Industrial Automation System Development Context

The European Industrial Automation sector is mainly oriented to give specific auto-
mation solutions to different application needs in all the industrial areas: Process
Industry, Automotive Industry, Transforming Industry, Packaging Industry, etc. A
large segment of those applications are not constrained by tight hard temporal re-
quirements. But as soon as temporal constraints are met, the automation solution
requires a new orientation in its design and deployment. Such is the case when fast
response is required together with coordination among different controllers is needed
for the full automation solution.

After an initial period of centralized automation, the present solutions are oriented
to distribute automation tasks between different embedded processors, with some kind
of intercommunication providences and looking for an optimized system just by try-
ing to optimize each one of the local processing tasks, but with little effort for the
global system optimization. As it is well known, such method can expect just a subop-
timal global automation operation. In this way, the resulting architecture drives to a
waste of resources, as each processor executes just one (or few) automation tasks,
their processing power is underused and as a consequence, an economical loose.

But using more processing both at local level (into the autonomous processor) and
at the global level (by using cooperative computing resources) a better result can be
devised although a better use of tasks relations has to be studied. One of the main
topics to study is the way of adding new conditions and parameters at the abstract
tasks definition which could be used for scheduling them in a more flexible way,
reacting and adapting both the tasks execution timing and their effect on the auto-
mated system.

234 19 Current Design Practice and Needs in Selected Industrial Sectors

State of the Practice

As mentioned above, in industrial automation applications there are many require-
ments for adaptive and flexible timing behaviour. But there is very limited support
from the commercial tools and techniques. Most systems are developed using conven-
tional design methodologies for non real-time systems, and then the real-time behav-
iour is obtained and analyzed via ad-hoc methods, usually depending heavily on the
particular application.

Most commercial operating systems only offer fixed priority scheduling where
more flexibility would be useful. Timing analysis techniques integrated with the de-
sign methodologies are not much used primarily because of the lack of mature com-
mercial tools.

Distributed applications with real-time requirements are difficult to design, because
of the lack of support in the networks, the design methodologies, and the timing
analysis tools.

In addition, automation tasks usually require some complementary conditions to be
meet by the real-time operation, the most important is to have fixed or almost known
intersampling periods for each one of the tasks. Other conditions usually met are
preserving a timed ordering between some of the automation related tasks executions.
As stated above, as more automation tasks are executed into a single processor, and as
their execution conditions are tighted, more accurate the real-time analysis has to be
performed to guarantee not only the deadlines but also the automation tasks interpe-
riods and their relative ordered execution.

Actually few provisions and methodologies are prepared around about how to in-
clude several tasks into a single processor, going close to it’s maximum performance
operation, while some of such tasks are automation tasks. And also few results are
obtained about how to manage internal tasks conditions (flexibility conditions) for
accommodating automation tasks, other real-time tasks and the non-real-time tasks.
Even that, there are some initiatives in this direction.

Links Between Industry and the Research Community

The University of Cantabria has strong links with the Department of Automation in
Equipos Nucleares S.A. (http://www.ensa.es/), which is a Spanish company whose
main products are heavy components of nuclear reactors, and which has a staff of
approximately 500. The collaboration between the two institutions has been continu-
ous for the past 15 years, and has included the development of seven special-purpose
robots with their applications, and several other industrial automation applications.

The Technical University of Catalonia (UPC) has strong links with the industrial
design department of DESIN S.A., that is an industrial instruments design company
with their own industrial components and programable controllers development. The
collaboration has been in the design of controllers both from the hardware level and
the software and functional level including communications and self-adjusting auto-
mation functions.

The UPC has also largely collaborated with MAPS S.A., and SPIN S.A. both at
similar levels as indicated previously. With MAPS we had a continued relation, de-
signing different automation components, from controllers, image processing hard-

 19.2 Industrial Sector 2: Industrial Automation 235

ware, mobile robots, and other components, during almost twenty years. About SPIN
we had a more sporadic collaboration in different plants and services automation.

Also the UPC has maintained an intense relation with the CIM Center, which is a
local government and University spin-off, oriented to give general automation and
design solutions to local industries. Through their contacts we had intense industry
relations in different industrial areas, both at the automation design, at the plant de-
sign and optimization and at the industrial communications areas.

The UPC also is initiating the contacts with Lear Automotive S.A. for applying
some of the above mentioned methodologies to a distributed control and supervisory
system currently in the initial phase. We are facing the mentioned steps for designing
some sets of tasks with some defined kind of flexibility and for designing an adaptive
real-time method for optimizing the global system.

Skills and Education for the Future

Tools and methodologies for the modelling, design, and analysis of adaptive real-
time applications
Tools for timing analysis, both hard and adaptive real-time
Technologies for distributed adaptive real-time systems
Methods to describe and analyze some performance characteristics depending of
the specific execution instances on automation tasks.
Methods and tools for integrating real-time scheduling approaches and perform-
ance characteristics in flexible real-time systems

Challenges and Work Directions

From the point of view of the adaptive real-time systems, the skills that will be re-
quired in the future for industrial automation systems will be in the fields of hardware
integration, software design and analysis methodologies. The design techniques in
adaptive real-time systems are very much ad hoc today, and companies requiring the
development of complex applications require well engineered methodologies. Al-
though UML based tools enable conventional software design and analysis, they yet
need to be integrated with the following technologies:

Timing analysis of the application from the design information, including sched-
ulability analysis of the hard real-time parts of the application, and performance
analysis of the behaviour of the adaptive parts of the application. A starting point
for tools following this integration are the UML profiles for schedulability analy-
sis and for performance analysis, but mature methodologies and tools need to be
developed in this area.
Adaptive and flexible scheduling mechanisms, which are not yet available in
commercial operating systems. They need to be integrated into the real-time mod-
els used in the future tools for timing analysis.
Integration of applications with different requirements, including mostly control,
data sensing filtering and storing, and multimedia technologies applied in indus-
trial automation and quality assurance. This integration requires handling of qual-

236 19 Current Design Practice and Needs in Selected Industrial Sectors

ity of service requirements at the system level, and the integration of the quality of
service management services in the commercial platforms and analysis tools.
Integration of the above technologies in the communication networks, for the
development of distributed industrial control applications. Support for adaptive
timing constraints in the network is not really available at the commercial level,
although there are promising technologies such as RT-CORBA. Integration of
real-time distribution into the design techniques and the timing analysis tools are
some of the challenges for the future.
Flexibility provisions into the specification of automation and non-automation
tasks. Definition of performance indexes and quality of service requirements from
the point of view of the tasks operation at the external application. And methods to
analyze how such performance indexes evolve as the adaptation gives flexible op-
eration conditions.

Web Links

Centre CIM http://www.centrecim.com
Desin Instruments S.A.: http://www.desin.es
Equipos Nucleares S.A.: http://www.ensa.es/
Lear Automotive (EEDS) Spain, S.L http://www.lear.com
MAPS S.A.: http://www.maps.es
Spin S.A.: http://www.spin.es

References

[1] Giorgio Buttazzo, Manel Velasco, Pau Martí and Gerhard Fohler
Managing Quality-of-Control Performance Under Overload Conditions. In 16th
Euromicro Conference on Real-Time Systems (ECRTS04), Catania, Italy, July,
2004.

[2] Manel Velasco, Pau Martí and Josep M. Fuertes
The Self Triggered Task Model for Real-Time Control Systems. In Work-in-
Progress Session of the 24th IEEE Real-Time Systems Symposium (RTSS03),
Cancun, Mexico, Decembre, 2003.

[3] José Yépez, Pau Martí and Josep M. Fuertes
The Large Error First (LEF) Scheduling Policy for Real-Time Control Systems. In
Work-in-Progress Session of the 24th IEEE Real-Time Systems Symposium
(RTSS03), Cancun, Mexico, Decembre, 2003.

[4] José Yépez, Pau Martí and Josep M. Fuertes
Control Loop Scheduling Paradigm in Distributed Control Systems. In 29th An-
nual Conference of the IEEE Industrial Electronics Society (IECON03), Roanoke,
USA, November, 2003.

[5] Manel Velasco, Pau Martí and Josep M. Fuertes
Modelling Self-triggered Tasks for Real-Time Control Systems. In Co-design in
Embedded Real-time Systems (CERTS03), satellite workshop of the 15th Euromi-
cro Conference on Real-Time Systems, Porto, Portugal, July 2003.

[6] Pau Martí, Gerhard Fohler, Josep M. Fuertes and Krithi Ramamritham
Improving Quality-of-Control using Flexible Timing Constraints: Metric and
Scheduling Issues. In 23rd IEEE Real-Time Systems Symposium (RTSS02), Aus-
tin (TX), USA, December, 2002.

 19.3 Industrial Sector 3: Consumer Electonics: Ericsson Mobile Platforms 237

[7] José Yépez, Pau Martí and Josep M. Fuertes
Control Loop Performance Analysis over Networked Control Systems. In 28th
Annual Conference of the IEEE Industrial Electronics Society (IECON02), Sevilla,
Spain, November, 2002.

[8] Pau Martí, Josep M. Fuertes and Gerhard Fohler
 A Control Performance Metric for Real-Time Timing Constraints. In Work-in-
progress Session, 14th Euromicro Conference on Real-Time Systems (ECRTS02),
Vienna, Austria, June 2002.

[9] Pau Martí, Gerhard Fohler, Krithi Ramamritham and Josep M. Fuertes
Jitter Compensation for Real-time Control Systems. In 22nd IEEE Real-Time Sys-
tems Symposium (RTSS01), London, UK, December, 2001

[10] Pau Martí, Ricard Villà, Josep M. Fuertes and Gerhard Fohler
Stability of On-line Compensated Real-Time Scheduled Control Tasks. IFAC Con-
ference on New Technologies for Computer Control (NTCC01), Hong Kong, No-
vember, 2001.

[11] Pau Martí, Josep M. Fuertes and Gerhard Fohler
An Integrated Approach to Real-time Distributed Control Systems Over Field-
buses. In 8th IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA01). Antibes Juan-les-pins. France. October 2001.

19.3 Industrial Sector 3: Consumer Electonics: Ericsson Mobile Platforms

Industrial Landscape

Ericsson Mobile Platforms offers 2.5G and 3G technology platforms to manufacturers
of mobile phones and other wireless devices. It provides a common software platform
for GSM/GPRS, EDGE and UMTS terminals, and there is a strong focus on applica-
tion portability, security, power consumption and size. Utilizing available hardware
and software resources in an optimal fashion is crucial both to save costs and to keep
the competitive edge. A key to success is the design of highly configurable, reusable,
and scalable platforms.

Mobile terminals today are getting more advanced by the hour. Features are added
at an unprecedented speed and are usually there to stay. The code base is thus con-
stantly increasing and a 3G feature phone of today typically consists of several mil-
lion lines of code with use-cases involving large number of parallel activities. Getting
all this to work is the delicate task of a few highly competent craftsmen, and it is not
getting any easier.

Development Context

The possibilities for embedded systems to evolve and become more reliable, while yet
more complex, to some extent depend on what the next generation real-time operating
systems and implementation tools have to offer. The embedded world is in many
respects stuck in a time bubble, using dated technology originating in the early 70s,
e.g. fixed priority scheduling and the C programming language. The problem is not
primarily a lack of alternatives, but more that nobody has been able to make a con-
vincing case for a transition. Every attempt to raise the level of abstraction has in-
cluded unacceptable penalties in terms of memory and speed. Also from an industrial
perspective, the support for legacy code has often been weak.

238 19 Current Design Practice and Needs in Selected Industrial Sectors

Traditionally, embedded systems design has been synonymous with 8-bit control-
lers and small memory footprints. Mobile terminals of today with a modern 32-bit
processor and several megabytes of memory are expanding outside classical embed-
ded system territory. The core of the terminals is still traditional embedded design, but
on top of this advanced multimedia features, PDA and gaming functionality are
added. The same architecture should scale from entry-level terminals to feature
phones and smart phones. A problem in achieving this is how resources, such as CPU
and communication bandwidths, are distributed among different activities. Adding or
removing features may cause a system to fail. Terminals are highly dynamic systems,
and exhaustive testing and design of every possible use case is not always tractable.
Therefore, tools and metrics for expressing and handling resource requirements and
on-line adaptation may prove to be a key in future system design.

In the smart phone segment, these problems are often addressed by multiple CPU
solutions. One CPU is dedicated for real-time tasks including communication stacks,
while the other CPU runs the user applications on top of a non-RTOS. This separation
between real-time and non real-time functionality simplifies resource allocation since
there are multiple resource sets. A real-time task may never be disturbed by a misbe-
having user application. However, the downside is the additional hardware and the
inter-processor communication introduced. Still there is a need for managing re-
sources for the activities on the individual processors, e.g. limiting the available re-
sources for a game engine in order to save power and communication bandwidth.

A single CPU system, with proper resource management, would provide a viable
alternative. A system that supports, for example, “protected timing” along the lines of
protected memory would allow us to safely mix real-time and non real-time applica-
tions. The benefit of such a solution would be a much more scalable platform. Adding
and removing features would become predictable and less hazardous, allowing con-
figuring the system without worrying about unpleasant surprises.

Terminal usage scenarios include receiving and setting up a voice while at the
same time handling streaming video with high quality audio. How should resources
be divided and how can this be done in a predictable way? From one hand, the system
should be able to handle dynamic scenarios, still keeping some spare resources, but on
the other hand the final objective is to achieve the best possible quality, and often this
means using all available resources. A flexible quality-of-service framework would
allow the designer to solve this issue in a more appropriate fashion.

State of the Practice

Today, real-time applications are mainly configured acting on task priorities, which
are set to expresses the importance of tasks. Of course, one could argue that the prior-
ity value is not about importance, but just a scheduling parameter, however, in prac-
tice that would be an academic viewpoint and not an industrial one.

This is for many reasons inadequate when configuring complex dynamic systems,
because there are other system constraints that cannot be mapped into a set of priority
levels. As a consequence, today, systems require extensive testing and tuning to oper-
ate optimally.

A first problem with priority assignment is that activities often consist of several
tasks, which may play different roles in different scenarios, rendering the priority

 19.3 Industrial Sector 3: Consumer Electonics: Ericsson Mobile Platforms 239

assignment even more difficult. Any attempt to group tasks together fails since prior-
ity is a global property and will always break any type of encapsulation. From a de-
sign point of view, a key issue would be to leave out concepts such as tasks and pri-
orities and instead reason about resource shares and quality-of-service. For example,
instead of assigning priority to the game engine, one would allocate shares for CPU
bandwidth, communication bandwidth, memory etc. These shares could be firm or
adapted on-line within boundaries negotiated by the game engine and the resource
manager. More importantly, theses shares should compose well, that is, the behaviour
of a composition should be predictable when summing its subcomponents and proper-
ties of subcomponents should still hold in the composition. In addition, a property
might not be fixed, but may, for example, express a relation between a set of given
resources and the resulting quality-of-service.

Challenges and Work Directions

The problems mentioned above could be solved by using a programming model
which enable the designer to explicitly control the resources assigned to a given activ-
ity at a given point in time. Resources can be different types of memory, CPU band-
width or communication bandwidth. Since hardware is expensive, utilization has to be
maximized, and this rules out most static schemes, in favor of dynamic approaches.
Power consumption is a key factor in designing software for mobile devices and is, of
course, directly related to CPU bandwidth. In today’s task-based programming model,
the information regarding the timely behaviour of a task is not, in general, available at
system level and may therefore not be accounted for by the scheduler. Lifting timing
and resource configuration data up to a higher level would be instrumental in provid-
ing a superior programming model. Being able to predict utilization allows for clever
energy-aware scheduling and in turn better resource management.

Pertinent research directions include adding support for CPU reservation schemes
in embedded runtime systems. A major challenge here is to contain computational
overhead in an implementation. Also an efficient support for handling quality-of-
service properties in a uniform way, i.e., independently of task and resource type, is
necessary.

For a novel embedded real-time systems paradigm to reach any level of acceptance
within industry, support for legacy code is likely to be of major importance. It must be
possible to reuse the many million lines of legacy C code. Standards or open specifi-
cations are important for industrial adaptation, since it allows different tool vendors to
supply compatible products.

Proper resource and quality-of-service management would enable the implementa-
tion of embedded systems that are more flexible, yet more deterministic, than it is
possible today. Since such systems would be better specified, their properties would
also be verified more easily. By supporting explicit resource allocation and quality-of-
service functionality, the system designers would regain control over the system they
are set to design.

240 19 Current Design Practice and Needs in Selected Industrial Sectors

19.4 Industrial Sector 4: Telecommunications – The PT-Inovação Case Study

Industrial Landscape

In Portugal embedded systems for telecommunications applications are developed by
several companies, from SMEs to companies that are part of large groups. Examples
of the latter ones are PT-Inovação (PTI), owned by PT, the Portuguese Telecommuni-
cations company, and ENT – Empresa Nacional de Telecomunicações, part of a larger
group of Electrical and Electronics industries called EFACEC. PTI has currently 312
employees, most of them graduate engineers or post-graduate in Telecommunications
and it is the most significant of the Portuguese companies in this field.

PTI has an active role in the development and deployment of embedded systems
for telecommunications applications. PTI kernel activity in this field is focused on
subsystems for which there is not world wide large scale mass production and on very
specific or proprietary systems, in particular those required for telecommunications
systems deployed by PT. However, some systems developed at PTI are produced and
deployed in large quantities (of the order of 30,000).

State of the Practice

Embedded systems developed in this field are mainly targeted to the interfaces be-
tween communication technologies or media and to coding / decoding operations.
Most will work at the telecommunications company side although some are also in-
stalled in customer facilities. They may be considered real-time as they have timeli-
ness requirements for some of the critical operations they must perform.

The referred systems are microprocessor based, ranging from 8-bit 51 systems (be-
ing abandoned now) to 68000, i386 and, currently, mainly PowerPC based systems.
Sometimes (often currently) they integrate a second processor (often a DSP) devoted
to specific functions, e.g., MPEG coding. The software development is mostly done
recurring to the C language (e.g. GNU GCC). Depending on the system, a proprietary
kernel can be used or a real-time operating system, (e.g. iRMX). Currently Linux
starts to become the adopted operating system.

The verification of real-time behaviour is made by the experimental inspection of
the timeliness requirements at the development phase and at the operation phase by
in-situ monitoring.

Links Between Industry and the Research Community

These companies have strong connection with the academic and research community.
In some cases (e.g. PTI) they have a significant research team besides the develop-
ment personnel (they even participate in joint research teams such as the IT – Tele-
communications Institute at Aveiro). The participation in European and national pro-
jects is also very strong, mainly in the areas of telecommunications protocols and
transmission technologies. However, their connection with academia in the field of
embedded systems has not been particularly strong.

 19.4 Industrial Sector 4: Telecommunications – The PT-Inovação Case Study 241

Challenges and Work Directions

Although it is not a key issue at the management level of the companies, real-time
operation is a concern for telecommunications embedded systems designers. The
main current interest seems to be in exploring the use of real-time extensions for the
Linux OS. It also seems that QoS mechanisms are starting to be recognized as impor-
tant for these embedded applications, namely in order to increase the efficiency of
subsystems and to support the possibility to serve more clients with similar levels of
resources.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 242 – 257, 2005.
© Springer-Verlag Berlin Heidelberg 2005

20 Real-Time Scheduling

Real-time scheduling is the kernel mechanism having the most impact on RTOS per-
formance. After describing existing algorithms and methodologies for embedded real-
time applications, we present their limitations in handling dynamic environments, and
discuss new research trends for overcoming them in next generation operating systems.

20.1 Landscape

This summary is intended to give a brief overview of the status of scheduling meth-
ods, in particular with respect to flexible scheduling. It does not aim to be complete or
provide in-depth literature survey. Rather, directions and issues, together with seminal
algorithms are presented. Most of the presented algorithms are research prototypes.

Hard Real-Time vs. Adaptive Real-Time

There is a fundamental difference between hard and adaptive real-time systems.

Hard Real-Time preserves temporal and functional feasibility, even in the worst
case. Hard real-time system scheduling has been concerned with providing guar-
antees for temporal feasibility of task execution in all anticipated situations, focus-
ing on the worst case. A scheduling algorithm is defined as a set of rules defining
the execution of tasks at system run-time. It is provided with a schedulability or
feasibility test, which determines, whether a set of tasks with parameters describ-
ing their temporal behaviour will meet their temporal constraints if executed at
run-time according to the rules of the algorithm. The result of such a test is typi-
cally a yes or no answer indicating whether feasibility will be met in the worst
case or not. These schemes and tests demand precise assumptions about task prop-
erties, which hold for the entire system lifetime. Examples of hard real-time sys-
tems include digital controllers for aircraft, nuclear power plants, missiles, and
high-performance production lines.
Adaptive Real-Time manages Quality-of-Service. Often, task parameters and
constraints are known only partially beforehand or can change during system run-
time; the necessary worst-case assumptions may not be available or too costly to
apply. Then, standard feasibility tests cannot be applied and yes or no types of an-
swers are not appropriate. Rather, a quantitative answer about how good or bad an
algorithm will perform with the task set is needed, i.e., the Quality-of-Service pro-
vided. As feasibility in all scenarios cannot be guaranteed, only adaptive real-time
behaviour can be provided. Furthermore, these tests are typically provided for a
particular scheduling scheme and task model. Similar to partially known parame-
ters, analysis needs to provide answers when scheduling schemes are combined or
change during runtime, or when assumptions about task models do not suffice. Be-
fore addressing these issues, we will briefly review basic scheduling schemes and
task models. Examples of adaptive real-time systems include multimedia comput-
ing, video games, virtual reality, and robotic systems.

 20.1 Landscape 243

Basic Scheduling Paradigms

Most scheduling algorithms have been developed around one of three basic schemes:
table driven, fixed priority, or dynamic priority. Depending on whether a majority of
scheduling issues are resolved before or during system runtime, the classified as
called offline, or online.

Offline Scheduling
Also called Table driven scheduling (TDS) constructs a table determining which tasks
to execute at which points in time at runtime [Kop97, Ram90]. Thus, feasibility is
proven constructively, i.e., in the table, and the runtime rules are very simple, i.e.,
table lookup. TDS methods are capable of managing distributed applications with
complex constraints, such as precedence, jitter, and end-to-end deadlines. As only a
table lookup is necessary to execute the schedule, process dispatching is very simple
and does not introduce large runtime overhead. On the other hand, the a priori knowl-
edge about all system activities and events may be hard or impossible to obtain. Its
rigidity enables deterministic behaviour, but limits flexibility drastically. This ap-
proach is the one usually associated with a Time-Triggered architecture, such as TTP,
which is commercially available.

Online Scheduling
These methods overcome these shortcomings and provide flexibility for partially or
non-specified activities. A large number of schemes have been described in the litera-
ture. These scheduling methods can efficiently reclaim any spare time coming from
early completions and allow handling overload situations according to actual work-
load conditions. Online scheduling algorithms for real-time systems can be distin-
guished into two main classes: fixed-priority and dynamic-priority algorithms.

Fixed priority scheduling (FPS) [Liu73, Tin94] is similar to many standard operat-
ing systems, assigning before runtime of the system priorities to tasks, and execut-
ing the task with the highest priority to execute from the set of ready tasks at run-
time. Fixed priority scheduling is at the heart of commercial operating systems
such as VxWorks or OSE.
Dynamic priority scheduling, as applied by earliest deadline first (EDF)
[Liu73,Spur96], selects that task from the set of ready tasks, which has the closest
deadline at runtime; priorities do not follow a fixed patterns, but change dynami-
cally at runtime. To keep feasibility analysis computationally tractable and run-
time overhead to execute rules small, however, tasks cannot have arbitrary con-
straints.

Task Models and Assumptions

The temporal attributes and demands used by real-time scheduling for feasibility
analysis and runtime execution form the task model an algorithm can handle. For
example, a simple model for periodic tasks may consider worst-case computation
times, period, and relative deadline.

Early applications, such as simple control loops, had temporal characteristics that
can be represented by simple temporal constraints. Hence, most algorithms and task

244 20 Real-Time Scheduling

models are dominated by attributes such as period, computation time, and a deadline.
While periods and deadlines are typically derived from application characteristics,
computation time is a function of the task code.

When tasks access resources, they introduce a contention issue, which affects
schedulability. Realistically, tasks will not execute in isolation; rather, the input-
processing-output chain will be distributed over a set of tasks, imposing end-to-end
deadlines and precedence constraints. The different importance of timely completion
of tasks can be expressed as values. Distribution introduces further issues, including
allocation of tasks to nodes [Ram90] and consideration of network effects [Tin92].

Scheduling schemes and feasibility tests for these task models have been presented
for the three basic scheduling paradigms. It should be noted that changes in task
model typically incur the development of new feasibility tests. As applications gained
in complexity temporal demands do no longer fit directly into schedulers, but design
needs to decompose applications into tasks and transform temporal application de-
mands to derive timing constraints individually. Constraints handled by schedulers no
long match those of applications directly, so artifacts are introduced to suit the sched-
uler [Ram96].

Only Partially Known Parameters

As mentioned above, the yes-or-no type of responses of feasibility tests do not suffice
when task parameters are only partially known. Particular attention has been given to
tasks with uncertainty about the actual arrival time, i.e., they do not occur in a peri-
odic manner. These are called aperiodic if no assumptions at all can be made about
their arrival time and sporadic if at least a minimum time between to consecutive
arrivals can be given. In the latter case, a worst-case assumption, the minimum inter-
arrival time, can be used to include sporadic tasks as periodic in the feasibility test
[Mok83]. Aperiodic tasks are usually generated by external events and activated by
interrupts, for example coming from a sensory acquisition board.

While no hard guarantees can be made about aperiodic tasks, algorithms have been
presented to allocate a certain amount of processing time reserved for aperiodic tasks,
which allows analysis on response times of the entire set of aperiodic tasks. Typically,
this reservation is done via server tasks [Spr89], which lend their resources to
aperiodics and which are included in the offline feasibility analysis as place holders,
or as bandwidth [Spu94], i.e., a portion of the processing time. In the case of table
driven scheduling, the amount and location of unused resources is known to serve
aperiodic tasks [Foh95].

Changing Parameters at Runtime

Adapting to changing environmental situations may involve changes to task parame-
ters at runtime. System wide changes, e.g., for changing operational modes in the
system, have been addressed by mode change algorithms. Mode changes are de-
manded, e.g., when the system under control undergoes a number of distinct opera-
tional modes with different task sets and schedules. These modes include startup,
normal operation, and shut down phases, e.g., of processes. An important mode is the
emergency mode, when the system needs to take critical actions, overriding all normal

 20.1 Landscape 245

operations. A key requirement is that the transition time, i.e., the time interval be-
tween request and completion of a mode change is predictable.[Sha89] introduces
mode changes for fixed priority scheduled systems, [Foh93] for offline, table driven
scheduling, providing some flexibility to static systems by providing for changes of
tasks and schedules during system operation.

Changes not of the entire system, but in single tasks, in particular their periods,
have to consider their effects on the rest of the tasks as well. Feedback control sched-
uling [Sta99] changes task parameters, in particular periods online to respond to varia-
tions in the environment and current load conditions of the system. As both conditions
can vary frequently, too frequent responses, which in turn influence the conditions,
can introduce instability in the system. Feedback control scheduling applies control
theory to estimate effects of changes and to choose parameters to provide for smooth
responses and avoid instability..

Elastic task models [But98] are based on the observation that some parameters, in
particular periods, can tolerate some adjustments for limited time, provided the ad-
justments are compensated for. This reasoning follows the model mechanical springs,
which can be stretched or compressed to a certain extent and time and then swing
back to the normal extent. Thus, periods can be increased or decreased within certain
bounds over limited times, and then are brought back to normal values. Special con-
sideration is given to the effect of these changes on others tasks, which may have to
adjust their periods in turn.

The focus of scheduling for hard real-time system is on providing offline guaran-
tees for a known set of tasks. Should online changes in task set or parameters result in
the amount of processing demanded exceeding available resources, many standard
algorithm perform badly, potentially not completing any tasks in time. Adaptive sys-
tems apply overload scheduling to cope with the situation properly. Tasks have to be
selected for rejection such that the most important tasks find enough resources to
complete in time. Often, this selection is based on value to the system for task com-
pletion. Fixed priority scheduling algorithms can relate values to priorities directly,
while other algorithms, e.g., [But95], aim at maximizing value by task selection. In a
distributed system, overload may occur only on some nodes, while others have proc-
essing reserves. Then, overload handling may include task migration [Sta87] to less
loaded nodes, which has to include network effects, in particular the time needed to
select nodes and transmissions of control data..

When an application can tolerate “few” deadline misses, the question arises of how
to quantify how many and when. Weakly hard scheduling [Ber99] addresses this issue
and provides guarantees of the pattern of missed and met deadlines. This guaranteed
can be provided off-line in line with standard off-line schedulability tests. Also, on-
line scheduling algorithms that guarantee this minimum guarantee of missed dead-
lines have been also provided [Ber01a]. Probabilistic reasoning of the number of
deadlines missed can be also provided [Bro02].

Combined Scheduling Schemes

Each of the basic scheduling paradigms is selected for a set of specific advantages.
When advantages of different schemes are demanded in the same system, the mostly
exclusive character hinders efficient exploitation of more than one scheme. Some

246 20 Real-Time Scheduling

algorithms have been presented aiming at combining features specific to more than
one scheme. For example, in a complex system including hard periodic and adaptive
aperiodic tasks, two scheduling schemes need to be integrated for satisfying the dif-
ferent requirements of each task class.

In hierarchical scheduling [Reg01] a meta algorithm arbitrates between a set of di-
verse scheduling algorithms. Thus, it can appear to the individual scheduling algo-
rithms and their applications that they execute alone in the system. Furthermore, the
amount of the CPU portion can be set individually for each scheduler and application.
Special attention has to be given to shared resources In a similar way, application
specific scheduling [Riv02] allows several applications to use their own scheduling
algorithm.

Dual priority scheduling [Dav95] is fixed priority based, but includes a limited yet
predictable dynamic priority component. Tasks with distant deadlines, are put “on
hold”, i.e., not considered by the scheduler, until a specified time, called promotion
time. Thus, the active task set can be kept small. The Jorvik flexible scheduling
framework [Ber01b] uses the Dual priority mechanism as the underlying guarantee
mechanism.

Slot shifting [Foh95] combines table driven and earliest deadline first scheduling.
First, a scheduling table meeting all task constraints is created offline and analysed for
leeway of tasks and the amount and location of unused resources, which are repre-
sented via intervals and associated spare capacities. At runtime these are used to in-
clude and schedule additional tasks according to EDF, while maintaining the feasibil-
ity of the offline guaranteed tasks. Slot shifting can handle complex task constraints
for offline tasks and include firm and adaptive aperiodic tasks at runtime, as well as
offline and online handling of sporadic tasks.

More than Temporal Objectives

Quality-of-service can also encompass non temporal objectives. If computer faults are
to be considered, techniques and their temporal impact for fault tolerant real-time
scheduling [Gho95] have to be included. Recently, power-aware scheduling [Ayd01]
has received increasing attention as the application of real-time scheduling in embed-
ded devices has to concern energy consumption as well. This issue will be discussed
in more detail in section 25.

Probabilistic Scheduling

In many real-time systems, worst-case assumptions and deterministic guarantees tend
to be avoided for the sake of enhanced flexibility, better system utilization, more
adaptive behaviour and QoS control. This is the case, for instance, of real-time sys-
tems featuring adaptive temporal constraints. However, the need for removing deter-
ministic guarantees is not limited to adaptive real-time systems only. As pointed out
in [Bur03], a move from a deterministic to a probabilistic framework is required for a
number of reasons, which include the inherently stochastic behaviour of fault-tolerant
systems, the wide variance of workflow execution patterns and the features of modern
super-scalar architectures, like cache, pipelining, branch-prediction etc, which deter-

 20.1 Landscape 247

mine a significant variability in task computation times. These reasons apply to hard
real-time applications as well.

Providing a task with a probabilistic guarantee on deadline meeting means that the
task is guaranteed to meet its deadline with a given probability. To calculate such a
probability, a stochastic analysis method is needed.

In the real-time literature, stochastic analysis of real-time systems has been ad-
dressed from different perspectives. The Probabilistic Time Demand Analysis
(PTDA) [Tia95] and the Stochastic Time Demand Analysis (STDA) [Gar99-1,Gar99-
2] are targeted for fixed-priority systems with tasks having arbitrary execution time
distributions. The PTDA is a stochastic extension of the Time Demand Analysis
[Leh89] and can only handle tasks with relative deadlines smaller than or equal to the
periods. On the other hand, the STDA, which is a stochastic extension of the General
Time Demand Analysis [Leh90], can handle tasks with relative deadlines greater than
the periods. Both methods are based on the critical instant assumption, i.e. the task
being analyzed and all the higher priority tasks are released at the same time. This
pessimistic assumption simplifies the analysis, but results in only an upper bound on
the deadline miss probability.

Another relevant work is [Man01], which proposes an approach which covers gen-
eral priority-driven systems including both fixed-priority and dynamic-priority sys-
tems. However, to simplify the analysis, it assumes that all the tasks are non-
preemptable. Moreover, to limit the analysis scope, it assumes that the relative dead-
lines of tasks are smaller than or equal to their periods and that all the jobs that miss
the deadlines are dropped.

An interesting approach is the Real-Time Queuing Theory [Leh96, Leh97]. This
analysis method is flexible, as it is not limited to a particular scheduling algorithm and
can be extended to real-time queuing networks. However, such a method is applicable
to systems where the heavy traffic assumption (i.e., the utilization is close to 1.0)
holds.

Other relevant stochastic analysis methods include the one by Abeni and Buttazzo
[Abe01], the Transform-Task Method (TTM) [Tia95] and the Statistical Rate Mono-
tonic Scheduling (SRMS) [Atl98]. All of them assume reservation-based scheduling
algorithms so that the analysis can be performed as if each task had a dedicated (vir-
tual) processor. That is, for each task, a guaranteed budget of processor time is pro-
vided in every period [Abe01,Tia95] or super-period (an integer multiple of the tasks
period in SRMS) [Atl98]. So, the deadline miss probability of a task can be analyzed
independently of other tasks assuming the guaranteed budget.

The paper [Dia02] proposes a stochastic analysis method that does not put any pes-
simistic or restrictive assumptions into the analysis and is applicable to general prior-
ity-driven real-time systems. The method is general and uniformly covers general
priority-driven systems including both fixed-priority and dynamic-priority systems
such. The analysis method can handle any task set consisting of tasks with arbitrary
relative deadlines (including relative deadlines greater than the periods) and arbitrary
execution time distributions.

In multiprocessor environments, the works [Nis02] [Leu03] deal with a probabilis-
tic analysis of dynamic multi-processor scheduling. While the first paper focuses on
the overall performance of the scheduling environment, the second one shifts the
focus to the scheduling of individual tasks.

248 20 Real-Time Scheduling

20.2 Assessment

Real-time computing systems were originally developed to support safety critical,
mission critical, or business critical control applications characterized by stringent
timing constraints – and indeed, much of embedded computing is still for these types
of applications. Missing a single deadline can jeopardize the entire system behaviour
and even cause catastrophic consequences. Hence, these systems need to be designed
under worst-case assumptions and executed with predictable kernel mechanisms to
meet the required performance in all anticipated scenarios. Tasks and their properties
are identified through a static design before the system is deployed, thus ensuring a
correct behaviour, but preventing changes during system operation.

Often, systems are dedicated to a specific purpose, involving specific hardware and
operating systems. Such systems have been focused on providing single, specific
solution to single, specific applications, treating all activities with the same methods,
geared towards the most demanding scenarios. While the high cost of such an ap-
proach is acceptable for applications with dramatic failure consequences, it is no
longer justified in a growing number of new applications, which extend the domain of
real-time systems, including multimedia computing, graphic animations, and virtual
reality. In these, real-time behaviour is demanded only for a few parts of the systems,
a limited number of faults can be tolerated. Instead of strict real-time behaviour for
the entire system, these applications demand “also real-time”, or some temporal control.

20.3 Trends

In addition to the general requirements outlined in the assessment above, a number of
trends can be observed along specific areas.

Note: a number of the issues addressed here for scheduling are detailed on a system
level in section 25.

Flexible Scheduling

Flexible scheduling is an underlying theme to most novel scheduling trends which go
beyond the standard model of completely known tasks with timing constraints ex-
pressed as periods and deadline, providing “yes or no” answers whether all tasks meet
their deadlines.

Issues addressed include probabilistic parameters, handling of applications with
only partially known properties, relaxed constraints and such that cannot be expressed
solely by periods and deadlines, coexistence of activities with diverse properties and
demands in a system, combinations of scheduling schemes, and adaptation or changes
to scheduling schemes used at run-time.

Adaptive Systems

In adaptive real-time systems, resource needs of applications are usually highly data
dependent and vary over time. In this context, it is more important to obtain systems,
which can very well adapt their execution to the changing environment than to apply
the too pessimistic hard real-time techniques.

 20.3 Trends 249

Reservation-Based Resource Management

There are several reasons for addressing this topic, and there are also many sometimes
very different solutions. One major reason is to provide acceptable response for adap-
tive real-time tasks, while bounding their interference of hard-real-time tasks. Another
reason is the incorporation of real-time legacy code in a larger, often safety-critical,
system. A third reason is the increasing size of systems, which requires a composi-
tional, with pre-integrated and pre-validated subsystems, that can quickly be inte-
grated to form new systems. These two reasons imply a third one, viz. the use of hier-
archical scheduling. A final reason is the advent of QoS based systems, where appli-
cations need to provide QoS guarantees, based on service contracts.

With reservation-based scheduling, a task or subsystem receives a real-time share
of the system resources according to a (pre-negotiated) contract. Thus, the contract
contains timing requirements. In general, such a contract boils down to some ap-
proximation of having a private processor that runs at reduced speed.

Scheduler Composition

Hierarchical scheduling means that there is not just one scheduling algorithm for a
given resource, but a hierarchy of schedulers. The tasks in the system are hierarchi-
cally grouped. The root of the hierarchy is the complete system; the leaves of the
hierarchy are the individual tasks. At each node in the hierarchy, a scheduling algo-
rithm schedules the children of that node. The practical value of a 2 level-hierarchy is
immediately obvious: intermediate nodes are applications that are independently de-
veloped and/or independently loaded. If the root scheduler provides guaranteed re-
source reservation and temporal isolation, the applications can (with some additional
precautions) be viewed to be running on private processors. We see two very distinct
real-time processing domains where some form of hierarchical scheduling is pro-
posed: one is the area of adaptive real-time in personal computers; the other is the
area of certified hard real-time systems. In the first domain, [Gai01][Goy96][Ald02]
[Reg01][Wan02] proposed a framework for deterministic adaptive real-time scheduler
composition. In the second domain, [ARI91] proposes a root scheduler that provides
time slots in a recalculated schedule. In most other proposals, the root scheduler pro-
vides some form of guaranteed bandwidth allocation [Lip00], [Mok01].

Real-Time and Control Scheduling

In the traditional approach to the analysis and design of computer control systems,
controllers are assumed to execute in dedicated processors and these are assumed to
be fast and predictable enough to meet all the application requirements. However,
when resources such as processor time or network bandwidth are limited, the analysis
and design of computer control systems is a challenging task: the resource limitations
must be taken into account in the controller design stage, or the controlled system
may exhibit unexpected behaviour.

For example, the criteria for scheduling tasks on processors influences the timing
of all tasks and can thus introduce timing variability (jitter) in the execution of control
tasks. These timing variations in the execution of control algorithms – which are al-
lowed so long as the schedulability constraints are preserved – affect performance and

250 20 Real-Time Scheduling

possibly causing instability. This degradation appears because the controller execu-
tion violates the timing assumptions of classical discrete-time controller design the-
ory, equidistant sampling and actuation.

On the other hand, trying to reduce jitter for control tasks by over-constraining the
control task specification (e.g. by very tight deadlines) reduces the degradation of the
controlled systems, although this achieved at the expense of finding feasible schedul-
ing solutions for the entire task set.

These kinds of problems can be addressed using a combination of control and real-
time scheduling principles. Instead of separating the two aspects during design, con-
trol design and computer implementation have to be jointly considered early in the
design.

Scheduling for Media Processing

Motion-sensitive video algorithms (MPEG (de)coding, but also temporal scaling, and
(de)interlacing) may have highly varying loads with strict timing requirements: tight
jitter requirements on input (broadcast) as well as output (screen), and low latencies
because of separate audio processing (home theater), interactivity, and memory con-
straints.

The freedom of encoding choices provided by the MPEG-2 standard results in high
variability inside streams, in particular with respect to frame structures and their sizes.
MPEG encoding has to meet diverse demands, depending, e.g., on the medium of
distribution, such as overall size in the case of DVD, maximum bit rate for DVB, or
speed of encoding for live broadcasts. In the case of DVD and DVB, sophisticated
provisions to apply spatial and temporal compression are applied, while a very sim-
ple, but quickly coded stream will be used for the live broadcast. Consequently, video
streams, and in particular their decoding demands will vary greatly between different
media.

A number of algorithms have been presented for efficient transmission and soft-
ware decoding of MPEG video streams, mostly using buffering and rate adjustment
based on average-case assumptions. These provide acceptable quality for applications
such as video transmissions over the Internet, when drops in quality, delays, uneven
motion or changes in speed are tolerable. However, in high quality consumer termi-
nals, such as home TVs, quality losses of such methods are not acceptable. Recently,
the application of real-time scheduling for quality aware MPEG decoding has been
introduced [Iso04].

Another demand stems from throughput requirements, as Megabytes of data have
to be pumped through the system at a very high rate.

Scheduling with Energy Considerations

The majority of scheduling algorithms focuses on temporal aspects and constraints.
With the current trends towards higher integration and embedding processors in bat-
tery-powered devices, energy consumption becomes an increasingly important issue.
From the scheduling perspectives, algorithms look at tradeoffs between processor
speed and energy consumption.

 20.3 Trends 251

Modelling

Modelling plays a central role in systems engineering. The existence of modelling
techniques is a basis for rigorous design and should drastically ease validation. In
current engineering practices in industry, models are essentially used only at the early
phases of system design and at a high level of abstraction. Requirements and design
constraints are spread out and they do not easily carry through the entire development
lifecycle. Validation of large real-time applications is mainly done by experimentation
and measurement on specific platforms, in order to adjust design parameters and,
hopefully, achieve conformity with requirements. Thus, experimenting with different
architectures and execution platforms becomes error-prone.

The use of models can profitably replace experimentation on actual systems with
incomparable advantages.

Enhanced modifiability of the system parameters.
Ease of construction by integration of models of heterogeneous components.
Generality by using abstraction and behavioural non-determinism.
Predictability analysis by application of formal methods.

Modelling methodologies must be related to an implementation methodology for
building correct real-time systems as a succession of steps involving both the devel-
opment of software components and their integration in an execution and communica-
tion plate-form. These methodologies should support specifying end-to-end con-
straints at every step in the design process and provide means to automatically propa-
gate them down to the implementation. To be useful in practice, they should lead to
and be accompanied by the development of the appropriate middleware, QoS man-
agement support and validation tools.

Modelling systems in the large is an important research topic in both academia and
industry in the area of real-time embedded systems [Sif01]. There are several trends.

One line of research consists of the so-called model-based approaches. This re-
search groups the study of unified frameworks for integrating different models of
computation [Lee98], languages [Hen01] and abstraction-based design method-
ologies [Bur01].
A key issue in a modelling methodology is the use of adequate operators to com-
pose heterogeneous schedulers (e.g., synchronous, asynchronous, event-triggered,
or time-triggered). For this reason, some researchers propose model-based theories
for composing scheduling policies [Alt02].
An obvious challenge consists in adequately relating the functional and extra-
functional requirements and constraints of the application software and underlying
execution platform. There are two current approaches to this problem.
a. One relies on architecture description languages that provide means to relate

software and hardware components (e.g., Meta-H [Bin01]).
b. The other is based on the formal verification of automata-based models auto-

matically generated from software appropriately annotated with timing con-
straints (e.g., Taxys [Ber01, Sif03]).

Nevertheless, building models that faithfully represent real-time systems is not a trivial
problem and still requires a great amount of theoretical and experimental research.

252 20 Real-Time Scheduling

20.4 Recommendations for Research

Flexible and Adaptive Scheduling

Issues to be addressed in flexible scheduling include handling of applications with
only partially known properties, relaxed constraints and such that cannot be expressed
solely by periods and deadlines, coexistence of activities with diverse properties and
demands in a system, combinations of scheduling schemes, and adaptation or changes
to scheduling schemes used at run-time.

While individual steps to adapt scheduling parameters to changes in application de-
mands have been studied, a systematic approach is needed to: identify changes in
application and distinguish between temporary and structural changes, determine a
desired system response from these in terms of utilization, importance of activities,
and temporal constraints, and methods to select and adjust appropriate scheduling
parameters.

Reservation-Based Resource Management

Instead of ad hoc solutions to individual scheduling schemes, a next step in this area
is providing a notion for real-time contracts that includes the rights and duties of both
parties involved in a detailed way.

Currently, reservation-based scheduling is focused on the CPU only. A system
wide few, however, including other system resources, in particular network is de-
manded.

Scheduler Composition

Novel applications combine various types of tasks (software entities) and constraints
within the same system. The requirements on tasks may also change dynamically.
While off-line guarantees are still essential for meeting minimum performance levels,
different types of requirements and runtime changes are included in the system analy-
sis, such as demands on quality of service (QoS) or acceptance probabilities. Often,
they require the coexistence and co-operation between diverse scheduling algorithms
to combine properties, e.g., to integrate deterministic and flexible activities in the
same system. Algorithms might even change during system’s runtime to better adapt
to environment variations.

In such a new scenario, the basic assumptions made on the classical scheduling
theory are no longer valid . New approaches are needed to handle these situations in a
predictable fashion. They should enforce timing constraints with a certain degree of
flexibility, aimed at achieving the desired trade-off between predictable performance
and efficient use of resources.

Constraints Beyond Periods and Deadlines
Timing constraints, such as period and deadline, meet the demands of system models
and in particular scheduling algorithms rather than application level requirements.
Instead of focusing on application demands, timing constraints are chosen to suit task
models mandated by system operation.

 20.4 Recommendations for Research 253

Many applications areas, notably for control and media processing, have timing re-
quirements which cannot be expressed properly only by deadlines and periods or
which restrict the system if expressed by standard timing constraints. Most current
scheduling techniques are designed to handle constraints expressed on the level of
periods and deadline. Consequently, they cannot exploit extra flexibility in temporal
demands efficiently. One particular restriction is the assumption of timing constraints
being static, i.e., they are the same and stay fixed for all instances of an activity. This
prevents solving timing problems by changing the set of timing constraints for single
instances, e.g., to avoid collisions with other periodic or aperiodic activities, or rear-
range subtask deadlines.

While “hard” is defined as having to meet all constraints at all times, and non real-
time as the opposite, the “grey area” in between, i.e., meeting timeliness requirements
in a less strict way is not well understood. Notions such as “tolerating few deadline
misses” are not precise e,g, when can these deadline be missed, at which times, with
which concentration etc. A well understood notion to express non hard-real-time
requirements, e.g., “adaptive” is needed. Probablistic scheduling algorithm can pro-
vide a basis.

Scheduling algorithms should consider more flexible ways of expressing temporal
constraints, which meet the demands of application level requirements rather than
system models and scheduling algorithms.

Furthermore, novel applications have to meet non temporal demands as well, such
as energy consumption, high volume data throughput, or reliability.

Real-Time and Control Scheduling

A number of algorithms to combine real-time and control have been presented. They
focus on either area and try to include requirements of the other, e.g., modelling
scheduling jitter as control errors, resulting in degradation of both control and system
performance.

Instead of separating the two aspects during design, however, control design and
computer implementation have to be jointly considered early in the design.

Scheduling for Media Processing

In addition to the demands on flexible and adaptive scheduling and constraints, media
processing poses challenges which have not yet been adequately addressed by real-
time scheduling.

Media streams have large throughput requirements of high variability, which do
not fit the standard “task/deadline” model well. In many scenarios streams are trans-
ported over networks which demands network scheduling as well as integration of
CPU and network scheduling, due to the dependency of processing and transmissions.

While being fluctuating and flexible in many parts, some activities in the media
processing chain, such as display, necessitate strict constraints for high quality. Ap-
proaches to accommodate the various needs in the handling of streams are needed.

Furthermore, temporal demands media processing do not fit well the standard “pe-
riod/deadline” model, due to data dependencies of timing constraints.

254 20 Real-Time Scheduling

Scheduling with Energy Considerations

The majority of scheduling algorithm with energy considerations concentrates on
including dynamic voltage scaling into the scheduling problem itself. As the CPU is
only one resource consuming power, approaches for a system wide energy view are
needed. In particular, the “energy overhead” of scheduling algorithms with respect to
CPU, but also other resources, such as memory have to be considered. The effect of
scheduling on energy consumers such as displays or disks has to be studied as well.

20.5 References

[Abe01] L. Abeni and G. Buttazzo. “Stochastic Analysis of a Reservation Based System”,
In Proc. of the 9th International Workshop on Parallel and Distributed Real-Time
Systems, Apr. 2001.

[Ald02] M. Aldea-Rivas and M. Gonzalez-Harbour, “POSIX-compatible application-
defined scheduling in MARTE OS”, in Proceedings of the 14th Euromicro Confer-
ence on Real-Time Systems (ECRTS02), pages 67-75, Vienna, Austria, 2002.

[Alt02] K. Altisen, G. Goessler, and J. Sifakis. “Scheduler modeling based on the control-
ler synthesis paradigm”. Journal of Real-Time Systems, special issue on “Control
Approaches to Real-Time Computing”, 23:55--84, 2002.

[ARI91] ARINC 651: Design Guidance for Integrated Modular Avionics", pub. by Airlines
Electronic Engineering Committee (AEEC), November 1991.

[Atl98] A. K. Atlas and A. Bestavros. “Statistical Rate Monotonic Scheduling”, In Proc. of
the 19th IEEE Real-Time Systems Symposium, Dec. 1998, pp. 123–132.

[Ayd01] H. Aydin, R. Melhem, D.Mossé and Pedro Mejia Alvarez “Determining Optimal
Processor Speeds for Periodic Real-Time Tasks with Different Power Characteris-
tics”, ECRTS01 (Euromicro Conference on Real-Time Systems), Delft, Holland,
2001

[Ber99] G. Bernat, A. Burns and A. Llamosi, Weakly hard real-time systems, IEEE
Transactions on Computers. 50(4). April 2001

[Ber01a] G. Bernat, R. Cayssials. “Guaranteed on-line weakly-hard real-time systems” IEEE
Real-Time Systems Symposium RTSS. London. December 2001

[Ber01b] G.Bernat, A. Burns “Implementing a Flexible Scheduler in Ada”. Proceedings of
Reliable Software Technologies – Ada Europe 2001

[Ber01] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S.
Yovine. “Taxys = Esterel + Kronos: a tool for verifying real-time properties of
embedded systems”. In Conference on Decision and Control, CDC’01 , Orlando,
December 2001. IEEE Control Systems Society.

[Bin01] P. Binns and S. Vestal. “Formalizing software architectures for embedded sys-
tems”. In EMSOFT’01 Springer, LNCS 2211, 2001.

[Bro02] I. Broster, G. Bernat and A. Burns “Weakly-Hard Real-Time Constraints on Con-
troller Area Network” 14th Euromicro Conference on Real-Time Systems. 2002.
Vienna, Austria.

[Bur01] J.R. Burch, R. Passeronne, and A. Sangiovanni-Vincentelli. “Using multiple levels
of abstractions in embedded software design”. In EMSOFT’01. Springer, LNCS
2211, 2001.

[Bur03] A. Burns, G. Bernat, I. Broster, “A Probabilistic Framework for Schedulability
Analysis”, EmSoft 2003, Third International Conference on Embedded Software,
Philadelphia, Pennsylvania, USA, October 13-15, 2003.

 20.5 References 255

[But95] G. Buttazzo and J. Stankovic, “Adding Robustness in Dynamic Preemptive Sched-
uling”, in Responsive Computer Systems: Steps Toward Fault-Tolerant Real-Time
Systems, Edited by D. S. Fussell and M. Malek, Kluwer Academic Publishers,
Boston, 1995.

[But98] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic Task Model for Adaptive Rate
Control”, Proceedings of the IEEE Real-Time Systems Symposium, Madrid,
Spain, pp. 286-295, December 1998

[Dav95] R. Davis, A. Wellings, Dual priority scheduling, 16th IEEE Real-Time Systems
Symposium (RTSS ‘95) , Pisa, ITALY

[Dia02] J. L. Diaz, D. F. Garcia, K. Kim, C. Lee, L. Lo Bello, J. M. Lopez, S. L. Min, O.
Mirabella, “Stochastic Analysis of Periodic Real-Time Systems”, IEEE 23rd Real-
Time Systems Symposium RTSS’02,, December 3-5, Austin, TX, USA.

[Foh93] G. Fohler. Changing operational modes in the context of pre run-time scheduling.
IEIC transactions on information and systems, special issue on responsive com-
puter systems, Nov 1993

[Foh95] G. Fohler, Joint scheduling of distributed complex periodic and hard aperiodic
tasks in statically scheduled systems, 16th IEEE Real-Time Systems Symposium
(RTSS ‘95) Dec 1995

[Gai01] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A New Kernel Approach for Modu-
lar Real-Time Systems Development”, IEEE Proceedings of the 13th Euromicro
Conference on Real-Time Systems, Delft, The Netherlands, June 2001.

[Gar99-1] M. K. Gardner and J. W.S. Liu. “Analyzing Stochastic Fixed-Priority Real-Time
Systems”, in Proc. of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Mar. 1999.

[Gar99-2] M. K. Gardner. “Probabilistic Analysis and Scheduling of Critical Soft Real-Time
Systems”, Ph.D. Thesis, Univ. of Illinois Urbana-Champaign, 1999.

[Gho95] S. Ghosh, R. Melhem and D. Mosse, “Enhancing Real-Time Schedules to Tolerate
Transient Faults”, Proc. of the 16th IEEE Real-Time Systems Symposium, Pisa, It-
aly, 1995.

[Goy96] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler for multimedia
operating systems”, in Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, 1996.

[Hen01] T.A. Henzinger, B. Horowitz, and C. Meyer Kirsch. “Giotto: A time-triggered
language for embedded programming”. In EMSOFT’01. Springer, LNCS 2211,
2001.

[Iso04] Damir Isovic, Gerhard Fohler. “Quality aware MPEG-2 stream adaptation in re-
source constrained systems”, 16th Euromicro Conference on Real-time Systems
(ECRTS 04), Catania, Sicily, Italy, July 2004

[Kop97] H. Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers, 1997.

[Lee98] E. Lee and A. Sangiovanni-Vincentelli. “A unified framework for comparing
models of computation”. IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems , 17(12):1217--1229, December 1998.

[Leh96] J. P. Lehoczky. “Real-Time Queueing Theory”, In Proc. of the 17th IEEE Real-
Time Systems Symposium, Dec. 1996, pp. 186-195.

[Leh97] J. P. Lehoczky. “Real-Time Queueing Network Theory,” In Proc. of the 18th IEEE
Real-Time Systems Symposium, Dec. 1997, pp. 58-67.

[Leh89] J. P. Lehoczky, L. Sha, and Y. Ding. “The Rate-Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behaviour”, In Proc. of the 10th IEEE
Real-Time Systems Symposium, Dec. 1989.

[Leh90] J. P. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines”, In Proc. of the 11th IEEE Real-Time Systems Symposium, Dec. 1990.

256 20 Real-Time Scheduling

[Leu03] A. Leulseged and N. Nissanke., “Probabilistic Analysis of Multi-processor Sched-
uling of Tasks with Uncertain Parameters.”, In 9th Int. Conf. On Real-time and
Embedded Computing Systems and Applications, Taiwan, February 2003

[Lip00] G. Lipari and S.K. Baruah “Efficient Scheduling of Multi-Task Applications in
Open Systems” IEEE Proceedings of the 6th Real-Time Systems and Applications
Symposium, Washington DC, June 2000

[Liu73] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in
Hard Real-Time Environment”, Journal of the ACM, No. 1, Vol. 20, pp. 40-61,
1973.

[Man01] S. Manolache, P. Eles, and Z. Peng. “Memory and Time-Efficient Schedulability
Analysis of Task Sets with Stochastic Execution Times”, In Proc. of the 13th Eu-
romicro Conference on Real-Time Systems, Jun. 2001, pp. 19-26.

[Mok01] A. Mok, X. Feng & D. Chen , Resource Partition for Real-Time Systems, 7th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2001)

[Mok83] A.K. Mok, Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment, PhD Thesis, Massachusetts Institute of Technology,
1983.

[Nis02] N. Nissanke, A. Leulseged, and S. Chillara. “Probabilistic Performance Analysis in
Multiprocessor Scheduling.”, In Computing and Control Journal, IEE, London,
August, 2002.

[Ram90] K. Ramamritham: Scheduling Complex Periodic Tasks, Intl. Conference on Dis-
tributed Computing Systems, June 1990.

[Ram96:] K. Ramamritham, Where do timing constraints come from, where do they go?,
Journal of Database Management, 7(2):4-10, Spring 1996

[Reg01] John Regehr, John Stankovic, “HLS: a framework for composing soft real-time
systems”, Proc. RTSS 2001, London 2001.

[Riv02] Mario Aldea Rivas and Michael González Harbour, POSIX-Compatible Applica-
tion-Defined Scheduling in MaRTE OS. Proceedings of 14th Euromicro Confer-
ence on Real-Time Systems, Vienna, Austria, IEEE Computer Society Press, June
2002.

[Sha89] L. Sha, R. Rajkumar, J.P. Lehoczky, and K. Ramamritham, Mode Change Proto-
cols for Priority-Driven Preemptive Scheduling, Journal of Real-Time Systems
1(3), 1989

[Sif01] J. Sifakis. “Modeling real-time systems -- challenges and work directions”. In
EMSOFT’01 . Springer, LNCS 2211, 2001.

[Sif03] J. Sifakis, S. Tripakis, S. Yovine. “Building models of real-time systems from
application software”. Proceedings of the IEEE,Special issue on modeling and de-
sign of embedded, 91(1):100-111, January 2003.

[Spu94] M. Spuri and G. Buttazzo, “Efficient Aperiodic Service under Earliest Deadline
Scheduling”, Proceedings of the 15th IEEE Real-Time System Symposium (RTSS
94), Portorico, pp. 2-21, December 1994.

[Spu96] M. Spuri and G. Buttazzo, “Scheduling Aperiodic Tasks in Dynamic Priority
Systems”, The Journal of Real-Time Systems, Vol. 10, No. 2, pp. 179-210, March
1996.

[Spr89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard real-time
systems. Journal of Real-Time Systems, 1(1):27--60, 1989.

[Sta87] J.A. Stankovic and K. Ramamritham, “The design of the Spring kernel,” In Proc.
Real-time Systems Symposium, pp.146-157, Dec. 1987

[Sta99] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The Case for Feedback Control
Real-Time Scheduling,” 11th EuroMicro Conference on Real-Time Systems,
York, UK, June 1999

 20.5 References 257

[Tia95] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.S. Liu.
“Probabilistic Performance Guarantee for Real-Time Tasks with Varying Compu-
tation Times”, in Proc. of the Real-Time Technology and Applications Symposium,
May 1995, pp. 164–173.

[Tin92] K. Tindell, A.Burns and A.J.Wellings, Allocating Real-Time Tasks: An NP-Hard
Problem made Easy, Journal of Real-Time Systems, Vol 4 pp145-165, 1992

[Tin94] K. Tindell, A. Burns and A.J. Wellings: An Extendible Approach for Analysing
Fixed Priority Hard Real-Time Tasks , Real-Time Systems, Vol. 6(2), pp. 133-151
(March 1994)

[Wan02] S. Wang, K.-J. Lin, and Y. Wang, “Hierarchical budget management in the RED-
linux scheduling framework”, in Proceedings of the 14th Euromicro Conference on
Real-Time Systems (ECRTS02), pp. 76-83, Vienna, Austria, 2002.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 258 – 286, 2005.
© Springer-Verlag Berlin Heidelberg 2005

21 Real-Time Operating Systems

This section is devoted to real-time operating systems (RTOS) for supporting applica-
tions with real-time requirements. In these applications, most real-time requirements
are derived form the physics of the environment that is being controlled or monitored
and this implies that most real-time systems are embedded computer systems, and that
an RTOS has to provide facilities for supporting embedded applications. There are
many commercial products that can be categorized as an RTOS, even though there is
a wide range of products, from very small real-time kernels for small embedded ap-
plications with a memory footprint in the few kilobytes range, to the large multipur-
pose systems controlling a very complex real-time system. Despite this broad range of
systems, an RTOS always has the property of being able to provide the required level
of service with bounded response times.

In the past and even today, many real-time applications were built without an oper-
ating system. They were usually simple applications with a simple cyclic scheduler
and some interrupt driven routines, and with all the I/O drivers written directly by the
application developer. However, with the cost and power of computers today, real-
time applications are much more complex, and require full concurrency support, ad-
vanced scheduling services, networking, advanced memory management, time man-
agement, and in some cases even graphical user interfaces and file systems for secon-
dary storage. These are the services typically provided by operating systems, and this
has made their use more important in real-time systems. It is expected that this ten-
dency will continue in the future.

In this section we will present a cross section of the most important commercial
RTOS’s available today, and we will also discuss the standards that play a major role
in operating systems for real-time embedded applications. Some of these standards
are recognized by international bodies, while others are industry standards. In both
cases, they belong to a community of users and developers, and not to individual
companies.

The role of standards in operating systems in general is very important as it pro-
vides portability of applications from one platform to another. With the constant evo-
lution of hardware it is very important to be able to port an application that was de-
veloped for a particular platform into new hardware platforms. The programmers are
also easily transferred between platforms because the standard imposes a particular
model of the system’s application program interface. In addition, standards open the
door to the possibility of having several OS providers for a single application or com-
pany, which promotes competition among vendors and increases quality and value.

There are few real-time operating system standards that specify or facilitate port-
ability at the binary code level. The reason is that in real-time systems there are many
kinds of processor architectures, from very small embedded systems to very large
processors handling large amounts of data. Binary code portability is usually only
practical for families of processors with the same programming architecture. There-
fore, current operating system standards mostly specify portability at the source code

 21.1 Landscape 259

level, requiring the application developer to recompile the application for every dif-
ferent platform.

Portability in real-time systems is not complete with current technology. The inter-
face between the software and the hardware devices, mostly encapsulated inside the
device drivers, is usually non-portable. And in embedded real-time systems it is usual
to access special hardware that requires custom-developed drivers. In many systems
this can be a significant part of the overall software development. Still, the majority of
the application is usually outside the device drivers and can be made portable if de-
veloped to comply to one of the standards.

Another source of non portability is that in real-time systems the port from one
platform to another does not imply that the timing behaviour will be unaffected; tim-
ing requirements may or may not be met in the new platform (even if it is a faster
platform) and the real-time analysis must be reevaluated as part of the migration proc-
ess. An evaluation of the timing behaviour of the new platform can be done before the
migration, to minimize the risk.

In this section, after presenting a landscape of existing RTOS and operating system
standards, we discuss their limitations and illustrate the new trends in this area.

21.1 Landscape

Although there are a large variety of real-time operating systems varying in sizes,
level of provided services, and efficiency, there are some common elements that can
be found in most of them [BG-EC] [BG-DS] [FAQ], giving an answer to: what makes
an OS real-time?

An RTOS usually provides support for concurrent programming via processes or
threads or both. Processes usually provide protection through separate address
spaces, while threads can cooperate more easily by sharing the same address
space, but with no protection.
Real-time scheduling services are provided because this is one of the keys to ob-
taining a predictable timing behaviour. Most current RTOS’s provide the notion of
a scheduling priority, usually fixed, as for the moment there are few systems pro-
viding deadline-driven or other dynamic-priority scheduling.
Although some RTOS’s designed for high-integrity applications use non preemp-
tive scheduling, most support preemption because it leads to smaller latencies and
a higher degree of utilization of the resources.
The OS has to support predictable synchronization mechanisms, both for events or
signal and wait services, as well as for mutual exclusion. In the later case some
way of preventing priority inversion is required because otherwise very improb-
able but also very long delays may occur. The common mechanism used to pre-
vent priority inversion is the use of some priority inheritance protocol in the mu-
tual exclusion synchronization services. Priority inversions must also be avoided
in the internal kernel implementation; among other things this requires the use of
priority queues instead of regular FIFO queues in those OS services where proc-
esses or threads may be queued waiting for some resource.
The OS has to provide time management services with sufficient precision and
resolution to make it possible for the application to meet its timing requirements.

260 21 Real-Time Operating Systems

OS behaviour should be predictable, and so metrics of the response time bounds of
the services that are used in real-time loops should be clearly given by the RTOS
manufacturer or obtained by the application developer. These metrics include the
interrupt latency (i.e., time from interrupt to task run), the worst case execution
time of the system calls used in real-time loops, and the maximum time during
which interrupts are masked or disabled by the OS and by any driver.

The real-time operating systems presented in this section largely fit into this charac-
terization.

An RTOS is generally chosen not only for its real-time characteristics, but also for
the middleware that is integrated in the RTOS, such as file system, communication
stack, for its portability to different platforms (i.e., the board support packages that are
provided), and for the associated cross-development environment.

A commercial RTOS is usually marketed as the run-time component of an embed-
ded development platform, which also includes a comprehensive suite of (cross-)
development tools and utilities and a range of communications options for the target
connection to the host, in an Integrated Development Environment (IDE). Moreover,
the vendor generally provides development support. For each successful open source
RTOS there is also at least one commercial distributor that provides development
tools and development support.

For many embedded-systems companies, the availability of development tools and
support is a major requirement for choosing a particular RTOS. The quality of the
overall package deal, including service and pricing strategy is often decisive in choos-
ing a particular RTOS.

Not all operating systems presented in this landscape satisfy the RTOS criteria
given above and/or the RTOS definition in the Introduction. To get a clearer view of
the landscape, we distinguish a number of subclasses. We first present the landscape
on the operating system standards, then some major commercially available RTOS,
then some LINUX variants, some other open source RTOS, and finally, some typi-
cally embedded operating systems that are not real-time. Before going into the de-
tailed descriptions of the RTOS, the development and timing analysis tools will be
addressed first.

Tools

In this section, a general description is given of the development tools that make up
the Integrated Development Environment (IDE), and of timing-analysis tools that, in
some cases, are included in or can be attached to the IDE.

Development Tools
In addition to the general programming tools, such as (graphical) editors, compilers,
source code browsers, high-level debuggers, and version control systems there are a
number of tools specifically aiming cross development, and run time analysis. Ad-
vanced tools in this domain not only address development and analysis of the own
application code, but also third-party code and the integration with the OS. Memory
analyzers show memory usage and reveal memory leaks before they cause a system
failure. Performance profilers reveal code performance bottlenecks and show where a
CPU is spending its cycles, providing a detailed function-by-function analysis. Real-

 21.1 Landscape 261

time monitors allow the programmer to view any set of variables, while the program
is running. Execution tracers display the function calls and function calling parame-
ters of a running program, as well as return values and execution time. Event analyz-
ers allow the programmer to view and track application events in a graphical viewer
with stretchable time scale, showing context switches, semaphores, message queues,
signals, tasks, timers, etc. Simulators enable application development to begin before
hardware becomes available, allowing a large portion of software testing to occur
early in the development cycle.

Timing Analysis Tools
To our knowledge there are two commercially available timing analysis tools:
TimeWiz from Time Sys Corporation, and RapidRMA from TriPacific. Both tools are
based on Rate Monotonic Analysis (RMA, a modelling and analysis approach for
fixed priority systems) [Kle93]. These tools allow designers to test software models
against various design scenarios and evaluate how different implementations might
optimize the performance of their systems, and isolate and identify potential schedul-
ing bottlenecks of both adaptive and hard real-time systems. There is also a WCET
analyzer, aiT, from AbsInt. This tool takes the pipelining and caching of modern
processors into account when determining worst-case execution times.

Operating System Standards

In this subsection we will discuss the main four operating system standards that are
available today. The main general-purpose operating system standard, POSIX, has
real-time extensions that are widely used by the real-time community. It will be dis-
cussed as a general-purpose approach to real-time operating systems. We will also
discuss three other real-time standards that are more specific to certain application
environments: OSEK for the automotive industry, APEX for avionics systems, and
μITRON for embedded systems. In a later section, an assessment is made on the main
features of these standards, and their limitations and trends are presented.

RT-Posix
One of the most successful standards in the area or Real-Time Operating Systems
(RTOS) is the real-time version of POSIX. Virtually all major RTOS vendors claim
some level of conformance in this standard.

The POSIX standard for Portable Operating System Interfaces is based on UNIX
operating systems. Its goal is the portability of applications at the source code level.

POSIX includes three categories of standards:

Base standards, defining interfaces to operating system services in C. These
include the basic UNIX services, and a large number of real-time extensions that
achieve predictable timing behaviour and facilitate concurrent programming. With
its current definition, POSIX allows portability of applications with real-time re-
quirements [POS01] [POS03a].
Profiles for different application environments, defining standardized subsets of
the operating system services. In particular, there are several subsets for real-time
systems, and one of them is designed for small embedded systems . The profiles

262 21 Real-Time Operating Systems

were developed in 1998 [POS98a] and they were later revised [POS03b] to in-
clude all the new interfaces defined in the 2001 version of POSIX [POS03a].
Bindings with interfaces to the operating system services in different program-
ming languages (Ada [Pos92][Pos96][Pos98b], Fortran 77).

POSIX had a large revision in 2001 [Pos03a], when it was merged with the interfaces
developed by the industrial consortium “The Open Group”. With this revision there is
now a single POSIX/UNIX standard that includes all the real-time services as op-
tional interfaces. It was later amended with some minor technical corrigenda
[POS03a].

The basic POSIX services include process and thread management, file system
management, input and output, and the notification of events through the use of sig-
nals. The real-time interfaces to POSIX are optional for general-purpose systems, and
are mandatory if one of the real-time profiles is used. They define services for the
operating system that:

Facilitate Concurrent Programming
Services include mutual exclusion synchronization with priority inheritance and
immediate priority ceiling protocols to avoid priority inversion; signal & wait syn-
chronization via condition variables; shared memory objects for inter-process data
sharing; and prioritized message queues for inter-process or inter-thread commu-
nications.
Provide Predictable Timing Behaviour
for the application. Services with this objective include preemptive fixed priority
scheduling, with several options for individual tasks such as FIFO or round robin
order within priorities or sporadic server scheduling; time management with high
resolution sleep operations and multipurpose timers, execution-time budgeting for
measuring and limiting the execution times of processes and threads, and virtual
memory management, including the ability to disconnect virtual memory for spe-
cific real-time processes.

Because the POSIX standard is so large, subsets are defined to enable implementa-
tions for small systems. The main characteristics of the four real-time profiles defined
by POSIX.13 [POS03b] are:

Minimal Real-Time System profile (PSE51). Implementations of this profile are
not required to support multiple processes, nor a full featured file system. The unit
of concurrency is the thread. Input and output is possible through predefined de-
vice files, but no regular files can be created. This profile is intended for small
embedded systems. Most of the complexity of a general purpose operating system
is eliminated: PSE51 systems can be implemented with a few thousand lines of
code, and with memory footprints in the tens of kilobytes range.
Real-Time Controller profile (PSE52). This is similar to the PSE51 profile, with
the addition of a file system in which regular files can be created and read or writ-
ten. It is intended for systems like a robot controller, which may need support for a
simplified file system.
Dedicated Real-Time System profile (PSE53). It is intended for large embedded
systems (e.g.: avionics). It is an extension of the PSE52 profile adding support for
multiple processes. For this kind of system, protection boundaries are required be-

 21.1 Landscape 263

tween different parts of the application, and processes are required in this profile
for that purpose.
Multi-purpose Real-Time System profile (PSE54). This profile is intended for
general-purpose computing systems running a mixture of applications with real-
time and non-real-time requirements. It requires most of the POSIX functionality
for general purpose systems and, in addition, most of the real-time services.

Ada bindings exist for most of the POSIX operating system services [Pos92][Pos96]
[Pos98b], except those developed after 1999, for which work is ongoing. This makes
it possible to access the OS services from both C and Ada language applications, and
to achieve interoperability between parts of an application written in either language.

In summary, the real-time extensions to POSIX have brought portability, for the
first time, to real-time applications. The real-time services support the development of
fixed-priority real-time systems, and include all the services required to guarantee a
real-time response, such as bounded response times, priority inheritance synchroniza-
tion protocols that avoid priority inversions, and execution-time budgeting that allows
temporal protection and increases robustness. As we will describe below, in the future
it is expected that real-time POSIX evolves towards more flexible scheduling
schemes.

OSEK
OSEK/VDX is a joint project of many automotive industries that aims at the defini-
tion of an industry standard for an open-ended architecture for distributed control
units in vehicles.

The term OSEK means “Offene Systeme und deren Schnittstellen für die Elek-
tronik im Kraftfahrzeug” (Open systems and the corresponding interfaces for automo-
tive electronics); the term VDX means Vehicle Distributed eXecutive. This section
shortly describes the specification of the Operating System Specification, release 2.2,
and recalls some other OSEK documents [OSEK].

The objective of the standard is to describe an environment which supports effi-
cient utilization of resources for automotive control unit application software. This
standard can be viewed as a set of API for real-time operating system (OSEK) inte-
grated on a network management system (VDX) that together describes the character-
istics of a distributed environment that can be used for developing automotive appli-
cations.

The typical applications that have to be implemented have tight real-time con-
straints and an high criticality (for example, a power-train application). In addition,
these applications are usually produced in high volumes. Therefore, in order to save
on production costs, there is a strong push towards the optimization of the application,
by reducing the memory footprint to a minimum, enhancing as much as it is possible
the OS performance.

The philosophy that drove the main architectural choices of the OSEK Operating
System is inspired in the following set of application requirements and characteristics:

Scalability. An OSEK compatible operating system is intended for use on a wide
range control units (from systems with very limited hardware resources like 8 bit
microcontrollers, to more powerful hardware platforms like 32-bit microcontrol-
lers). To support such a wide range of systems, the standard defines four confor-

264 21 Real-Time Operating Systems

mance classes that have increasing complexity. However, memory protection is
not supported at all.
Software portability. The standard specifies an ISO/ANSI-C interface between
the application and the operating system. The aim of this interface is to give the
ability to transfer an application’s software from one ECU to another ECU without
big changes inside the application. Due to the wide variety of hardware where the
OS has to work in, the standard does not specify any interface to the I/O subsys-
tem. Note that this fact reduces (if not prohibits) the portability of the application
source code, since the I/O system is one of the main software part that impacts on
the architecture of the software. The prime focus is not to achieve 100% compati-
bility between the application modules, but to ease their direct portability between
compliant operating systems.
Configurability. Another pre-requisite needed to adapt the OS to a wide range of
hardware is a high degree of modularity and configurability. This configurability
is reflected by the tool chain proposed by the OSEK standard, where appropriate
configuration tools help the designer in tuning the system services and the system
footprint. Moreover, a language called OIL (OSEK Implementation Language) is
proposed to help the definition of standardized configuration information.
Static allocation of software components. All the OS objects and the application
components are statically allocated. The number of application tasks, their code,
the required resources and services are defined at compile time. Note that this ap-
proach simplifies the internal structure of the kernel and makes it easier to deploy
the kernel and the application code on a ROM. It is completely different from a
dynamic approach followed in other OS standards like for example POSIX.
Support for Time Triggered Architectures. The OSEK Standard provides the
specification of OSEKTime OS, a time triggered OS that can be fully integrated in
the OSEK/VDX framework.

APEX (ARINC)
APEX is a standard for an operating system interface for avionics systems. Tradition-
ally, avionics computer systems and software have followed a federated approach –
separate software functions allocated to dedicated (often physically disjoint) comput-
ing “black-boxes”. Such architectures often lead to inefficient resource utilization at
run-time. In recent years there has been a considerable amount of effort undertaken by
ARINC to define standards for Integrated Modular Avionics (IMA) [Ari91]. IMA
proposes the integration of avionics software functions to save physical resources.
Also, to cut development costs, IMA encompasses a number of standards for hard-
ware and software. One such standard is the operating system interface for IMA ap-
plications (i.e. distributed multiprocessor architectures with shared memory and net-
work communications), called the Avionics Application Software Standard Interface
(APEX) [Ari96]. The goal of APEX is to allow analyzable safety critical real-time
applications to be implemented, certified and executed.

APEX is envisaged to be a system layer providing a mapping between application
and O/S services. The scope of the APEX layer is intended to provide the minimum
functionality required by an embedded avionics application. The APEX standard also
provides some indication as to the expected behaviour of the O/S services (expressed
as pseudo-code). In turn, the O/S interfaces to underlying hardware via a standard

 21.1 Landscape 265

interface termed COEX, sitting upon a Hardware Interface System (HWIS).The pur-
pose of COEX/HWIS is to enable standard interfaces to be seen by the O/S and there-
fore to enhance portability of the O/S. It is envisaged that the COEX/HWIS layer is
small – basic memory management, interrupt handling etc.

APEX supports applications structured according to the central principles of Inte-
grated Modular Avionics (IMA):

Physical memory is subdivided into partitions. It is envisaged that software sub-
systems will occupy distinct partitions at run-time.
Each partition contains one or more processes which may communicate both with
processes within the same partition and with those from other partitions.

There is no limit in APEX on the number and size of partitions and processes (within
the bounds of physical memory). The unit of distribution is the partition.

Each partition has a number of properties, including the criticality level, period,
duration and lock or preemption level. Whilst allocation to a partition is criticality
based, allocation criteria to partitions of identical criticality could be application spe-
cific, use temporal characteristics, or components subject to change.

APEX dictates that a cyclic schedule is used to schedule partitions. The schedule is
created offline containing all partitions at least once, although some may appear more
times, depending upon the relationship between a partition’s period and the length of
the schedule. Thus, partitions are temporally isolated from each another. Conse-
quently, a non-critical partition cannot consume more processing resources than have
been allocated to it in the cyclic schedule. These facilities together with hardware
memory management techniques provide the main fire-walling facilities in APEX.

Each partition contains one or more application processes, each process having at-
tributes, including a period, time capacity, base and current priority, and running state.
Processes are initially “dormant” and ineligible for execution. When the process is
started, it enters the “ready” state and becomes a candidate for execution. Processes
are scheduled on a fixed priority basis. That is, when a partition is scheduled, the
processor is then assigned to the highest priority “ready” process amongst those in the
partition current priority is used). The selected process now enters the “running” state.
During the execution of a process it may enter the “waiting” state if it needs a system
resource or suspends itself.

Under APEX, it is expected that all missed deadlines will be detected by checking
for a missed deadline when a re-scheduling operation occurs (e.g. at a preemption).
Thus, deadlines expiring outside the partition time-slice are only recognized at the
start of the next time-slice for that partition.

Communication between processes in different partitions (whether on same proc-
essor or not) is via message passing over logical ports and physical channels. Cur-
rently, APEX restricts such messages to be from a single sender to a single receiver.
Physical channels are established at initialization time. Ports represent the logical
connections between processes (in different partitions). Many ports maybe mapped to
a single channel. The application communicates via ports, which the O/S maps to an
appropriate channel. Two forms of message-passing over ports are given:

266 21 Real-Time Operating Systems

Sampling Messages – the port contains a single slot of message buffer, where
arrival of a new message overwrites the previous contents of the buffer. The mes-
sage is read non-destructively.
Queuing Messages – the port contains a multi-slot message buffer, where incom-
ing messages are stored in FIFO order. The read operation is destructive. When
the buffer is full, APEX dictates that no further sends may occur (the sender
waits). Also, when the buffer is empty, a process will be forced to wait if it at-
tempts to read a message.

Messages have other attributes, including fixed or variable lengths and requirement of
an acknowledgment. Processes within a partition can communicate without the over-
head of the full inter-partition message passing system using a variety of facilities
including conventional buffers, semaphores and events. Note that none of these are
visible outside the partition.

Real-time systems have been built successfully (and certified) using APEX, for ex-
ample some critical systems within the Boeing 777 aircraft. Also, a demonstration
APEX implementation has also been completed where APEX (and the underlying
minimal OS) is entirely written using the Ravenscar or SPARK subsets of Ada 95
[Bar97].

Micro-ITRON
The ITRON (Industrial TRON: “The Real-time Operating system Nucleus”) project
started in 1984, in Japan. ITRON is an architecture for real-time operating systems
used to build embedded systems. The ITRON project has developed a series of de-
facto standards for real-time kernels, the previous of which was the μITRON 3.0
specification [Sak98], released in 1993. It included connection functions that allow a
single embedded system to be implemented over a network. There are approximately
50 ITRON real-time kernel products for 35 processors registered with the TRON
association, almost exclusively in Japan. The ITRON standards primarily aim at small
systems (8-16 and 32 bits).

ITRON specification kernels have been applied over a large range of embedded
application domains: audio/visual equipment (TVs, VCRs, digital cameras, STBs,
audio components), home appliances (Microwave ovens, rice cookers, air-
conditioners, washing machines), personal information appliances (PDAs, personal
organizers, car navigation systems), entertainment (game gear, electronic musical
instruments), PC peripherals (printers, scanners, disk drives, CD-ROM drives), office
equipment (copiers, FAX machines, word processors), communication equipment
(phone answering machines, ISDN telephones, cellular phones, PCS terminals, ATM
switches, broadcasting equipment, wireless systems, satellites), transportation (auto-
mobiles), industrial control (plant control, industrial robots) and others (elevators,
vending machines, medical equipment, data terminals).

The μITRON 4.0 specification [Tak02] combines the loose standardization that is
typical for ITRON standards with a Standard Profile that supports the strict standardi-
zation needed for portability. In defining the Standard Profile, an effort has been made
to maximize software portability while maintaining scalability. As an example, a
mechanism has been introduced for improving the portability of interrupt handlers
while keeping overhead small. The Standard Profile assumes the following system

 21.1 Landscape 267

image: high-end 16-32 bit processor, kernel code size 10 to 20 KB when all functions
included, whole system linked in one module, kernel object statically generated.
There is no protection mechanism. The Standard Profile supports task priorities,
semaphores, message queues, and mutual exclusion primitives with priority inheri-
tance and priority ceiling protocols.

Currently, the ITRON project is making an effort to address the English-language
community as well. Supposedly, IEEE CS Press published the English version of the
μITRON 3.0 specification. The μITRON4.0 specification is available in English from
the ITRON website http://www.ertl.jp/ITRON/home-e.html.

Commercial Real Time Operating Systems (RTOS)

At the time of this writing, there were 101 commercial RTOS listed and described in
[BG-EC] (see also [BG-DS]). Some major players in this field are VxWorks (Wind
River), OSE (OSE Systems), Windows CE (Microsoft), QNX, and Integrity (Green
Hills). It is not the objective of this document to describe them all. In this section,
only two systems are described: VxWorks, from Wind River, the major RTOS of the
largest vendor (measured in terms of turnover), and the OSE family, from OSE Sys-
tems, a Swedish company. Integrity, the RTOS with the fastest growing market share,
is also mentioned briefly.

VxWorks
This RTOS is produced by Wind River Systems and comes in two flavors:

VxWorks 5.x is a state-of-the practice RTOS that satisfies the criteria for a “good”
operating system given above. The RTOS is marketed as the run-time component
of the development platform Tornado. VxWorks conforms to real-time POSIX
[POS03a]. Graphics, multiprocessing support, memory management unit, connec-
tivity, Java support, and file systems are available as separate services. All major
CPU platforms for embedded systems are supported.
VxWorks AE conforms to the POSIX standard as well as to the APEX standard.
The key new concept in AE is the “protection domain”, which corresponds to the
partition in [ARI96]. All memory-based resources, such as tasks, queues, and
semaphores are local to the protected domain, which also provides the basis for
automated resource reclamation. An optional Arinc-653 compatible protection
domain scheduler (Arinc scheduler for short) extends the protection to the tempo-
ral domain. Such a two-level scheduler provides a guaranteed CPU time window
for a protection domain (a protection domain instance) in which that protection
domain’s tasks will always be able to run. Actions of tasks in other protection do-
mains can have no effect on the availability of the protection domain instance to
the designated protection domain(s). Priority-based preemptive scheduling is used
within a protection domain, not between protection domains. VxWorks 5.x appli-
cations can run in an AE protected domain without modifications. VxWorks AE is
available for a limited set of CPUs.

Integrity
INTEGRITY is a secure real-time operating system produced by Green Hills Soft-
ware Inc., intended for use in embedded systems that require maximum reliability.

268 21 Real-Time Operating Systems

This RTOS has the same design goals as VxWorks AE. It supports partitions by using
the memory management hardware to isolate the elements from the different parti-
tions. Within an individual address space, each task may be assigned a fixed budget of
CPU time that it is guaranteed to have under any circumstances, and beyond which it
cannot use. It provides an optional Arinc-653 two-level partition scheduler that pro-
vides a guaranteed CPU time window for an address space in which that address
space’s tasks always will be able to run. Actions of tasks in other address spaces can
have no effect on the availability of the CPU time window to the designated address
space(s). The highest locker priority protocol is used to prevent priority inversion in
mutual exclusion synchronization. The design of Integrity is able to guarantee that
system resources in the time (CPU time) and space (memory) domains will always be
available to individual processes no matter what any other process attempts to do.

OSE
OSE comes in three flavours: OSE, OSEck and Epsilon [OSE]. OSE is the portable
kernel written mostly in C, OSEck is the ‘compact kernel’ version aimed at digital
signal processors (DSPs) and Epsilon is a set of highly optimized assembly kernels.
The different kernels implement the OSE API in different levels, from level A to level
D. A is the smallest set of features that is guaranteed to exist on all OSE supported
platforms, while D is the full set of features including virtual memory, memory pro-
tection and concept of users.

The OSE processes can either be dynamic or static, i.e. created at compile-time or
at run-time. They can be in one of three states: Running, Ready and Waiting. OSE can
use different scheduling principles for different processes; priority-based, cyclic and
round-robin. These principles are implemented for the different types of processes in
OSE; interrupt process, timer interrupt process, prioritized process, background proc-
ess and phantom process. The interrupt processes and the prioritized processes are
scheduled according to their priority, while timer interrupt processes are triggered
cyclically. The background processes are scheduled in a round-robin fashion. The
phantom processes are not scheduled at all, they are used as signal redirectors. The
processes can be grouped into ‘blocks’, and one such block may be treated as a single
process in some ways; e.g. one can start and stop a whole block at once.

OSE processes use messages (called signals) as their primary communication
method. The signals are sent from one process to another and does not use he concept
of mailboxes. The data ownership follows the signal. Each process has a single input-
queue from which it can read signals. It may put on a filter to read the type of mes-
sage wanted. A process may also have a redirection table that forwards certain types
of messages to other processes. By the use of ‘link handlers’ signals may be sent
between OSE systems over various communication channels (network, serial lines
etc). There is API functionality to get information about processes on other OSE sys-
tems so the right receiver can be determined. Sending signals to a higher-priority
process, transfers the execution to the receiver. Sending to lower processes does not.
Semaphores also exist, in more than on flavour, but the use of those are discouraged
due to priority inversion problems associated with them.

Processes can be grouped into blocks, and to each block one can associate a mem-
ory pool the specifies the amount of memory available for that block. There is a spe-
cial pool for the system. The pools can in turn be grouped into ‘segments’, that can

 21.1 Landscape 269

feature hardware memory protection if available. Signals going between processes
inside the same memory area do not undergo copying. Only when it is necessary from
memory point of view, the signal buffer is copied.

An application can be written across several CPUs by use of signal IPC and link
handlers. From the process point of view, it does not matter if the receiver exists on
this CPU or on some other. One may mix any kernel type with any other (including
‘soft kernels’). Links are monitored for hardware failures and alternate routes are
automatically attempted to be established upon a link failure. Processes are notified
upon link failure events.

Errors in system calls are not indicated by a traditional return code, but as a call to
an error handler. The error handlers exist on several levels, process, block and system
level. One an error handler on one level cannot handle the error, it is propagated to the
next level until it reaches the system level.

OSE operating systems are widely used in the automotive industry and the com-
munications industry.

Open Source RTOS: Linux Related

There has been a considerable amount of work in making Linux, the famous open
source operating system, into an RTOS. The reason is, that this would make possible
to use the full-power of a real operating system, included a broad range of open
source development tools, for real-time applications.

A list of Linux real-time variants can be found at [RTLin]. Some of the most im-
portant ones are described below. We can distinguish two basic approaches: one is to
use a small real-time executive as a base and execute Linux as a thread in this execu-
tive; the second is to directly modify the Linux internals. RT-Linux and RTAI are
examples of the first approach, whereas Linux RK is an example of the second ap-
proach.

Unless it is modified, the main drawback of Linux kernel is that it is a monolithic
kernel and that many parts of the kernel code are non preemptive. As a result, the
latency experienced by real-time activities can be as large as hundreds of millisec-
onds. This makes common Linux distributions not suitable for hard real-time applica-
tions with tight timing constraints.

RT-Linux
RT-Linux is a modification (patch) to the famous open source Linux kernel. It was
developed by Victor Yodaiken (University of New Mexico). It works as a small ex-
ecutive with a real-time scheduler that executes Linux code (the kernel and the user
applications) as one of its threads. RT-Linux is distributed by Finite State Machine
Labs, Inc.

The executive modifies the standard Linux interrupt handler routine and the inter-
rupt enabling and disabling macros. When an interrupt is raised, the micro-kernel
interrupt routine is executed. If the interrupt is related to a real-time activity, a real-
time thread is notified and the micro-kernel executes its own scheduler. If the inter-
rupt is not related to a real-time activity, then it is “flagged”. When no real-time
thread is active, Linux is resumed and executes its own code. Moreover, any pending
interrupt related to Linux is served.

270 21 Real-Time Operating Systems

In this way, Linux is executed as a background activity in the real-time executive.
The approach has the advantage to separate as much as possible the interactions be-
tween the Linux kernel, which is very complex and difficult to modify, and the real-
time executive. By using this approach it is possible to obtain a very low latency for
real-time activities and, at the same time, the full power of Linux on the same ma-
chine. However, there are several drawbacks:

Real-Time tasks execute in the same address space as the Linux kernel; therefore,
a fault in a user task may crash the kernel.
When working with the real-time threads it is not possible to use the standard
Linux device driver mechanism; as a result it is often necessary to re-write the de-
vice drivers for the real-time application. For example, if we want to use the net-
work in real-time, it is necessary to use another device driver expressly designed
for RT-Linux.
The real-time scheduler is a simple fixed priority scheduler, which is POSIX com-
pliant. There is no direct support for resource management facilities.
Some Linux drivers directly disable interrupts during some portions of their exe-
cution. During this time, no real-time activities can be executed, and thus the la-
tency is increased.

RTAI
Real-Time Application Interface (RTAI) is a modification of the Linux kernel made
by Prof. Paolo Mantegazza from Dipartimento di Ingegneria Aerospaziale at Politec-
nico di Milano (DIAPM) [RTAI]. RTAI is a living open-source project that builds on
the original idea of RT-Linux, but has been considerably enhanced. RTAI allows to
uniformly mix hard and adaptive real-time by symmetrically integrating the schedul-
ing of RTAI proper kernel tasks, Linux kernel threads and user space processes/tasks.
By using Linux schedulable objects, RTAI benefits from threads protection at the
price of a slight increase in latencies. RTAI offers also a native, dynamically extensi-
ble, light middleware layer based on the remote procedure call concept, that allows to
use all of its APIs in a distributed way. Current releases also run on top of the Adeos
nano-kernel, which makes it easier to plug in additional features such as debuggers,
analyzers and standard open middleware layers, serving all operating systems running
on top of it almost without any intrusion.

Linux/RK
In Linux/RK, the Linux kernel is directly modified. [Raj98, Raj00]. RK stands for
“Resource Kernel”, and indeed the kernel provides resource reservations directly to
user processes. The use of this mechanism is transparent to the application. It is pos-
sible to assign a reservation to a legacy Linux application. Moreover, it is possible to
access a specific API to take advantage of the reservations and of the quality of ser-
vice management. Linux/RK is supported by TimeSys Inc.

Open Source RTOS: Others

eCos
The Embedded Configurable Operating System (eCos) [Mas02] is an open-source and
royalty-free RTOS developed by RedHat, targeting embedded applications.

 21.1 Landscape 271

The kernel is modular and has been designed so different schedulers can be
plugged in. The available distribution implements two schedulers: (1) a bitmap
scheduler where each runnable thread is represented with a bit in a bitmap and must
have a unique priority, and there is a strict upper limit on the number of threads al-
lowed, and (2) a multi-level queue scheduler that implements a number of thread
priorities and is capable of time-slicing between threads at the same priority. Concur-
rent execution of several schedulers is not supported by the current implementation,
though future releases may allow schedulers to co-exist. This is an interesting feature
that may be useful for research on scheduler composition.

The eCos kernel provides a number of mechanisms for synchronization and com-
munication such as mutexes/condition variables, semaphores and message queues.
The current eCos release provides a relatively simple implementation of mutex prior-
ity inheritance. This implementation will only work in the multi-level queue sched-
uler, and it does not handle the rare case of nested mutexes completely correctly.
However, the available kernel primitives should allow developers to implement other
mechanisms. eCos also provides mechanisms for handling exceptions, interrupts,
clocks, alarms and timers.

The eCos kernel currently supports the μITRON 3.02 specification and a wide
range of hardware architectures: ARM, IA32, Matsushita AM3x, MIPS, NEC V8xx,
PowerPC, SPARC, and SuperH.

The open-source nature and modularity of eCos make it an interesting alternative
for research purposes.

RTEMS
The Real-Time Executive for Multiprocessor Systems (RTEMS) is a general purpose
real-time operating system that provides a POSIX API as well as a “Classic” API
based on the Real-Time Executive Interface Definition (RTEID). RTEMS provides a
robust, highly portable execution environment for a wide range of real-time embed-
ded applications.

RTEMS was initially developed by On-Line Applications Research Corporation
(OAR) [OAR], for the U.S. Army Missile Command. It was made freely available in
1990 with full source code, as required by GNU General Public License (GPL). It was
the first actual Real-Time Operating Systems delivery with GPL, and was an example
of technology transfer [Acu96]. RTEMS has now become an open project, for which
OAR provides support. The RTEMS Project consists of developers, users, students,
teachers, and OAR engineers to promote and enhance the RTEMS environment.
RTEMS also constitutes an excellent benchmark for testing tools and algorithms for
real-time systems [Col01]. RTEMS is used in a wide range of projects, ranging from
University projects to projects for mission critical systems for the United States Mili-
tary. OAR has a history of excellence in the latter.

RTEMS is free software, and thus is distributed with the full source code and the
explicit permission to copy and modify it. It is integrated with other free software
tools, such as the GCC compiler, the Cygnus ANSI C Library newlib and the GDB
debugger. There are a variety of support components, which provide additional fea-
tures required by embedded applications, such as a TCP/IP stack, networking, mi-
croWeb server and file systems. Other useful open source tools such as omniORB2
has been ported to RTEMS.

272 21 Real-Time Operating Systems

RTEMS has been ported to a wide range of microprocessor families, including
Motorola M68000, Motorola PowerPC, Intel x86, Intel 960, HP-PA, MIPS and
SPARC. There are available about 50 Board Support Packages for computers based in
those microprocessor families which range from small Single Board Computer (SBC)
based in Motorola Coldfire or CPU32 microcontrollers to modular computers based
on VME bus with the latest PowerPC microprocessors. An interesting concept is the
RTEMS libchip which is a library containing generic device drivers to be used with
different microprocessor families and boards.

GNAT/RTEMS is the integration of the GNAT compilation system and RTEMS to
provide an Ada cross development environment for embedded system. A former ver-
sion of GNAT/RTEMS was validated on SPARC/ERC32 targets. The major disad-
vantage is that the port of GNAT to RTEMS uses the RTEMS POSIX API built on
the Classic API, as is usual in many general-purpose real-time operating system.
Therefore, using both GNAT/RTEMS and the bare RTEMS POSIX API involves
unnecessary overheads.

ORK
Open Ravenscar Real-Time Kernel (ORK) [Pue00] [Pue01] [Zam02] is a special
purpose real-time kernel that supports the Ravenscar profile of Ada tasking [Bur99]
[Bur03]). The kernel has a reduced size and complexity, so that users can seek certifi-
cation for mission-critical real-time applications. ORK was launched and funded by
ESA/ESTEC and developed by a consortium leaded by DIT/UPM. It is intended for
on-board mission-critical space systems, to replace a cyclic executive without concur-
rent threads of execution.

Open Ravenscar Real-time Kernel (ORK) is a special purpose real-time kernel that
supports the Ravenscar profile of Ada tasking). The kernel has a reduced size and
complexity, so that users can seek certification for mission-critical real-time applica-
tions. It is intended for on-board mission-critical space systems, to replace a cyclic
executive without concurrent threads of execution. ORK supports the Ravenscar pro-
file, a subset of Ada tasking defined to provide a basis for the implementation of certi-
fiable critical systems. Therefore, ORK is the first open Real-Time kernel intended to
be used for certifiable critical systems.

The Ravenscar profile defines a subset of the Ada tasking and real-time features
that enable response time analysis and other static analysis techniques to be applied to
real-time programs. The profile includes static tasks and protected objects at the li-
brary level, protected objects with at most one entry with a simple Boolean barrier,
absolute delays, the real-time package, preemptive priority scheduling with immediate
ceiling priority protocol, and protected interrupt handlers. It is aimed at the high-
integrity systems domain, where predictability and reliability are of fundamental im-
portance. The profile is being used in this domain, particularly in the aerospace area,
where the European Space Agency (ESA) recommends it for on-board mission-
critical software (see [ESA92]).

ORK differs from other kernels supporting the Ravenscar profile (e.g. the Raven
kernel from Aonix in that is free software, and thus is distributed with the full source
code and the explicit permission to copy and modify it. It is integrated with other free
software tools, such as the GNAT compilation system and the GDB debugger. It dif-
fers from other real-time kernels in that it is specific to Ada and the Ravenscar profile,

 21.1 Landscape 273

and cannot be used with other programming languages, including the full Ada lan-
guage. This has the advantage of enhanced reliability and efficiency, as many features
commonly used in other real-time kernels are not necessary. This also enables a sim-
ple implementation of the kernel, which makes it easier to validate or certify.

ORK was launched and funded by ESA/ESTEC, and developed by a consortium
lead by DIT/UPM. ORK is supported by DIT/UPM, and this support is funded by
ESA/ESTEC. ORK is known to be used in some projects by European space compa-
nies as Terma, Saab-Ericcson Space, Space System, eimos-Space, and Tharsys. The
current version of ORK is aimed at ERC-32 computers (a radiation-hardened version
of the SPARC-V7 architecture which is the standard ESA processor for on-board
systems [Spa96]). A port to PC architectures is also available.

Special Purpose Embedded Operating Systems (non RT)

Symbian OS
Symbian OS, formerly known as Epoc, has over 80% market share in the OS market
for mobile phones. The main target applications for Symbian OS are wireless infor-
mation devices such as mobile phones and PDAs. Symbian OS is built around a 32-bit
little-endian fully preemptive multitasking kernel that supports memory allocation,
thread creation, semaphores and timers. It has been ported to many flavors of the
ARM architecture, but also implementation for some other processors exist. The most
common hardware requirements imposed by Symbian OS are: MMU availability,
caches, multiple access modes (privileged vs. non-privileged) and the ability to handle
interrupts and exceptions.

Symbian OS has a micro-kernel approach: only a small portion of the code is actu-
ally associated to the kernel and running in privileged mode. Applications and servers
(i.e., applications without UIs) run on top of the kernel in user mode, and are imple-
mented in different processes. They can make use of so-called ‘engines’ (which are
basically static libraries or DLLs). Processes are the unit of protection: they have their
own address space. Processes can be implemented using multiple (preemptive)
threads, which can be seen as units of execution. In addition, Symbian OS implements
non-preemptive multitasking by means of events: each task is essentially an event
handler. Events are handled by active objects with a virtual member RunL(). Each
time the event happens, the corresponding object executes its RunL() method. Sym-
bian OS uses a client-server model: the server manages resources that the client can
only access via the server. This usually involves crossing (expensive) process bounda-
ries. To minimize the overhead, Symbian OS has implemented mechanisms so that
servers can directly access the memory space of clients. Symbian OS does not imple-
ment a generic power management strategy. It is mainly the responsibility of the ap-
plication writer to write them efficient (w.r.t. power). The kernel, however, provides
some mechanisms to decrease power consumption. One of these mechanisms is to
turn off the CPU if all threads are waiting for an external event.

Symbian programs [Tak00, Dig02] are C++ based. Several software development
kits (SDK) are available (for different product ranges, e.g., smart phones and PDAs).
Usually, these SDKs come with an emulator environment. Symbian claims to imple-
ment modules for the following (draft) standards and/or RFCs: TCP, UDP, IPv4, IPv6,
ICMP, PPP, DNS, security protocols for secure electronic commerce, Ipsec, Telnet,
FTP, Ethernet, HTTP and HTTPS, IMAP4, POP3, SMTP, message presentation.

274 21 Real-Time Operating Systems

JavaCard
Smart cards are one of the smallest computer platforms currently in use. In the size of
a credit card, smart cards have both storage space for carrying information and elec-
tronic circuits to process such information. With advances in cryptography and chip
technology, they are now able to store electronic cash, prevent unauthorized access to
satellite broadcasts, and carry personal medical records, among others.

ISO was the first organization to standardize various aspects of smart cards. ISO
7816 standard defines aspects as physical characteristics, size and location of contact
pins, transmission protocols and electric signals, commands for interoperability be-
tween manufacturers, application identifiers, data elements for interoperability be-
tween manufacturers, SCQL (Structured Card Query Language) commands, security
architecture, and electronic signals and response to reset for synchronous responses.
Though smart card size, shape, and communication protocols are standardized, their
internals differ from one manufacturer to another. Most smart card development tools
have been built by individual smart-card manufacturers. No standardized high-level
application interfaces have been available. Therefore, the job of application pro-
grammers has not been easy; they have traditionally dealt with a whole lot of low-
level details (communication protocols, memory management, etc.). Because applica-
tions have been implemented for proprietary platforms, coexistence of applications
from different service providers in a single card has not been possible. JavaCard tech-
nology tries to overcome this. In this sense, a JavaCard is a smart card capable of
executing Java programs called applets or cardlets. JavaCard technology provides a
portable and multi-application smart-card platform. Also, it has security mechanisms,
JavaCard firewall; it does not allow that applets access each other, unless explicitly
stated with the creation of shareable objects.

JavaCard technology [Che00, Han99, JCard] essentially defines a platform on
which Java applications can run. In essence, the architecture of the JavaCard platform
consists of the following: the Virtual Machine (JCVM), the Runtime Environment
(JCRE), and the Application Programming interface (API).

JCRE supports the smart card memory, communication, security, and application
execution model. This run-time environment cleanly separates the smart card system
and the applications, by encapsulating the underlying complexity and details of the
smart card system; it essentially serves as the smart card’s operating system. Unlike in
a PC or workstation, the JCVM runs within the JCRE. The JCVM defines only a
subset of the Java programming language and virtual machine definition suitable for
smart card applications. Due to the small size of memory, fitting the Java system
software is a hard job. The JCVM is split in two parts. One part runs on-card (byte-
code interpreter among others) whereas the other part runs off-card. Parts that are not
constrained to execute at run-time (class loading, bytecode verification, resolution and
linking, and optimization) are assigned to the virtual machine running off-card. There-
fore, the JavaCard platform is distributed among the smart card (basically running the
interpreter) and desktop environment (running the converter tasks) in both space and
time.

In addition to the Java language runtime model, the JCRE supports persistent and
transient objects, atomic operations and transactions, and applet firewall (applet isola-
tion), and secure object sharing. An additional security feature is the support for na-
tive methods (only for non-uploaded applets).

 21.2 Assessment 275

The JavaCard memory model is motivated by the kind of memory in smart cards
(ROM, RAM, and EEPROM) and their physical characteristics. Persistent objects are
stored in EEPROM whereas transient objects can be allocated in RAM. ROM holds
the JCRE (virtual machine, API classes, and other software).

Garbage collection has not been usually supported. However, many advanced Java
smart cards provide mechanisms for garbage collection to enable object deletion.

Some security features of the JavaCard platform include: transient and persistent
object models, atomicity and transactions, applet firewall, object sharing, and native
methods. One of the aspects that have not been standardized in JavaCard is the dy-
namic downloading of binary files know as CAP files. This process has implications
on security and authorization aspects. Another open issue is the secure communica-
tion with JavaCard applets; besides preventing data interference among applets, as-
pects of integrity of information sent to a card and confidentiality of communications
with the card should be dealt with. The Visa Open Platform standard defines security
mechanisms to implement secure communication channels among the host and the
card.

There are also some important features which are not supported by the JavaCard
technology as dynamic class loading and cloning of objects. Also, the JCVM does not
support multiple threads of control because current CPUs for smart cards do not effi-
ciently support multithreading.

The separation between the operating system and the applications has not been
clear. Former versions of JavaCard technology offered capabilities to access a card’s
file system. Since version 2.0, this functionality is no longer contained. Operating
systems of smart cards are mostly file-system centric; the semantics and instructions
to access the application data file are implemented by the operating system.

21.2 Assessment

Operating systems for embedded systems are generally viewed as the run-time com-
ponent of a development environment, and that real-time kernels can be extended
with additional OS services. There is a large choice in real-time operating systems,
general-purpose as well as special-purpose. Many of the systems discussed here are
open source, with differences in the size and structure of the development community.
Not all operating systems for embedded systems can be classified as real-time. The
POSIX real-time extensions are widely adopted. Several systems provide a “process”
concept, with memory protection, in addition to the “thread” concept.

Operating systems can be classified according to a number of dimensions, according
to the following criteria:

Real-Time or Non-Real-Time
A single application system has a single address space, no memory protection;
and no protection against temporal interference
A multi-application system provides multiple address spaces, memory protection,
and in the real-time case, protection against temporal interference.
In a closed system, everything is decided at initial development time;

276 21 Real-Time Operating Systems

In an open system, new applications can be downloaded, and old ones replaced, in
the field.
In a single-unit-of-failure system, the system fails as a whole, and has to be re-
booted on any failure;

In a multiple-units-of-failure system, individual applications fail, and can be re-
started or get back on the rail without affecting the remainder of the system.

According to the above mentioned criteria, conventional operating systems can be
classified into one of two main categories, representing opposite poles of a spectrum.
Conventional non-real-time operating systems are multi-application, open, multiple-
units-of-failure (NMOM). Conventional real-time operating systems are single-
application, closed, single-unit-of-failure (RSCS). For these systems, temporal pre-
dictability is an essential feature.

In the landscape, we see a trend towards removing the SCS restrictions for real-
time operating systems. This trend will be discussed in more detail in section 19.3.1.
We also see attempts to make the Linux system (an NMOM system) real-time. How-
ever, these approaches do not yet have a wide diffusion, and the most widespread one,
RT-Linux, is not an RMOM system, but an NMOM+RSCS system. On the one hand,
using Linux is attractive for the industry, because they see an open source product as
“free of charge” with an immediate reduction of costs. On the other hand, since these
approaches are far from mature, and have many drawbacks, the cost of design, devel-
opment and maintenance is still high.

The operating system standards described in this section share a number of charac-
teristics and requirements, but being addressed at different application environments
they also have some differences.

Software portability (at the source code level). All the standards increase port-
ability of real-time applications. Portability in POSIX is not perfect as device
drivers are non portable, and the standard leaves some behaviour unspecified or
implementation defined. Although the hardware architecture is somehow more de-
fined for the other three standards (OSEK, APEX and μITRON), the possibility of
using different platforms and special I/O devices makes it difficult to have full
portability.
Quality of service. Operating system standards provide very limited support for
applications with quality of service requirements. Most of these requirements are
handled in middleware software layers that run on top of the operating system, and
they use whatever low-level services the operating system is able to provide. In
addition to the typical priority or deadline scheduling, real-time synchronization,
and the management of time events, QoS middleware usually requires some kind
of temporal protection (see below).
Scalability. Support for a wide range of execution platforms is supported in
POSIX, OSEK, and ITRON. POSIX does this through different standardized pro-
files; OSEK through the conformance classes; and ITRON through the different
levels of portability (loose vs. strict). Scalability is not a goal of the APEX stan-
dard in which the hardware architecture is somehow fixed by the busses used.
Distributed Applications. POSIX has full network support. μITRON does not
support distribution. APEX and OSEK have their own special distribution mecha-

 21.2 Assessment 277

nism for communication among applications running in the same system, but no
support for general-purpose networks.
Protection. The protection mechanism in POSIX is the process, that provides a
separate address space to each process. The smaller POSIX profiles intended for
small embedded systems lack this mechanism as they have no processes. Tempo-
ral protection can be programmed by the application by using the sporadic server
scheduling server (providing a bandwidth preserving mechanism), or execution-
time timers to limit execution-time budgets.
Composability. The composition of several applications in the same system is the
main purpose of APEX and OSEK, which achieve it through the strict temporal
protection that is imposed on their partitions. Composability is also achievable in
POSIX, although the temporal protection is not so strict because it has to be pro-
grammed explicitly by all the involved applications. Composability is not one of
the goals of μITRON.
Configurability. Another pre-requisite needed to adapt the OS to a wide range of
hardware is a high degree of modularity and configurability. All standards provide
some means of configurability.
Dynamic vs. static scheduling. POSIX and ITRON define fixed priorities as the
basic scheduling mechanisms, while APEX and OSEK have an underlying more
static time-triggered mechanism for the partitions. The upper scheduling level in
APEX and OSEK.

In summary, the μITRON requirements are basically a subset of those of real-time
POSIX (corresponding roughly to the smaller PSE51 POSIX minimal real-time appli-
cation environment profile). Because of the level of support of POSIX among com-
mercial kernels, it seems that unless there is a background of using ITRON in the
company, POSIX is a better choice because it is more scalable and more widely sup-
ported. If composability of applications with strict temporal protection is an issue,
although POSIX is usable, a more reliable solution is the use of APEX or OSEK. The
first one is only intended for the hardware architectures used in avionics systems,
while the second one can be used for other hardware architectures.

Neither the POSIX standard or APEX address the design and implementation of
portable device drivers. Experience shows that in most real-time systems special
hardware is required, and device drivers represent a significant effort in the total de-
velopment cost. There is an industry standard outside the scope of POSIX, called
Uniform Driver Interface (UDI) that addresses the issues of writing portable device
drivers, by providing the driver an abstract view of the hardware, on the one hand,
and of the operating system, on the other hand. However, the UDI standard does not
address all the real-time issues and extensions to the standard would be necessary to
achieve this functionality.

Although the treatment of interrupts is fully contemplated in the UDI standard, it is
the case that for small embedded systems USI is probably too complex and that de-
velopers of those systems will usually prefer to integrate the device drivers with the
application. Usually in these systems there is no hardware protection and the applica-
tion, or part of it, is able to directly access the hardware. In this context it is necessary
that the RTOS is able to provide services to ease the management of interrupts. In
particular, the installation of interrupt handlers and synchronization of application

278 21 Real-Time Operating Systems

threads with these interrupt handlers seem most necessary. An effort should be made
in the future to standardize these services.

As real-time systems become more complex there is an increasing need for using
flexible scheduling algorithms that overcome the rigidities of fixed priorities. There
are many scheduling algorithms published in the literature based on dynamic priori-
ties and/or quality of service metrics, so it would be difficult to standardize them all.
Instead, a general framework for portably specifying schedulers at the application
level should be supported by the RTOS. Standardization in this area needs to be car-
ried out.

Another area that is not well addressed today in the POSIX standard is real-time
scheduling for multiprocessor systems. Scheduling algorithms for shared memory
multiprocessors are not well understood yet, but one simple solution that is always
analyzable is to statically allocate threads to processors. The standard should be ex-
tended with interfaces to allow allocation of threads to processors, and one possibility
should be to specify this allocation as static. Multiprocessor support is also a limita-
tion of OSEK, which does not specify support for these systems.

In multiprocessor systems, the regular mutexes can work for shared-resource syn-
chronization, but it is possible to get more efficiency out of the system by using other
synchronization primitives that enhance parallelism, such as multiple-reader single-
writer locks. This scheduling mechanism is already included in the POSIX standard,
but no priority inheritance mechanism has been defined for it. Therefore, its use in
real-time systems is not practical, because very large priority inversions could occur.
Priority inheritance or priority ceiling protocols should be defined for this synchroni-
zation primitive.

Also, there is a need for more flexibility and configurability. For example the
scheduling algorithm cannot be changed neither in OSEK or POSIX.

It should be noted, that although APEX allows a communication mechanism to
support priority inheritance, no specific protocol is proposed. Instead, processes may
include time-outs for message send/reception, buffer read/write, semaphore wait and
wait event (noting that the process may not wait if the partition is non-preemptible).

It is important to realize that APEX is not an architecture-neutral definition, but
must be viewed in the context of IMA architectures. In particular, IMA assumes the
existence of the ARINC 659 Backplane Data Bus [Ari93] and the ARINC 629 Data
Bus (i.e. network) [Ari90]. The 659 backplane bus uses a table-driven protocol pro-
viding a cyclic series of message windows of predefined lengths. The 629 bus pro-
vides periodic message windows, with proportional access times enabling the avoid-
ance of contention amongst senders. Clearly, the use of these buses directly impacts
on the scheduling scheme supported by APEX – indeed the desire to utilize 629 and
659 imply the use of cyclic scheduling at the partition and communications levels.
However, implementers must link the cyclic processor schedules with those for the
659 and 629 – allocation of one or more slots in a cyclic processor schedule to a parti-
tion must be consistent with the allocation of 659 and 629 message slots in their re-
spective schedules. This is difficult in the context of distributed multiprocessor IMA
systems containing many distinct, possibly unrelated, applications. Producing such a
global schedule is a major challenge.

 21.3 Trends 279

Finally, the major limitation of μITRON is that it is intended for the smaller sys-
tems, and does not provide a scalable approach that would enable portability to larger
systems, like in POSIX.

21.3 Trends

Two major trends emerge from the landscape with regard to commercial real-time
operating systems. First, real-time operating systems are moving in the direction of
RMOM, strongly influenced by the POSIX and ARINC standards, but also by efforts
in the research community to combine hard and adaptive real-time tasks. Second,
open-source systems are maturing, in terms of reliable backup and support, and Linux
is slowly making its way into the real-time domain. A combination of both trends can
be found in Linux/RK. The first trend is technical, and can gain a lot from focused
research. The second trend has its own dynamics, and is not fully technical in nature.
Both trends lead to increasing support for QoS.

Towards Multi-application, Open, Multiple-Units-of-Failure (MOM) RTOS

The standard fixed-priority scheduling paradigm used in single-application systems
does not scale to multiple-application systems. In a true multi-application RTOS, the
protection between “applications” (processes, partitions, groups, etc) has to be in the
temporal domain as well as in the spatial domain. Memory protection alone is not
enough. Moreover, memory protection should not introduce temporal unpredictabil-
ity. Linux/RK, and VxWorks AE and Integrity, both with Arinc scheduler, seem to
satisfy these criteria. The latter two, however, seem to aim specifically at hard real-
time systems for the aerospace and defense industries. With respect to temporal pro-
tection, the guarantees that can be given to the applications seem to depend on the
underlying scheduling algorithm. Linux/RK uses RMS [Mer95][Mer94], which al-
lows periodic and sporadic reservations. The utilization it can support depends on the
number of reservations, and the relative periods of the different reservations [Liu73].
The Arinc scheduler is based on an offline schedule construction, and provides pre-
calculated time windows to the partitions. [Lip00] proposes bandwidth-preserving
reservations based on deadline extension. The rate-based execution model aims at
adding temporal guarantees to the fair-share scheduling paradigm [Jef95][Jef99].
When multi-threaded applications or partitions are used, two-level scheduling be-
comes necessary. An example of two-level scheduling can be seen in VxWorks AE,
where the ARINC-compliant scheduler schedules the partitions, and the tasks within
the partitions are scheduled using fixed-priority scheduling.

In an RTOS that supports multiple units of failures, all memory-based resources
and all restart information of a application or partition are included in that application
or partition, and not in kernel space. From the available description, this seems to be
the case for VxWorks AE and Integrity.

An RTOS that supports an open system requires dynamic resource reservation.
This is typically what we see in QoS management systems. Dynamic resource reser-
vation requires middleware services as well as kernel services. The kernel services
account for the applications’ resource usage, in order to prevent them from exceeding
the assigned reservations. The middleware services must include some type of admis-

280 21 Real-Time Operating Systems

sion control in order to assess whether the system has enough resource to satisfy all
the resources requested by applications, and thus provide the guarantees. As a result,
some requests may be rejected. Note that the resource guarantees are an emergent
property that results from the combination of feasibility check and enforcement.

Linux/RK is positioned to do just this [Raj97, Che98]. This is consistent with basic
OS theory, as explained in [Lis80], and accepted micro-kernel practice [Use93].

Open Issues for Quality of Service (QoS)

When hard real-time cannot be guaranteed, deterministic quality of service (QoS)
seems an acceptable alternative for many application domains. One of these domains
is and will increasingly be (multi)media. As a consequence of Moore’s law, signal
and media processing is moving from dedicated hardware to software, which fuels the
need for deterministic QoS. The RT/QoS topic is quite new, not yet well understood,
and barely known in the developers’ community. There are basically two approaches
to RT-QoS: one is to address the issue in the scheduling, for instance by using the
number of missed deadlines as a QoS measure [Lu00]; the other is to provide QoS
management as middleware on top of a reservation-based resource kernel [Raj97].
The first approach lends itself very well to closed systems; the second is more focused
towards open systems.

To make dynamic reservation-based resource allocation for QoS a technological
success, at least three issues need to be addressed:

Standardization of Resource Reservation Mechanisms. Many resource reserva-
tion algorithms have been proposed in the research literature, but the differences
and the commonalities are not well understood. It is necessary to identify at least a
subset of properties that should be provided by a standard resource reservation ser-
vice.
Resource Co-Scheduling. Little research has been done on the issue of co-
scheduling different resources. Most of the proposed resource reservation algo-
rithms are for the CPU or for the network. However, it may be the case that a sin-
gle task (or application) accesses several resources during its execution. Therefore,
there is the need to coordinate the resource reservations for these resources.
Multi-Threaded Processes for Resource Reservations. Resource reservations
may have to be allocated to multi-threading processes (partitions, applications)
rather than tasks, since processes are the natural candidates for memory protec-
tion. This is for instance required by the ARINC standard. Of course, a move in
the opposite direction is also possible, where memory reservation is provided per
task. The DROPS project at TU Dresden has recently proposed a micro-kernel for
Linux-L4 that executes every task in a separate address space.
Monitoring facilities to support load adaptation. In systems with highly dy-
namic load, reservation cannot keep up with high-frequency load variations. Such
variations have to be addressed by the application themselves, using load-
reduction techniques, within the limits of the allocated resources [Nat95]. To sup-
port its decision-making process, the application needs to monitor its resource
consumption.

 21.3 Trends 281

Monitoring facilities to support QoS management. To support their resource
allocation decisions, middleware QoS resource-management services need to
monitor the resource usage patterns. To support this, the resource kernels will have
to maintain statistical information on the resource usage.

A proposal for application-defined scheduling has been submitted for consideration
by the real-time POSIX working group. The proposal has been implemented in
MaRTE OS, a Minimal Real-Time Operating System for Embedded Applications
developed at Cantabria University, as well as in RT-Linux by the Technical Univer-
sity of Valencia as part of the OCERA IST project. Although this is a promising ap-
proach, the notion of application-defined scheduling presumes a closed system, with a
static mix of applications.

The OCERA IST project is an effort at the European level to enhance RT-Linux
with more flexible scheduling and with QoS management features. The goal of the
OCERA IST project, started April 2002, is to enhance an open-source RTOS such as
RT-Linux with the cutting-edge real-time system technology. This will disseminate
real-time technology in the open source community. It will also provide a low-cost,
easy-to-use standard solution for many European SMEs that cannot afford to buy a
commercial RTOS license. On the one hand, the project will enhance the real-time
executive of RT-Linux by providing a POSIX standard API, by providing a predict-
able memory allocator, and by applying resource reservation algorithms like the con-
stant bandwidth server (CBS). On the other hand, the project will add RT features to
the Linux kernel, in order to support multimedia applications. Moreover, the project
addresses fault-tolerance issues and real-time communication protocols.

Operating System Standards

As a consequence of the limitations exposed, future work is required in POSIX, UDI,
OSEK, and APEX to produce extensions in the following areas:

real-time extensions to UDI
interrupt control from the application in POSIX
application-defined scheduling in POSIX and OSEK
allocation of threads to processors in POSIX
assigning priority ceilings for reader/writer locks in POSIX
synchronization protocols in APEX
multiprocessor scheduling in OSEK

These extensions would on the one hand fill the missing services that are necessary
for many real-time applications and, through the application-defined scheduling ser-
vices, would also facilitate the evolution from fixed-priority scheduling towards more
flexible scheduling algorithms. This additional flexibility is necessary to provide
better support to systems with quality of service requirements, even though it is ex-
pected that most of the services required by these systems will continue to be imple-
mented in a specialized middleware layer.

The ARTIST project can have an important role in this process as a driver for
specifying user requirements, identifying new areas for standardization, and contribut-
ing in the production and the reviewing of these standards.

282 21 Real-Time Operating Systems

21.4 Recommendations for Research

As a conclusion from the assessment and trends subsections, we make the following
recommendations for research in the area of real-time operating systems for embed-
ded applications:

Flexible scheduling services. The complexity of the applications requires more
flexibility in scheduling than just fixed priorities. There has been a lot of research
in scheduling theory, but there needs to be an effort of bridging the gap between
theory and implementation. New APIs are needed, and overheads of the different
scheduling algorithms need to be tuned to meet application requirements. APIs
that could make the scheduler a pluggable and interchangeable object seem the
most promising research direction.
Protection. One way of managing the complexity of applications is by providing
appropriate levels of protection, both in space (memory) and time. The time pro-
tection mechanisms specified in some standards like OSEK or ARINC are some-
how too rigid, and there needs to be research in ways of making this protection
more flexible but still effective.
Dynamicity. The complexity of applications requires moving from statically de-
signed applications to a more dynamic environment where the application compo-
nents can be changed on-line. Research is needed on methods and APIs for effec-
tive on-line admission tests and dynamic resource reservation.
Quality of service. There is a need for middleware that allows the application to
define quality of service requirements, using some contract mechanism that lets
the application specify its minimum and desired requirements, so if the implemen-
tation accepts the contract it can guarantee the minimum requirements and try to
provide de desired ones. To implement this middleware, there is a need to develop
techniques and APIs in the operating system level to perform load adaptation, and
monitoring and budgeting of the system resources.
Multiprocessor support. Predictability of the timing behaviour in multiprocessor
systems is still a research issue. Most multiprocessor real-time systems today re-
quire static allocation of threads to processors.
Drivers. Portability of drivers for real-time applications is an open issue. There is
a need for extending current APIs for portable drivers to support real-time re-
quirements.
Networks. There are few real-time networks and protocols, and support in the OS
for them is very limited. There is a need to develop protocol-independent APIs
that let a distributed application define its timing requirements for the network and
the remote services.
Modelling. There is a need to develop precise models of the timing behaviour of
the operating system services, that could be used in timing analysis tools. It would
be useful to have automatic procedures to obtain the timing model of any operat-
ing system on a given platform.

 21.5 References 283

21.5 References

[Acu96] Phillip R. Acuff and Ron O’Guin. “RTEMS: A Technology Transfer Success
Story.” Proc. STC96. 1996

[Ada95] S. Tucker Taft and Robert A. Duff, Ada 95 Reference Manual: Language and
Standard Libraries. International Standard ANSI/ISO/IEC-8652:1995, 1995,
Available from Springer-Verlag, LNCS no. 1246.

[ARI90] “ARINC 629: IMA Multi-transmitter Databus Parts 1-4”, October 1990, pub. by
Airlines Electronic Engineering Committee (AEEC)

[ARI93] “ARINC 659: Backplane Data Bus” pub. by Airlines Electronic Engineering
Committee (AEEC), December 1993.

 [ARI91] “ARINC 651: Design Guidance for Integrated Modular Avionics”, pub. by Air-
lines Electronic Engineering Committee (AEEC), November 1991.

 [ARI96] “ARINC 653: Avionics Application Software Standard Interface (Draft 15)”,
Airlines Electronic Engineering Committee (AEEC), June 1996, avail. from
ARINC Incorporated.

[Aud97a] N.C. Audsley and A.J. Wellings, “Analysing APEX Applications”, Proceedings
IEEE Real-Time Systems Symposium, December, pp39-44, 1997.

[Aud97b] N.C. Audsley and A. Grigg, “Timing Analysis of the ARINC 629 Databus for
Real-Time Applications”, Microprocessors and Microsystems, 21, pp 55-61, 1997

[Bar97] J. Barnes, “High Integrity Ada: The SPARK Approach”, pub. Addison-Wesley,
1997.

[BG-DS] Dedicated Systems – “The RTOS Buyers Guide”, available at
http://www.realtime-info.be/encyc/buyersguide/rtos/Dir228.html

[BG-EC] Embedded;Com – “The RTOS Buyers Guide”, available at
http://www.embedded.com/

Buyer’s Guide – Software Tools for Embedded Systems Development – Real-Time Operating
Systems.

[Bur03] Alan Burns, Brian Dobbing, and Tullio Vardanega, Guide for the use of the Ada
Ravenscar Profile in high integrity system, University of York Technical Report
YCS-003-348, January 2003.

[Bur99] Alan Burns, The Ravenscar Profile, Ada Letters, volume XIX, number 4, pages
49--52, 1999.

[Che98] Chen Lee and Raj Rajkumar and John Lehoczky and Dan Siewiorek, “Practical
Solutions for QoS-Based Resource Allocation”, Proc. IEEE Real Time Systems
Symposium, Dec. 1998

[Che00] Z. Chen, “JavaCardTM Technology for Smart Cards”. Addison-Wesley, 2000.
[Col01] A. Colin, I. Puaut. Worst-Case Execution Time Analysis of the RTEMS Real-Time

Operating System. Proc.13th Euromicro Conference on Real-Time Systems, pages
191--198, Delft, The Netherlands, June 2001

[Dig02] Digia, Programming for the Series 60 platform and Symbian OS, John Wiley &
Sons; 2002

[ESA92] ESA, 32 Bit Microprocessor and Computer System Development, 1992, Report
9848/92/NL/FM.

[FAQ] Comp.realtime FAQ, available at http://www.faqs.org/faqs/realtime-computing/faq/
[Han99] U. Hansmann, M. S. Nicklous, T. Schäck, and F. Seliger, “Smart Card Application

Development Using Java”, Springer Verlag, 1999.
[Har98] H. Härtig, M. Hohmuth, J. Wolter. “Taming Linux”, Proceedings of PART ‘98.
[Jcard] Sun Microsystems, “The JavaCard Specification”,

http://java.sun.com/products/javacard/

284 21 Real-Time Operating Systems

[Jeff95] Jeffay, K. and Bennett, D. (1995). A rate-based execution abstraction for multime-
dia computing. In Proceedings of the 5th International Workshop on Network and
Operating System Support for Digital Audio and Video, number 1018 in Lecture
Notes on Computer Science, pages 64-75. Springer-Verlag.

[Jeff99] Jeffay, K. and Goddard, S. (1999). The rate-based execution model. In Proceedings
of the Real-Time Systems Symposium.

[Kle93] Mark H. Klein, Thomas ralya, Bill Pollak, Ray Obenza, Michale Gonzalez Har-
bour, A Practitioner’s Handbook for Real-Time Analysis, Guide to Rate Mono-
tonic Analysis for Real_Time Systems, Kluwer Academic publishers, 1993.

[Lip00] G. Lipari and S.K. Baruah “Efficient Scheduling of Multi-Task Applications in
Open Systems” IEEE Proceedings of the 6th Real-Time Systems and Applications
Symposium, Washington DC, June 2000

[Lis80] A. Lister, Fundamentals of Operating Systems, Springer-Verlag Telos, 2nd edition,
1980

[Lu00] C. Lu, J. Stankovic, T. Abdelzaher, G.Tao, S. Son, M. Marley, “Performance
specification and metrics for adaptive real-time systems”, In Proceedings of the
Real-Time Systems Symposium, Orlando Fl, 2000.

[Mas02] A. J. Massa, “Embedded Software Development with eCos”, Prentice Hall, 2002.
[Mer94] Mercer, C., Savage, S., and Tokuda, H. (1994). Processor Capacity Reserves:

Operating System Support for Multimedia Applications. In IEEE International
Conference on Multimedia Computing and Systems.

[Mer95] Mercer, C. and Rajkumar, R. (1995). An Interactive Interface and RT-Mach Sup-
port for Monitoring and Controlling Resource Management. In Proceedings of the
Real-Time Technology and Applications Symposium.

[Nat95] S.Natarayan ed., Imprecise and approximate Computation, Kluwer 1995.
[OSE] http://www.ose.com/prodserv/Default.asp. OSE Systems.
[OSEK] “OSEK/VDX Operating System Specification 2.2.1”, OSEK Group,

http://www.osek-vdx.org
[POS92] IEEE Std 1003.5-1992, IEEE Standard for Information Technology—POSIX Ada

Language Interfaces—Part 1: Binding for System Application Program Interface
(API).

[POS96] IEEE Std 1003.5b-1996, IEEE Standard for Information Technology—POSIX Ada
Language Interfaces—Part 1: Binding for System Application Program Interface
(API)—Amendment 1: Realtime Extensions.

[POS98a] POSIX.13 (1998). IEEE Std. 1003.13-1998. Information Technology -Standardized
Application Environment Profile- POSIX Realtime Application Support (AEP).
The Institute of Electrical and Electronics Engineers, 1998

[POS98b] IEEE Std 1003.5c-1998, IEEE Standard for Information Technology—POSIX Ada
Language Interfaces—Part 1: Binding for System Application Program Interface
(API)—Amendment 2: Protocol Independent Interfaces.

[POS01] POSIX.1 (2001). IEEE Std 1003.1:2001. Standard for Information Technology -
Portable Operating System Interface (POSIX). The Institute of Electrical and Elec-
tronic Engineers, 2001.

[POS03a] POSIX.1 (2003). IEEE Std 1003.1:2003. Standard for Information Technology -
Portable Operating System Interface (POSIX). The Institute of Electrical and Elec-
tronic Engineers, 2003.

[POS03b] IEEE Standard 1003.13-2003, Standard for Information Technology -Standardized
Application Environment Profile- POSIX Realtime and Embedded Application
Support (AEP). The Institute of Electrical and Electronics Engineers, 2003.

 21.5 References 285

[Pue00] Juan A. de la Puente, José F. Ruiz, Juan Zamorano, Rodrigo García and Ramón
Fernández-Marina, “ORK: An Open Source Real-Time Kernel for On-Board
Software Systems”, DASIA 2000 – Data Systems in Aerospace, Montreal, Canada,
May 2000.

[Pue01] Juan A. de la Puente, Juan Zamorano, José F. Ruiz, Ramón Fernández, Rodrigo
García, “The Design and Implementation of the Open Ravenscar Kernel”, Ada
Letters, vol. XXI, no. 1, March 2001.

[Raj00] Ragunathan (Raj) Rajkumar, Luca Abeni, Dionisio de Niz, Sourav Ghosh, Akihiko
Miyoshi, and Saowanee Saewong, “Recent Developments with Linux/RK”, Proc.
Second Real-Time Linux Workshop, Orlando, Florida, Nov. 2000

[Raj97] R. Rajkumar, C. Lee, J. Lechoczky and D. Siewiorek, “A Resource Allocation
Model for QoS Management”, Proc. Real-Time Systems Symposium. IEEE Com-
puter Society (December 1997).

[Raj98] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, Shuichi Oikawa, “Resource
Kernels: A Resource-Centric Approach to Real-Time and Multimedia Systems”,
Proc. SPIE/ACM Conference on Multimedia Computing and Networking, Jan
1998

[RTLin] List of real-time Linux variants:
http://www.realtimelinuxfoundation.org/variants/variants.html

[Sak98] Ken Sakamura, μItron 3.0: An Open and Portable Real-Time Operating System for
Embedded Systems: Concept and Specification. IEEE Computer Society, April
1998

[SPA96] TEMIC, SPARC V7 Instruction Set Manual, 1996
[Symb] http://www.symbian.com/technology/SymbianOSv7funcdesc15.pdf
[Symb] http://www.symbian.com/technology/SymbianOSv7funcdesc15.pdf
[Tak02] Hiroaki Takada, ed. μITRON4.0 specification (version 4.00.00), TRON associa-

tion, Japan, 2002, http://www.ertl.jp/ITRON/SPEC/home-e.html
[Tak00] Martin Takser, Leigh Edwards, Jonathan Dixon, Mark Shackman, Tim Richardson,

John Forrest, Professional Symbian Programming: Mobile solutions on the EPOC
platform, Wrox Press Inc; Book and CD-ROM edition, 2000

[Use93] Proceedings of the Usenix Symposium on Microkernels and Other Kernel Archi-
tectures, San Diego Ca, Sept 1993, Usenix Association, 1993

[Whi02] P. Whiston and P. Goodchild, “SHIMA – Small Helicoptor IMA”, ERA Avionics
Conference, 2002.

 [Zam01] Juan Zamorano, José F. Ruiz, Juan A. de la Puente, “Implementing
Ada.Real_Time.Clock and Absolute Delays in Real-Time Kernels”, Reliable
Software Technologies – Ada-Europe 2001, ed. Alfred Strohmeier and Dirk
Craeynest, Springer-Verlag, LNCS 2043, pages 317-327, 2001.

[Zam02] Juan Zamorano, Juan A. de la Puente, “GNAT/ORK: An Open Cross-
Development Environment for Embedded Ravenscar-Ada Software”, Proceedings
of IFAC 15th world congress, 2002

Web Links

AbsInt http://www.absint.com/wcet.htm
Aonix http://www.aonix.com/
ARINC http://www.arinc.com/
DROPS The Dresden Real-Time
Operating System Project, http://os.inf.tu-dresden.de/drops/
ESA http://www.estec.esa.nl/
FSML Finite State Machine Labs, http://www.fsmlabs.com/

286 21 Real-Time Operating Systems

LynuxWorks http://www.lynuxworks.com/
OCERA http://www.ocera.org/
OAR On-Line Application Research, http://www.OARcorp.com/
RTAI RTAI Home page, http://www.aero.polimi.it/~rtai/
Time Sys http://www.timesys.com/
TriPacific TriPacific Software Incorporated, http://www.tripac.com/
Embedded.com http://www.embedded.com/
Integrity http://www.ghs.com/
VxWorks http://www.windriver.com/
UDI http://www.projectudi.org/

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 287 – 304, 2005.
© Springer-Verlag Berlin Heidelberg 2005

22 QoS Management

QoS has been defined as a collective effect of service and performances that deter-
mine the degree of satisfaction of the service. This satisfaction is usually associated
with a number of extra-functional requirements or QoS characteristics, such as de-
pendability, reliability, timeliness, robustness, throughput, etc.

QoS management interacts with applications and resource managers, in order to
ensure an optimal system output quality, as perceived by the user. QoS-aware applica-
tions are usually structured in such a way that they can provide different quality levels
(QL), which have associated estimations of the needed resources. Quality levels are
usually discrete and are characterized by the quality of the output and the fulfilment
degree of other extra-functional requirements. The higher quality that a QL provides,
the larger are the resource needs. QoS-aware applications can dynamically change the
executing QL.

QoS manager negotiates with applications the QL they have to provide. This nego-
tiation is based on a contract model: there is trading of quality by resources. The final
goal is to use resources in an efficient way and to maximize system quality. The nego-
tiation depends on factors such as applications importance, user settings, available
resources, etc.

Resource management is needed for ensuring that the resource reserves or budgets
are guaranteed. For this purpose, resource usage accounting, budget enforcement, and
monitoring are required mechanisms. As mentioned in the previous section, resource
kernels are a basic component in this framework. In some cases there is also a re-
source manager on top of them, in order to handle budgets with a higher abstraction
level.

In this section, different aspects of QoS management are described. It is important
to note, that in order to efficiently support QoS, it is needed to consider different ab-
straction layers, ranging from specification to implementation. The aim of this section
is to present them and to provide some relevant research directions. Finally, the cur-
rent situation is briefly assessed and future research trends are shown. Research inter-
est on QoS management is much more recent that in other topics in this document,
such as real-time operating systems, real-time scheduling, and programming lan-
guages. As a consequence, it is in a very immature state and extensive research is
needed to make it really usable in future industrial devices.

22.1 Landscape

In the last decade, the increased need for timely and dependable execution and com-
munication support have established and improved the QoS facilities (e.g. QoS speci-
fication, QoS negotiation algorithms, reservation protocols, resource brokers). They
have been integrated in protocol stacks, operating systems kernels and middleware
systems. These facilities provide support for the development of multimedia, real-
time and complex systems in general. But to put QoS facilities in practice is complex.
They must be integrated with the application software. This makes the software archi-

288 22 QoS Management

tectures and the software development process more complex. Different levels of
software infrastructures and software development require the integration of QoS
concepts, as described in figure 24.1 below.

Specification of
Applications

Components
Infrastructures

Middleware
Infrastructures

OS and Kernels

Networking QoS

Q
o
S

A
W
a
r
e

QoS Characteristics,
QoS Regions and Contracts,
QoS Levels and Adaptations

QoS Configuration with Attributes,
QoS Assembly of Components,

QoS Negotiation

Objects QoS Interface Specification,
QoS Setup,

QoS Adaptation

Resource Kernels,
Control of Resources,

Admission Control

Resource Protocols,
Traffic Control,

QoS Network Management

Figure 24.1. Levels of Integration of QoS

QoS-Enabled Modelling Languages and QoS Analysis

Examples of QoS-enabled modelling languages are QML (QoS Modelling Language)
[Fro98] and CQML (Component Quality Modelling Language) [Aag02]. QML and
CQML are languages with a BNF grammar. Other similar approaches are based on
meta-models [Bor00][Ase00]. These languages provide support for the description of
user defined QoS categories and characteristics, quality contracts and quality bind-
ings. They are frameworks for the description of QoS Catalogues [Bra02] of general
QoS parameters, or application specific quality parameters. They do not provide sup-
port to optimize the resource allocation, or evaluate the levels of quality provided.
They address the problem from the specification point of view.

Another approach is the description of resource services quality. [OMG02][Sel00]
provide support for describing quality based on resource services, and the relation
with analytic methods of performances such as latencies and throughputs.

QoS-enabled modelling languages pay special attention to the specification of QoS
characteristics and parameters, QoS contracts for the description of restrictions or
quality values, and binding of quality between components, resources and subsys-
tems.

In Figure 24.2, a set of components Ci provide some services with quality attributes
that can affect to the component C, which provide services with quality attributes to
other components. C uses a set of resources that provide services with some quality
attributes.

 22.1 Landscape 289

Ci Co

qi qo

resources

C

Figure 24.2. Mapping of Input/Output Qualities and Resources

Analytical models for QoS management provide support for the application of metric
evaluations and resource allocation optimization. [Raj97] proposes a general QoS
analytical model for the optimization of resource allocation. The model assumes a
system with multiple resources and dynamic applications, each of which can operate
at different levels of quality, based on the system resources available to it. Reward
functions describe the interdependencies of quality levels and resource allocation,
utility functions and weighted utility functions evaluate the application and system
quality. The optimization of these functions provides the optimal resource distribution.

Other approaches are domain specific. [Ven97] [Sta95] are analytical models to
support the QoS metrics of video and multimedia applications. They identify the QoS
parameters for user satisfaction and resource consumption in these types of applica-
tions (video and multimedia), and the functions for the relationships of resources and
user satisfaction.

The RFC (Request For Comments) of IETF “Specification of Guaranteed Quality
of Service” [She97] introduces the basic parameters and theorems for the analysis of
deadline and jitter in QoS Guaranteed mode of Integrated Services in the Internet
architecture.

Some standards such as the ISO reference model for QoS [ISO98] [ISO98a] intro-
duce some concepts (i.e., QoS Characteristics, QoS Contracts and QoS Capabilities),
and a basic architecture that are basic elements of QoS specification. OMG Request
for Proposals (RFP) and initial submissions provides some solutions for the integra-
tion of QoS specifications in UML [OMG02a] [OMG02b].

Three different points of view of QoS specification not combined in a common so-
lution yet are: i) the description of user perceptible QoS characteristics and their con-
tracts, ii) the definition of system and resource levels QoS characteristics and con-
tracts, and iii) the analytic methods that provide support for the optimal resource allo-
cation and quality levels identifications. A complete language for the specification of
QoS must support: description of QoS characteristics, QoS contracts and QoS levels,
definition of methods for the support of QoS monitoring of user defined QoS charac-
teristics, specification of process of adaptation, and linking all these concepts with
QoS analysis solutions.

290 22 QoS Management

QoS Component Infrastructures

The integration of QoS in component infrastructures is a subject that has a very short
history. Most of Component infrastructure standards (EJB 2.0, CCM and .NET) are
very recent, and their integration with QoS facilities requires some basic practical
improvements (e.g. CCM does not have industrial implementations yet and the im-
plementations available are prototypes, and open source implementations of .NET has
started to appear last months).

Some proposals study the integration of QoS facilities in component models such
as CCM (CORBA Component Model) [Wan01]. The OMG is currently analyzing
propose an RFP for the extension of CCM with basic QoS facilities (this RFP could
be proposed in June 2003). The proposal by Wang et al [Wan01] pays special atten-
tion to the QoS-enabled location transparency, reflective configuration of component
server and container, and the strategies to reconfigure the component server.

Lusceta [Bla01] is a component model (it is not based on industrial component in-
frastructures) environment based on formal techniques, which can be simulated and
analyzed. Lusceta provides support for the specification of QoS management, which
can be used to synthesize (dynamic) QoS management components. The execution
framework is a general QoS-aware reflective middleware. Another component model-
ling environment is presented in [Ras00]. It proposes solutions for the description of
component architectures and for evaluation of response times. This is an architectural
environment not supported by execution environments.

[Mig02] introduces a solution for the integration of QoS basic services, such as re-
source reservation and negotiation, in EJB (Enterprise Java Beans). The EJB contain-
ers implement some basic negotiation algorithms and isolate the business components
from reservation services. The negotiation algorithms implement some basic adapta-
tion process based on the renegotiation of resources and renegotiation with other
components.

The component infrastructures introduced use two techniques for the specification
of QoS:

application interfaces that are part of the infrastructure;
component descriptors that are used for the automatic generation of managers and
containers that support the QoS aspects.

In some solutions the component descriptors are XML files with data type structures
for the specification of QoS attributes. Nevertheless, they do not provide support for
the description of user guided QoS attributes. The impact of QoS on component infra-
structures is further analysed in section 20.6.

QoS Middleware and Interface Description Languages

The integration of QoS facilities into middleware systems has been identified as a
future challenge for the middleware infrastructures [Gei01][Sch00]. QoS-aware mid-
dleware systems define general QoS frameworks to support QoS facilities:

i) QoS Specification.
ii) QoS Negotiation and Adaptation.
iii) Resource Reservation and Admission Control.

 22.1 Landscape 291

iv) access to basic services for the configuration of some quality attributes (e.g.
dependability, security, mobility).

v) QoS Monitoring.

General middleware architectures [Hou97][Nah01][Sha99] introduce the five general
facilities, but their architectures are not dependent of communication middleware
facilities. In some solutions [Hou97], QoS middleware cooperates with existing solu-
tions at OS and network levels, and proposes the middleware layer to support other
facilities (e.g. adaptation). The architecture introduced in [Sha99] pays special atten-
tion to the quality dependencies between components. The quality level of a compo-
nent depends on the quality levels provided by other components and the resources
available.

Examples of QoS-aware middleware systems based on specific middleware are: i)
BBN’s QuO project [Zin97] is a well-known framework for the integration of QoS
management in CORBA. It provides support for the specification of QoS, negotiation
and adaptation facilities, and resource reservation. QuO provides interfaces descrip-
tion languages for the definition of levels of quality and execute the adaptation proc-
esses. The IDL compilers integrate in stub and skeletons the management of QoS.
QuO includes a framework based on some basic services (e.g. reservation of network,
and replication of objects), and integrates the services with some ORB such as TAO.
ii) The solutions proposed in [Mig01] integrate the resource reservation and QoS IP in
Java RMI classes. This solution extends RMI basic classes that support the remote
reference and extend it with operation for reservation of resources. Java RMI libraries
and Skeletons intercept these basic extensions and handle them. Some parts of RMI
libraries are redesigned to support the reservation and to limit the resources consump-
tion. iii) The combination of reservation protocols and Berkley Sockets and CORBA
IIOP [Wan99] is another example of practical application of QoS facilities in mid-
dleware based applications. The university of Columbia and BBN worked together to
provide an interface of socket that support QoS based on RSVP and reused this
framework in QuO with its integration in CORBA IIOP.

Hola-QoS [Gar02] is an example of middleware independent QoS framework
based on four layers. Each one handles a different conceptual entity: i) QoS Manage-
ment: Its goal is to decide which applications should be executed, according to user
wishes and feasibility. ii) Quality Control: It negotiates with the selected applications
a configuration, to find the configuration that maximizes user satisfaction, and it is
feasible. iii) Budget Control: It performs the feasibility check of the set of budgets
required to support a candidate configuration. It is in charge of creating and initialis-
ing budgets and monitoring how budgets are used. iv) Run-Time Control: This layer
can be viewed as an extension to the operating systems to provide the basic function-
ality of a resource kernel.

Examples of Interface Description Languages (IDL) QoS-aware are QIDL (Quality
Interface Description Language) [Loy98] and CDL (Contract Description Language)
[Bec97]. Both are languages integrated in object-oriented middleware frameworks for
the support of QoS. QIDL is part of QuO [Zin97] and CDL is included in MAQS
[Bec97]. MAQS and QuO use CDL and QIDL for the automatic generation of stubs
and skeletons that support the management of some basic QoS functions (i.e., QoS
negotiation, adaptation, and monitoring).

292 22 QoS Management

The QoS-enabled IDLs support the description of regions that represent state of
QoS components or objects. Constraint expressions describe the possible regions. The
states have associated transitions that provide support for description of QoS adapta-
tion. QoS-enabled IDLs include support to access the current state of system re-
sources.

QoS Adaptation of Hard Real-Time Techniques

Traditional real-time techniques come from the hard real-time domain and are not
well suited for all kinds of adaptive real-time environments, such as multimedia sys-
tems. They are usually too pessimistic to be applied directly. Such pessimism implies
low use of computational resources under some situations, which is not desirable for
industrial applications. In adaptive real-time systems, resource needs of applications
are usually highly data-dependent and vary over time. In this context, it is more im-
portant to obtain systems which can very well adapt their execution to the changing
environment than to apply the too pessimistic hard real-time techniques. Therefore,
restrictive task models and scheduling algorithms are being progressively relaxed,
whereas adaptation techniques based on monitoring of application execution and
resource consumption are being introduced.

This is the subject of several research initiatives and different approaches.
FC-EDF (Feedback Control Earliest Deadline First) tries to apply control theory to

adapt system behaviour. [Sta99] [Sta01] and SWIFT [Ste99] are two examples of this
approach. One of the problems of using adaptation, to maximize the global quality of
the system, is the complexity of the optimization problem.

Two proposed alternatives to simplify this problem are based on economic models
for resource management [Str99] [Reu98] or using low-level parameters (in terms of
generic resource models) [Lu00]. Another approach is to use middleware for coopera-
tion between service providers and the operating system, to keep service’s resource
demands within the limits of available resources, while maximizing output quality.
FARA [Ros98], DQM [Bra98], and Odyssey [Nob00] are works that follow this idea.

Finally, in other cases, a complete architecture for resource and quality manage-
ment is defined that provides integrated mechanisms resource allocation, negotiation,
and adaptation, such as AQUA [Lak97], a QoS Manager for Nemesis [Opa99],
Adaptware [Abd99], and HOLA-QoS [Gar01][Gar02][Gar02a].

Networking QoS

The management of CPU and network for supporting QoS have been subject of ex-
tensive research work. For the sake of completeness, this section gives some basic
ideas on networking QoS. The management of CPU is dealt with in other chapters in
this document.

There are many different interpretations regarding the definition of QoS. Networking
QoS is defined as: the capability to control traffic-handling mechanisms in the net-
work such that the network meets the service needs of certain applications and user
subject to network policies [Ber01a]. This objective is developed in different hard-
ware elements. Operating systems of application computers must support: scheduling

 22.1 Landscape 293

policies and access control to the network, protocols that support QoS control and
configuration, application interfaces, and administration services. Other network ele-
ments such as routers and switches must provide QoS configurations mechanisms,
protocols that support QoS, queuing mechanisms for quality control.

The main concepts that support networking QoS for real-time systems are:

Traffic control and package queuing. Scheduling algorithms for package delib-
eration provide specific quality objectives [Cla92]. Some network scheduling al-
gorithms such as Fair Queuing algorithms, Deficit Round Robin order the packets
in different ways and provide different worst case deliberation times. Each algo-
rithm has associated specific algorithms for the computation of their specific de-
liberation times, and their admission control. Shaping algorithms such as Token
Bucket and Leaky Bucket shape the traffic of specific traffic flows with specific
schemas. The shape algorithms limits the traffic congestions and improve some
specific quality attributes such as jitters. Other specific algorithms control the traf-
fic borrows between different traffic flows. Borrow algorithms control the reuse of
bandwidth from idle flow to congested flows (the maximum amount of borrowed
traffic, and algorithms to return the borrowed bandwidth).
Resource reservation protocols. Resource reservation protocols such as RSVP
[Zha97] provide support for end-to-end resource reservation for specific sessions.
In RSVP the sessions are identified with the IP address and the ports of connects.
Reservation is supported for specific sessions or clusters of sessions (in multicast
communication). The reservation protocol includes PATH and RESV messages
that make the reservation of resources (specially bandwidth reservation) in all
nodes (routers, switches and computers) included in the flow path. Several routers
and switches (Cisco specially) support these protocols based on configurable traf-
fic control schemas. The basic problems associated to RSVP are the scalability
(RSVP requires complex queuing algorithms and packet scheduling), and security
(identification of users that make the reservation).
Frameworks for the integration of QoS [Bra94]. DiffServ and IntServ are ex-
amples of IETF standards for the extension of Internet, to support real-time as well
as the current non-real-time service of IP. Both standards integrate the RSVP.
Each approach defines different approaches for the classification of network traf-
fic and services and interfaces for their support. IntServ was especially ambitious
for the support of internet real-time systems (remote video, multimedia and virtual
reality). DiffServ is a layer 3 traffic-handling mechanism. DiffServ tries to reduce
the complexity of IntServ and include new services such as SLA (service level
agreement), which specify the amount of customer traffic that can be accommo-
dated at each service level.
Real-Time Transport Protocols (RTP). RTP [Jac96] is a transport protocol for
carrying internet real-time traffic flows, in an IP network. It provides a standard
packet header format, which gives sequence numbering, media-specific time
stamp data, source identification, and playload identification, among other things.
RTP is usually carried using UDP. RTP is supplemented by RTCP (Real-Time
Transfer Control Protocol), which carries control information about the current
RTP session. RTP do not address the issue of resource reservation, it relies on re-
source allocation functions such as Weighted Fair Queuing, and on reservation
protocols such as RSVP.

294 22 QoS Management

Industrial Landscape

QoS Management is a recent technology (most of technologies that include this action
has a long experimentation and research activity). Industry groups have started the
QoS Management application during last five years. Some examples of this applica-
tion are:

1. Boeing has developed a Weapons System Open Architecture (WSOA)
that is based on CORBA middleware, pluggable protocols and Quality of
Service (QoS) enforcement, management and verification. QuO is used in
the development of this architecture [Gos02].

2. Another example of application of QuO is the control of video streams
[Rod02] in defence applications.

3. DiffServ and IntServ have a great maturity level and are partially sup-
ported in most of last version of general purpose operating systems such
as Windows 2000 and XP, and Linux kernels of versions 2.4.2 and later.
RSVP that is part of these frameworks is implemented in these operating
systems too. QoS IP services that implement the operating systems are
used in several applications, especially multimedia applications.

QuO is open source and it has been well tested. It has been reused in industrial appli-
cations and it is integrated with middleware frameworks such as TAO and ACE, and
QoS IP facilities such as RSVP and priority based real-time OS.

The application of QoS IP in real-time systems depends specially on algorithms
used for packages scheduling in traffic control levels and the shaper algorithms. Some
algorithms support QoS guarantee modes that has associated better predictability.
Windows 2000 and XP include a limited set of algorithms. Linux implementations
include a large number of algorithms and the introduction of new algorithms is not
complex.

22.2 Assessment

The interest in QoS is relatively recent, especially with regard to devices such as
processors, memories, etc. As a consequence, despite much ongoing research, the
available techniques are not mature enough to be fully used in industrial devices. In
summary, the state of development of the levels of integration shown in the figure at
the start of the section is:

Specification of applications: There are some proposals for describing QoS char-
acteristics, contracts, quality levels, etc, although none of these can be considered
as really satisfactory. One of the reasons is probably that these concepts are not
completely understood and it is not clear how to handle them, to achieve the de-
sired goals. The support for this type of notation is an important requirement to
making QoS more usable. In this respect, the attempts to define UML profiles for
modelling Quality of Service are very relevant.
Component infrastructures: The interest in using these infrastructures is evident.
There are a number of proposals for providing components frameworks with the

 22.3 Trends 295

required QoS support. However, good approaches for describing the quality, qual-
ity composition, and QoS-aware component structure are still open issues.
Middleware infrastructures: These infrastructures should provide a number of
basic services for managing the quality of a number of applications. Issues such as
interoperation of quality managers in different machines or distributed manage-
ment are still far from being successfully solved.
OS and kernels: Resource kernels have been mentioned in a previous chapter.
However, it is worth to mention that they are usually an evolution of RTOS. As
such, they usually fail to provide advance mechanisms for making it more effi-
cient the execution of QoS applications, mainly adaptation facilities.
Networking QoS: Techniques for providing networking QoS are the most mature.
This is due to the interest on QoS, which was initially raised by communicating
certain types of information.

22.3 Trends

QoS Modelling Languages and Notations

There are a number of topics in QoS modelling languages and notations that are sub-
ject of intense research. These can be summarized as follows:

Identification of the QoS information that is relevant to have a complete and useful
description of the target software artefacts. This information should describe QoS
categories, characteristics, quality contracts and quality bindings.
Development of suitable notations, which are complete and composable. They
should allow the description of the QoS information with the required detail level
and in a format that is portable and can be understood by different tools.
Frameworks that allow to static analysis to determine whether an application
fulfils a given quality specification, taking into account its components, the execu-
tion platform and other relevant information. It may be impossible to perform this
operation for all the QoS characteristics, but it is certainly true that for some of
them is feasible.
Integration of QoS descriptions in design notations, in such a way that QoS char-
acteristics are fully supported. This should allow to combine and analysis QoS as-
pects automatically.

QoS Component Infrastructures

Future systems will require dynamic infrastructures, where components can be dy-
namically downloaded and interconnected. In this scenario, it should be possible to
find QoS-aware components, to get the QoS specification and to combine them, in
such a way that a component can use those with the quality characteristics that best fit
its requirements. The identification of the appropriate information to embed, its for-
mat, and its structure for being feasible its composition are open questions that should
be answered.

Another important issue is how to separate the business code from that used for
adding to a component functions to allow access and management of its QoS informa-

296 22 QoS Management

tion and behaviour. The use of containers and aspect programming are two promising
approaches for letting developers to clearly locate these two types of functions. QoS
components are treated in greater detail in section 20.6.

QoS Adaptation: Middleware, Resource Kernels and Applications

Due to the characteristics of the applications to be run (adaptive real-time, varying
resource needs), adaptation seems to be one crucial operation for maximizing system
quality and optimizing their execution. Most of the ongoing research tends to address
the problems according to two different approaches. In the first approach, the adapta-
tion strategy is embedded in the application, so that each one is locally responsible for
adapting its computational demand based on the available resources and the required
data processing. It is important to note that in this type of adaptive real-time applica-
tion, the processing demands can vary depending on the input and other factors. In the
second approach, the QoS adaptation is usually performed by some system software,
namely a global QoS manager, resource manager or resource kernel. This system
software may vary the amount of resources assigned to each task as a function of the
current workload.

The first approach has the advantage that the application can use domain specific
knowledge to adapt its execution to the available resources. In this way, the applica-
tion could use scalable algorithms, which quality and resource usage can be dynami-
cally modified to adapt to the available resources or to ensure that a certain output is
produced on time. This type of adaptation could not be made by a middleware layer
or by the operating system, as they lack of domain specific semantic knowledge.

The QoS and resource managers, can monitor system behaviour, to detect whether
applications are using the requested resources or there are free resources. In this way,
it may reassign budgets, or negotiate new contracts to maximize system quality. Ex-
isting research on the system software side usually focuses on two major levels: ker-
nel and middleware. On the kernel side, algorithms for task scheduling and resource
assignment for tasks are the main issues that are covered. Middleware solutions fo-
cused on building QoS architectures, user level schedulers and protocols for manag-
ing quality levels of applications that are mapped to resource assignments.

Predictability is a characteristic of major importance. However, predictability, and
flexibility cannot be addressed independently, as methods for achieving predictability
will have restricting impact on flexibility and uncontrolled flexibility will reduce
predictability. Historically, real-time systems have been focused on providing single,
specific solution to single, specific applications, treating all activities with the same
methods, geared towards the most demanding scenarios. The high cost of such a sys-
tem wide approach is acceptable only for applications with dramatic failure conse-
quences. Rather, both requirements have to be addressed not only on a system level,
i.e. on individual activities as well. Typical systems demand a mix of requirements,
e.g. strict predictability for the critical core of a system while other activities and
application favour flexibility. A key aspect in providing predictability and flexibility
on an individual level is the protection of guaranteed activities.

At both levels, kernel and middleware, it is agreed that one of the most important
problems to address is effective resource assignment among applications and/or tasks.
Though at different levels, either the kernel or the middleware manager should control

 22.3 Trends 297

or coordinate application execution. Execution management will be based on the
quality of service that applications will receive from the system.

To effectively assign system resources among applications and achieve predictabil-
ity and flexibility, a number of issues should be further investigated. The most rele-
vant ones include, at the higher abstraction level, protocols for managing quality lev-
els of applications and for middleware (QoS) managers. Suitable architectures will
allow obtaining flexible systems. Also, it will be an added value to aim at supporting
as many types of applications as possible; therefore, generality is an issue. At a lower
level, further work on resource management algorithms, new task models, admission
control, monitoring, and adaptation algorithms should be done.

A required research area consists of developing hybrid methods which integrate the
two types of adaptation strategies described above: the one that is embedded in the
application with the adaptation scheme that is performed by a QoS manager. This
integration may be done by given more freedom to applications for controlling their
budgets or resource reserves. For example, the QoS manager may assign coarse-grain
budgets to applications, which may be responsible for sharing out these budgets to
their tasks. Hence, it may need to split and merge budgets, in such a way that the
coarse-grain budgets are not exceeded and the fine-grain budgets are dynamically
adapted to the varying individual tasks resource needs. This is another topic that
should be subject of further research: adaptation mechanisms provided by the mid-
dleware for the running applications.

Dependable QoS Assurance in Open Environments

Embedded systems are broadly used today in many application domains, both in in-
dustry and in consumer products. And a considerable amount of these applications
perform critical control operations that require the use of dependable embedded sys-
tems in order to exhibit crucial attributes such as availability, reliability or safety.
Furthermore, given the widespread use of embedded systems and the trend to rely
more and more on them, increased demands for dependability are expected to arise.

Therefore, the issue of dependability not only plays a very important role in current
embedded computer systems, but also should be regarded as key for the success of
future and emerging technologies in the domain of embedded systems. Particular
attention and resources must be devoted into devising what will be the future applica-
tion needs and what kind of support and technologies of dependable embedded sys-
tems must be provided.

To start with, the meaning of “dependability” must be unambiguous, and system-
atic approaches to the problem of achieving dependability must be employed. To this
end, several progresses have been made over the last decade by the dependability and
fault tolerance community to agree on common definitions and systematisations.
Dependability can be expressed as “the measure in which reliance can justifiably be
placed on the service delivered by a system” [Lap92]. The definition implies both the
knowledge of a complete system specification, and a characterization of the external
operating conditions (the environment), which might influence the system behaviour.
Therefore, when considering open environments or complex interactions among sys-
tem entities (through that environment), it might be extremely difficult to characterize

298 22 QoS Management

all the possible impairments to dependability and, consequently, obtain a dependable
design.

This is particularly relevant when we observe that recent advances in hardware
with integrated communication and networking capabilities are fostering the interest
and research in distributed embedded systems and architectures. Moreover, because
of the potential benefits of distribution and pervasiveness, these architectures, despite
embedded, are reaching unexpected complexity and scale levels. Therefore, reconcil-
ing the dependability requirements of highly distributed embedded systems with the
uncertainty of such execution environments is a difficult challenge still to be ad-
dressed in current and future research.

A promising way to go is to make embedded systems adaptable to the environ-
ment, thus capable to react to changes in the operating conditions and possibly main-
tain required dependability levels. When reasoning in terms of Quality of Service
(QoS), which implies the establishment of contracts between clients and service pro-
viders, the idea is to design systems to be dependable with respect to these QoS con-
tracts, using QoS adaptation and renegotiation techniques and ensuring that, despite
the uncertain factors that trigger the occurrence of failures, the QoS contracts remain
valid.

The provision of quality of service (QoS) guarantees in open environments, such as
the Internet, is an active field of research. In fact, although there is a lot of work deal-
ing with the problem of QoS provision in environments where resources are known
and can be controlled [Xu00][Vog98], no systematic solution has been proposed for
environments where there is no knowledge about the amount of available resources.
In the particular case of the Internet, the IntServ [Bra94] and DiffServ [Bla98] archi-
tectures have been proposed to specifically address the problem of handling QoS
requirements and differentiated service guarantees. However, they still follow the
perspective of QoS management, that is, of controlling how resources are reserved by
the applications.

The fundamental problem that has to be faced is the uncertainty of the environ-
ment, which does not allow the provision of guarantees for the available QoS. The
way in which applications must be designed and constructed has to rely on new mod-
els and paradigms, which deal with this uncertainty. In particular, when considering
real-time requirements, uncertainty means that bounds may not be met due to timing
failures, producing effects such as instantaneous delays, decreased coverage over the
long term or contamination of logical safety properties [Ver02]. Nevertheless, even
with appropriate models, not all applications can be implemented on these uncertain
environments. They need to be adaptive or time-elastic, that is, they must be able to
adapt their timing expectations to the actual conditions of the environment, possibly
sacrificing the quality of other (non time-related) parameters. The success of an adap-
tive system has to do essentially with two factors: 1) the monitoring framework,
which dictates the accuracy of the observations that drive adaptation and 2) the adap-
tation framework, which determines how the adaptation will be realized.

Monitoring of local resources and processes is widely used [Lut01][Fos00], but it
does not provide a global view of the environment. Some works propose adaptation
based on network monitoring and on information exchange among hosts (using spe-
cific protocols like RTP [Bus96] or estimating delays [Cam96]) but they do not rea-
son in terms of the confidence about the observations, which is essential for depend-

 22.4 Recommendations for Research 299

able adaptation. Relatively to adaptation strategies there exist various approaches in
the literature. For example, we mention the work in [Abd98] that proposes adaptation
among a fixed number of accepted QoS levels, and the work in [Li99], that uses con-
trol theory to enhance adaptation decisions and fuzzy logic to map adaptation values
into application-specific control actions.

Some emerging approaches are based on probabilistic characterizations of the envi-
ronment, that is, on the construction of pdf’s that describe the expected network or
execution delays [Kri01][Cas01]. The objective is then to adapt applications in order
to meet a certain desired probability level of timely behaviour. Instead of trying to
provide guarantees on the bounds (which can be impaired by uncertainty), such ap-
proaches provide guarantees that adaptation will be done as necessary to keep a cer-
tain desired probability of those bounds to hold. These approaches have the advantage
over others that they provide dependable QoS adaptation, being QoS defined by pairs
of <bound,probability>. For instance, when the environment degrades to a state that
implies larger bounds, by adapting the assumed bound to a new larger value the asso-
ciated probability (of satisfying that bound) can be kept constant.

A fundamentally different approach emerges from the observation that many real-
time applications can execute correctly despite the occurrence of timing failures
(missed deadlines), provided that the number and distribution of these failures can be
precisely bounded [Ber01b]. To a certain extent, this means that applications can
(dependably) operate in environments with degraded QoS. The idea is then to apply
scheduling policies that enforce the desired distributions, which requires managing an
amount of available resources (which must be known) that is smaller than the amount
of needed resources.

22.4 Recommendations for Research

[Scha03] proposes some general ideas for the application of QoS management of next
middleware generations. This paper includes a discursion about the construction of
QoS infrastructures based on two different approaches: priority based services (for
examples DiffServ and most of real-time OS, and a resource reservation approach (for
example RSVP and most of QoS general architectures). Probably the second approach
provides better results, but requires the integration of reservation facilities in low
levels of software infrastructures (networking and OS).

Another line of research is the integration of QoS management in component infra-
structures. This is a subject of research that has been developed during last years, but
current implementations are not mature enough. OMG proposes a new standard for
the integration of QoS management services in CCM, but the services included in the
proposal do not provide accesses to low levels of QoS such as resource reservation
facilities and QoS IP [OMG03]. The group of distributed objects in Washington Uni-
versity at St. Louis is currently developing CoSMIC, this is an open-source model
driven tool suite implementing the CCM deployment and configuration specification.
The development of analytical methods for the QoS composition (the verification of
compatibility of qualities of clients and servers) is another line of work that has not
been well studied yet.

300 22 QoS Management

There is another subject of research that as not been well studied yet and includes
most of levels of integration of QoS. Currently there is none general QoS platform
that support services of most of general QoS characteristics. Current solutions sup-
port general QoS management facilities (e.g. negotiation, adaptation, and admission
control), and some specific services of some QoS characteristics (e.g. resource res-
ervation, and security facilities). But currently, the general QoS requirements must
be supported with some technical solutions, such as periodic and sporadic servers,
redundant object replications, and specific real-time protocols. The transition from
QoS platform independent solutions to the specific mitigations solutions that in-
clude the implementation platforms must be done with craft methods. These solu-
tions are needed for the application of model-driven methods in critical systems
development.

22.5 References

[Aag02] J. Aagedal and E. Ecklund, “Modeling QoS: Toward a UML Profile”, Proc. UML-
2002 Conference, Springer Verlag (2002).

[Abd98] T. F. Abdelzaher and K. G. Shin, “End-host architecture for QoS-adaptive com-
munication”, Proceedings of the 4th IEEE Real-Time Technology and Applica-
tions Symposium, Denver, Colorado, USA, June 1998.

[Abd99] Abdelzaher, T. F. (1999). QoS Adaptation in Real-Time Systems. PhD thesis,
University of Michigan.

[Ase00] J. Asensio and V. Villagrá, “A UML Profile for QoS Management Information
Specification in Distributed Object-based Applications”, Proc. 7th Workshop HP
Open View University Association (2000).

[Bar95] M. Barbacci, T. Longstaff, M. Klein and C. Weinstock., Quality Attributes,
CMU/SEI Technical Report No. CMU/SEI-95-TR-021 ESC-TR-95-021, (Decem-
ber 1995).

[Bec00] C. Becker and K. Geihs “MAQS – Management for Adaptive QoS-enabled Ser-
vices”, IEEE Workshop on Middleware for Distributed Real-Time Systems and
Services, (December 1997).

[Ber01a] Y. Bernet. “Networking Quality of Service and Windows Operating Systems”.
New Riders (2001).

[Ber01b] G. Bernat, A. Burns and A. Llamosí. Weakly Hard Real-Time Systems. IEEE
Transactions on Computers, vol.50, n.4, Apr 2001.

[Bla01] L. Blair, G. Blair, A. Andersen and T. Jones. “Formal Support for Dynamic QoS
Management in the Development of Open Component-based Distributed Sys-
tems”. IEE Proceedings Software. Vol. 148 No. 3. (June 2001).

[Bla98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architec-
ture for differentiated services, RFC2475, Dec. 1998.

[Bor00] M. Born, A. Halteren and O. Kath, “Modeling and Runtime Support for Quality
of Service in Distributed Component Platforms”, Proc. 11th Annual IFIP/IEEE
Workshop on Distributed Systems: Operations and Management, (December
2000).

[Bra94] R. Braden, D. Clark, and S. Shenker “Integrated Services in the Internet Architec-
ture: Overview”, Internet RFC 1633, June 1994.
http://www.ietf.org/html.charters/OLD/intserv-charter.html

[Bra02] G. Brahnmath, R. Raje, A. Olson, M. Auguston, B. Bryant and C. B¡urt, “A Qual-
ity of Service Catalog for Software Components”, Proc. SESEC 2002, 2002 South-
eastern Software Engineering Conference 2002, (April 2002).

 22.5 References 301

[Bra98] Brandt, S., Nutt, G., Berk, T., and Mankovich, J. (1998b). A dynamic quality of
service middleware agent for mediating application resource usage. In Proceedings
of the 19th IEEE Real-Time Systems Symposium (RTSS’98).

[Bus96] I. Busse, B. Deffner, and H. Schulzrinne, “Dynamic QoS control of multimedia
applications based on RTP”, Computer Communications, 19(1), Jan. 1996.

[Cam96] A. Campbell and G. Coulson, “A QoS adaptive transport system: Design, imple-
mentation and experience”, In Proceedings of the Fourth ACM Multimedia Con-
ference, pages 117-128, New York, USA, Nov. 1996.

[Cas01] A. Casimiro and P. Veríssimo, “Using the Timely Computing Base for dependable
QoS adaptation”, Proceedings of the 20th IEEE Symposium on Reliable Distrib-
uted Systems, pages 208–217, New Orleans, USA, Oct. 2001.

[Cla92] D. Clark, S. Shenker and L. Zhang. “Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism”. In Proceed-
ings of ACM SIGCOMM. (August 1992).

[Fos00] I. Foster, V. Sander, and A. Roy. A quality of service architecture that combines
resource reservation and application adaptation. In Proceedings of the Eighth In-
ternational Workshop on Quality of Service, pages 181-188, Westin William Penn,
Pittsburgh, USA, June 2000.

[Fro98] S. Frolund and J. Koistinen, “Quality of Service Specification in Distributed Object
Systems”, Distributed Systems Engineering Journal, Vol. 5(4), (December 1998).

[Gar01] García-Valls, M. (2001). Calidad de Servicio en Sistemas Multimedia Empotrados
Mediante Gestion Dinamica de Recursos. PhD thesis, Technical University of Ma-
drid. In Spanish.

[Gar02] García-Valls, M., Alonso, A., Ruiz, J. F., and Groba, A. (2002a). An architecture
of a quality of service resource manager middleware for flexible multimedia em-
bedded systems. In Proceedings of the 3rd International Workshop on Software
Engineering and Middleware (SEM 2002), pages 39-57, Orlando, Florida.

[Gar02a] García-Valls, M., Alonso, A., Ruiz, J. F., and Groba, A. (2002b). Integration of
system-level policies and mechanisms for quality of service management in em-
bedded multimedia systems for web-based environments. In Proceedings of the
IADIS International Conference WWW/Internet 2002,Lisbon, Portugal.

[Gei01] K. Geibs. “Middleware Challenges Ahead” Computer IEEE. (June 2001).
[Hou97] C. Hou, C. Han, and Y. Min. “Communication Middleware and Software for QoS

Control in Distributed Real-Time Environments”. In Proceedings Computer Soft-
ware and Applications Conference. COMPSAC’97. IEEE (1997).

[Gos02] Gossett, J. Noll, D. Corman, D. “Experiences in a distributed, real-time avionics
domain-Weapons System Open Architecture”, Proceedings. Fifth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, ISORC
2002 (2002).

[ISO98] International Organization for Standardization, CD15935 Information Technology:
Open Distributed Processing – Reference Model – Quality of Service, ISO docu-
ment ISO/IEC JTC1/SC7 N1996 (October 1998).

[ISO98a] International Organization for Standardization, Quality of Service: Framework,
ISO document ISO/IEC JTC1/SC 6 ISO/IEC 13236:1998 (December 1998).

[Jac96] V. Jacobson. “RTP: A Transport Protocol for Real-Time Applications”, IETF RFC
1889 (January 1996).

[Koi97] J. Koistinen, “Dimensions for Reliability Contracts in Distributed Object Sys-
tems”, Hewlett Packard Technical Report, HPL-97-119 (October 1997).

[Kri01] S. Krishnamurthy, W. Sanders, and M. Cukier. A dynamic replica selection algo-
rithm for tolerating time faults in a replicated service. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks, pages 107–116, Gote-
borg, Sweden, June 2001.

302 22 QoS Management

[Lak97] K. Lakshman,, R. Yavatkar, and R. Finkel, (1997). Integrated CPU and network-
I/O qos management in an endsystem. In Proceedings of the IFIP 5th International
Workshop on Quality of Service (IWQoS ‘97).

[Lap92] Laprie, J.-C., Dependability: A unifying concept for reliable, safe, secure comput-
ing. In IFIP Congress, volume 1, pages 585-593, 1992

[Li99] B. Li and K. Nahrstedt. A control-based middleware framework for quality of
service adaptations. IEEE Journal of Selected Areas in Communications, Special
Issue on Service Enabling Platforms, 17(9):1632-1650, Sept. 1999.

[Loy98] J. Loyall, R. Schantz, J. Zinky and D. Bakken, “Specifying and Measuring Quality
of Service in Distributed Object Systems”, Proc. 5th International Symposium on
Object-Oriented Real-Time Distributed Computing, (April 1998).

[Lu00] Lu, C., Stankovic, J. A., Abdelzaher, T. F., Tao, G., Son, S. H., and Marley, M.
(2000). Performance specifications and metrics for adaptive real-time systems. In
Proceedings of the Real-Time Systems Symposium.

[Lut01] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M. Bauer. Issues in managing
soft QoS requirements in distributed systems using a policy-based framework. In
Proceedings of the International Workshop, POLICY 2001, LNCS 1995, pages
185-201, Bristol, UK, Jan. 2001.

[Mig01] M. de Miguel. “Solutions to Make Java-RMI Time Predictable” In Proceedings of
4th International Symposium on Object-Oriented Real-Time Distributed Comput-
ing. ISORC’2001. IEEE, May 2001.

[Mig02] M. de Miguel, J. Ruiz and M. García, “QoS-Aware Component Frameworks”,
Proc. International Workshop on Quality of Service, (May 2002).

[Nah01] K. Nahrstedt, D. Xu, D. Wichadakul and B. Li. “QoS-Aware Middleware for
Ubiquitous and Heterogeneous Environments”. IEEE Communications Magazine.
Vol. 39, No. 11. (November 2001).

[Nob00] Noble, B. D. (2000). System support for mobile, adaptive applications. IEEE Per-
sonal Computing Systems, 7(1):44-49.

[OMG02] Object Management Group, UML Profile for Scheduling, Performance, and Time,
Draft Adopted Specification, OMG document number ptc/2002-11-01 (November
2002).

[OMG02a] Object Management Group, UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms RFP, OMG document number
ad/02-01-07 (January 2002).

[OMG02b] Object Management Group, UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms Initial Submission, OMG docu-
ment number realtime/2002-09-01 (September 2002).

[OMG03] Object Management Group, QoS For CORBA Components RFP and Initial
Submission, OMG document number mars/03-10-01 (October 2003).

 http://www.omg.org/cgi-bin/doc?mars/03-10-01
[Opa99] Oparah, D. (1999). A framework for adaptive resource management in a multime-

dia operating system. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems.

[Par92] A. Parekh, A Generalized Processor Sharing Approach to Flow Control in Inte-
grated Services Networks, PhD Thesis, Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, (February 1992).

[Raj97] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, Resource Kernels: A Resource-
Centric Approach to Real-Time and Multimedia Systems, Tech. report Carnegie
Mellon University, 1997.

[Ras00] U. Rastofer and F. Bellosa. “An Approach to Component-based Software Engi-
neering for Distributed Real-Time Systems”. In Proceedings SCI 2000 Invited Ses-
sion on Generative and Component-based Software Engineering. IIIS (2000).

 22.5 References 303

[Reu98] Reumann, J. and Shin, K. G. (1998). Adaptive quality-of-service session manage-
ment for multimedia servers. In Proceedings of the 8th International Workshop on
Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV98), pages 303-316.

[Rod02] C. Rodrigues, “Using Quality Objects (QuO) Middleware for QoS Control of
Video Streams”, Proceedings OMG’s Third Workshop on Real-Time and Embed-
ded Distributed Object Computing (2002).

[Ros98] Rosu, D., Schwan, K., and Yalamanchili, S. (1998). FARA – a framework for
adaptive resource allocation in complex real-time systems. In Proceedings of the
4th IEEE Real-Time Technology and Applications Symposium (RTAS).

[Sha03] R. Schantz, J. Loyall, C. Rodrigues, D. Schmidt, Y. Krishnamurthy, I. Pyarali,
“Flexible and Adaptive QoS Control for Distributed Real-Time and Embedded
Middleware”, In Proceedings Middleware 2003. LNCS (June 2003).

[Sch00] D. Schmidt, V. Kachroo, Y. Krishnamurthy and F. Kuhns. “Developing Next-
generation Distributed Applications with QoS-enabled DPE Middleware”. IEEE
Communications Magazine. Vol. 17, No. 10. (October 2000).

[Sel00] Selic, B., “A Generic Framework for Modeling Resources with UML,” IEEE
Computer, Vol. 33(.6), (June 2000).

[Sha99] M. Shankar, M. de Miguel, and J. Liu. “An End-to-End QoS Management Archi-
tecture”. In Proceedings of Real-Time Application Symposium. RTAS’99. IEEE
(1999).

[She97] S. Shenker, C. Partridge and R. Guerin. “Specification of Guaranteed Quality of
Service”, Internet RFC 2212 (September 1997).
http://www.ietf.org/rfc/rfc2212.txt?number=2212

[Sta95] R. Staehli, J. Walpole and D. Maier, “Quality of Service Specification for Multi-
media Presentations”, Multimedia Systems, Vol. 3 (5/6) (November 1995).

[Sta99] Stankovic, J. A., Lu, C., Son, S. H., and Tao, G. (1999a). The case for feedback
control real-time scheduling. In Proceedings of the EuroMicro Conference on
Real-Time Systems.

[Sta01] Stankovic, J. A., He, T., Abdelzaher, T., Marley, M., Tao, G., and Son, S. (2001).
Feedback control scheduling in distributed real-time systems. In Proceedings of the
22nd IEEE Real-Time Systems Symposium (RTSS 2001).

[Ste99] Steere, D. C., Goel, A., Gruenber, J., McNamee, D., Pu, C., and Walpole, J.
(1999). A feedback-driven proportion allocator for real-rate scheduling. In Pro-
ceedings of the Operating Systems Design and Implementation (OSDI).

[Str99] Stratford, N. and Mortier, R. (1999). An economic approach to adaptive resource
management. In Proceedings of the IEEE Hot Topics in Operating Systems (Ho-
tOS) VII.

[Ven97] N. Venkatasubramanian and K. Nahrstedt, “An Integrated Metric for Video QoS”,
Proc. ACM Multimedia 97, (November 1997).

[Ver02] P. Veríssimo and A. Casimiro. The Timely Computing Base Model and Architec-
ture. IEEE Transactions on Computers – Special Section on Asynchronous Real-
Time Systems, vol.51, n.8, Aug 2002.

[Vog98] C. Vogt, L. C. Wolf, R. G. Herrtwich, and H. Wittig. Heirat. Quality-of-Service
management for distributed multimedia systems. Special Issue on QoS Systems of
ACM Multimedia Systems Journal, 6(3):152.166, May 1998.

[Wan01] N. Wang, D. Schmidt, M. Kircher, and. K. Parameswaran. “Adaptative and Reflec-
tive Middleware for QoS-Enabled CCM Applications”. IEEE Distributed Systems
Online Vol 2 No. 5. (July 2001).

[Wan99] P.Wang, Y. Yemini, D. Florissi, P. Florissi and J. Zinky. “Application QoS Provi-
sioning with Integrated Services”. IEEE Communications Magazine. September
1999.

304 22 QoS Management

[Xu00] D. Xu, D. Wichadakul, and K. Nahrstedt. Multimedia service configuration and
reservation in heterogeneous environments. In Proceedings of International Con-
ference on Distributed Computing Systems, Taipei, Taiwan, Apr. 2000.

[Zha97] Zhang, S. Berson, S. Herzog, and S. Jamin. “Resource ReSerVation Protocol
(RSVP)- Version 1 Function Specification”. Internet RFC 2205. 1997.
http://www.ietf.org/html.charters/rsvp-charter.html

[Zin97] J. Zinky, D. Bakken, and R. Schantz. “Architecture Support for Quality of Service
for CORBA Objects”. Theory and Practice of Object Systems. Vol. 3 No. 1. (Janu-
ary

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 305 – 315, 2005.
© Springer-Verlag Berlin Heidelberg 2005

23 Real-Time Middleware

Currently, middleware technologies, such as CORBA [OMG00] and .NET [Mic00]
have been widely used in many application areas to mask out problems of system and
network heterogeneity and alleviate the inherent complexity of distributed systems.

The recent emergence of new application areas for middleware, such as embedded
systems, real-time systems, and multimedia, has imposed new challenges which most
existing middleware platforms are unable to tackle. This new application areas im-
pose more demands in terms of resource sharing, dynamism, and timeliness. There-
fore, these areas require additional properties from the underlying middleware. Some
of them are current subject of study and research, such as middleware support for QoS
resource management.

In the last years, the OMG (Object Management Group) has improved the CORBA
standard specifications with respect to real-time systems issues. For instance, it has
adopted the Minimum CORBA [OMG98a], Asynchronous Method Invocation (AMI)
[OMG98], and Real-Time CORBA (RT-CORBA) specifications [OMG99]. Mini-
mum CORBA is a subset of the CORBA specifications that removes features that are
not required by real-time and embedded systems. The RT-CORBA specification in-
cludes features to manage CPU, network, and memory resources. The AMI specifica-
tion defines several asynchronous method invocation models.

Also, other middleware technologies for building distributed applications have ap-
peared more recently. Though Jini does not provide real-time capabilities to applica-
tions, it allows to build distributed embedded systems based on services that appear
and disappear dynamically. Microsoft has also developed its contribution, .NET; also,
it does not integrate real-time support. Even if they do not provide any real-time fea-
tures, due to their increasing popularity both Jini (in the area of service discovery for
embedded networked devices) and .NET (in the field of platforms for the develop-
ment of distributed software systems) are also presented in this section.

This section describes some of the most relevant middleware technologies for de-
veloping distributed applications. Some of them provide real-time capabilities and
some of them do not; however, they are considered to have interesting characteristics
applicable to distributed and embedded networked devices. Moreover, the field of
middleware technologies that provide real-time capabilities is a promising one,
though it is not a mature field as opposed to other fields of real-time systems, such as
real-time kernels. A considerable amount of research is being done for instance in
Real-Time CORBA [OMG99], integrating real-time capabilities into Java RMI, and
developing modular and open architectures for QoS resource management middle-
ware such as in HOLA-QoS [Gar03].

Aspects of Real-Time component models are also covered in section 14.

306 23 Real-Time Middleware

23.1 Landscape

Research Landscape

Building QoS-aware middleware that provides QoS capabilities and adaptive resource
management is an active area of research, specially interesting in areas like multime-
dia systems. The capacity to specify end-to-end QoS requirements implies integration
of system-wide policies to parameterize resource management algorithms. All this is
being built into the middleware or as part of a QoS resource manager middleware.

Since middleware models were firstly aimed at general purpose distributed envi-
ronments, no special real-time considerations were made. Progressively, real-time
systems have acquired more protagonism, so different middleware models to tackle
with the problems of introducing real-time support in distributed systems have ap-
peared. In this sense, message-oriented middleware (MOM) is a candidate to provid-
ing a solution.

On another hand, dynamic environments, such as AI distributed systems and agent-
based environments, have acquired a great popularity. They have introduced the need
for providing timely support to highly dynamic invocations and, in general, predict-
able operation. In such systems, middleware must integrate service discovery facili-
ties and predictability in dynamic invocations.

CORBA Technology

In the distributed systems area, CORBA is a widely accepted standard; it has also
been successful in industry. A growing class of real-time systems is using CORBA
among which we can mention command and control systems (Mobies/DARPA, Euro-
control), telecommunication systems (Nokia, France Telecom) and also avionics sys-
tems (Boeing). A general web site about CORBA success stories can be found at
http://www.corba.org. Also, most of the efforts to bring together real-time and distri-
bution have come from the OMG. Therefore, this section describes different features
of CORBA technology that are interesting for distributed real-time systems.

Real-Time CORBA Specification

Currently, no integrated solutions (at network, operating system, and middleware
levels) currently exist to provide end-to-end QoS guarantees to distributed object
applications. CORBA (Common Object Request Broker Architecture) is a widely
accepted object-oriented middleware for developing distributed systems and applica-
tions. It introduces flexibility and reusability. However, many application domains
need to have real-time guarantees from the underlying operating system, network, and
middleware to meet their QoS requirements. In this respect, the performance levels
and QoS enforcement features of current CORBA implementations are not yet suited
for hard real-time systems (e.g. avionics) and constrained latency systems (e.g. tele-
conferencing).

Conventional ORB (one of CORBA’s backbone) specifications present some weak
points:

Conventional ORBs neither define a way for applications to specify their end-to-
end QoS requirements nor provide support for end-to-end QoS enforcement be-
tween applications.

 23.1 Landscape 307

Conventional ORBs lack real-time features; there is no standard programming
language mapping for exchanging ORB requests asynchronously (blocking
prone).
As last point, it may be said that there is a lack of performance optimizations;
current ORBs have a considerable throughput and latency overhead. This is due to
internal message buffering strategies, long chains of intra-ORB virtual method
calls, and lack of integration with underlying real-time operating systems and QoS
mechanisms.

Over the last decade, research efforts on COTS middleware, such as Real-Time
CORBA [OMG99], have matured. Former key drawback points in distributed real-
time systems as overhead, non-determinism, and priority inversion of the middleware
are no longer the dominant factor. Recent studies [Sch02] argue that focus has
switched to the COTS operating system and networks, which are responsible for the
majority of end-to-end latency and jitter. Moreover, middleware can be configured to
various runtimes profiles such as Ada Ravenscar real-time profiles [Pau01].

Real-time ORB end-systems (such as ZEN [Kle02]) require the integration with
network adapters, operating system I/O subsystems, communication protocols, and
common object services. Requirements of high performance, real-time ORB end-
systems are mainly:

Policies and mechanisms for specifying end-to-end application QoS requirements.
QoS enforcement from real-time operating systems and networks.
Optimized real-time communication protocols
Optimized real-time request de-multiplexing and dispatching.
Optimized memory management.
Optimized presentation layer.

Open source implementations of Real-Time CORBA ORBs, such as ZEN [Kel02]
and TAO [Sch98], have also appeared to show that it is possible to provide QoS guar-
antees in middleware. Currently, integration of Real-Time Java and RT-CORBA at
implementation level is being performed [Kri04].

Asynchronous Message Interface
Distributed real-time applications usually exchange asynchronous requests using
event-based execution models. For instance, specific devices periodically generate
sensor data and the regular delivery of this data to higher level component must be
guaranteed. Hence, some standard invocation models, such as the one of CORBA was
too restrictive for real-time applications [Har97].

The AMI specification provides an approach to allow exchange of asynchronous
requests. it allows operations to be invoked asynchronously using the Static Invoca-
tion Interface (SII) in order to eliminate the complexity inherent to the Dynamic Invo-
cation Interface’s deferred invocation model. The AMI specification defines two
programming models: the Polling model and the Callback model.

In the Polling model, each two-way operation returns a local object Poller. A client
can use the Poller to check the status of a request. If the server has not replied yet, the
client can either block awaiting its arrival or return to the calling thread immediately.
In the Callback model, when a client invokes a two-way asynchronous operation on

308 23 Real-Time Middleware

an object, it passes an object reference for a reply handler servant as a parameter.
When it receives the response, the client ORB dispatches it to the appropriate callback
operation on the reply handler servant.

Events and Notification Services
Events and notification services are also an alternate approach. It is inevitable to refer
to the fact that CORBA also includes this model, as it is the CORBA Event Service
[OMG95]. This section uses CORBA as an example to illustrate these services.

This service has been designed to alleviate some of the restrictions with standard
CORBA invocation models. In particular, the Event Service supports asynchronous
message delivery and allows one or more suppliers to send messages (storing events
information) to one or more consumers. Event data can be delivered from suppliers to
consumers without requiring these participants to know about each other explicitly.

The CORBA Event Service defines supplier and consumer participants. Suppliers
generate events and consumers process events received from suppliers. In addition,
the Event Service defines an event channel, which is a mediator that propagates
events to consumers on behalf of suppliers.

Suppliers and consumers collaborate separately in the Event Service architecture
through the two mechanisms ‘push’ and ‘pull’. Suppliers can either push data to an
event channel or request the event channel to pull data from it. Likewise, consumers
can either pull data from event channel or request the event channel to push data to it.
The push mechanism on both consumer and supplier sides is commonly used in many
real-time environments as it allows efficient and predictable execution of operations.

Albeit, this specification does not completely fulfil some wider requirements for
event control policies. The OMG extended the COS Event Service to address these
limitations, and defined the COS Notification Service. It provides a standardized API
to define QoS constraints filtering or delivery policies. Besides, it defines a new ob-
ject hierarchy suitable for a better event dispatching through the definition of struc-
tured events and the sharing of subscription information between event channels and
consumers.

Hence, COS Notification Service defines: Proxy objects are delegates that provide
complementary interfaces to clients; Admin objects that enable the logical grouping
of Proxy object, and thus provide a notion of hierarchy among nodes; Filter and Map-
ping Filter objects that can be attached to all admin and proxy objects, they use the
Trader Constraint language defined in the COS Trader to enable event filtering. These
different objects, and their use when deploying the COS Notification, allow for the
optimization of the critical path of event propagation.

However, this specification only define high level policies and QoS parameters that
are not suitable to completely enforce hard real-time requirements [Gor01].

Jini

With the appearance of the pervasive computing paradigms and ad hoc networks,
traditional distributed applications have to evolve to be used in such environments.
The possibility of having a big number of devices connected to a network and physi-
cally near has to be exploited. One way of doing this is to make devices collaborate
within a flexible structure, i.e., devices may advertise and export their functionality to

 23.1 Landscape 309

other networked systems. Moreover, flexibility will allow devices to be come and go
at a very low cost.

Jini is an architecture for distributed computing that comes from the Java world to
allow network plug and play of devices. It is thought for a community of devices and
systems that need support for spontaneous appearance and disappearance of devices,
and the ability to self-heal. Jini is a paradigms that provides run-time use of services
across address spaces. Current Sun’s implementations of the Jini system rely on an
underlying RMI system for communicating remote application objects. However, the
Jini specification allows for any other underlying system to be used, as long as it
adheres to the semantics of code mobility offered by RMI. RMI’s capabilities may
also be extended to be used in a Jini-like fashion. Anyway, real-time capabilities of
Jini are not contemplated; in principle, they would rely on the real-time support of the
underlying communication system, real-time RMI for instance.

Services of Jini are accessed through a service proxy. Proxies may be RMI stubs
talking to some remote service, or they may be smart proxies. Smart ones can use any
private protocol necessary to communicate with the service. It is possible to provide a
Jini interface to legacy services that speak sockets or CORBA or some other protocol.

Its potential to be combined with J2ME for programming networked embedded
personal devices is another of the advantages of the Jini Java technology for building
communities.

.NET

Recently Microsoft announced a new initiative called .NET (pronounced dot net).
.NET is the umbrella term for a) Microsoft’s new vision and strategy, b) a set of
products and c) a new platform for software development called the .NET Frame-
work. The .NET Framework provides a computing platform that is programming
language neutral. It comprises an extensive class library and a run-time environment.
Latter is known as the Common Language Run-time (CLR). The CLR is based on the
concept of a virtual machine that executes an intermediate language (IL). Code run-
ning under control of the CLR is referred to as managed code, as opposed to native
code running directly on top of the operating system. The execution of managed code
is a two-step process. The first step is done before deployment, in this step the pro-
gram is compiled down to its intermediate representation. Apart from the intermediate
code the compiler also emits an extensive set of meta-data that is needed by the CLR
at run-time. The code together with the meta-data forms an assembly: the unit of de-
ployment in .NET. In the second step the intermediate code is compiled to native code
(just-in-time compilation).

.NET has many similarities to Java and as a result also many of the same problems
regarding its use in real-time environments. Current implementations of the CLR
build on top of the underlying operating system. As a result the characteristics of the
operating system determine for a large part the ability to satisfy any real-time re-
quirements. A real-time operating system is however perquisite but not a guaranty.
The threading design of a CLR implementation and the way it maps threading related
aspects to the underlying operating system remains crucial. The CLR, like Java, pro-
vides automatic memory management. Although automatic memory management can

310 23 Real-Time Middleware

contribute to the reliability of a system it typically introduces non-deterministic be-
haviour.

On the positive side, the CLR ensures type safety for managed code and supports
exception handling, which both can contribute to the reliability of a system. Further-
more, the .NET Framework provides means for managed code to interfaces to native
code (P/Invoke). Also the use of pointers is supported making it possible to access to
specific memory locations – a necessary capability for real-time embedded systems.
This opens the way to hybrid solutions where the parts of an application that need to
meet hard real-time deadlines are written in native code while other parts are written
in managed code. For resource constraint systems a compact version of the .NET
Framework is available. The .NET Framework has been submitted to the European
Computer Manufacturers (ECMA) for standardization. Open source implementations
based on this standard are currently emerging for non- Windows operating systems
(e.g. Mono an implementation for Linux).

23.2 Assessment

To compare both approaches (AMI and event and notification services), we note that
AMI does not provide a variation of group-based programming and anonymous
communication techniques. With CORBA AMI, application developers do not have
to devise their own means to send server replies to client request. AMI applications
can receive replies that include multiple IDL types when Event Service applications
communicate using a single Any argument. Although Anys can send all IDL types,
they incur significant marshalling and message footprint overhead [Aru00].

In contrast, the Event Service provides a flexible model for transmitting asynchro-
nous events among objects. However, its specification lacks several important fea-
tures required by real-time applications. Chief among these missing features include
real-time event dispatching and scheduling, periodic event processing, and centralized
event filtering and correlations. The COS Event Service interfaces have been ex-
tended by projects such as [Har97] to enable the definition of execution requirements
and characteristics using QoS parameters (such as worst-case execution time, rate,
etc.) by the application and specifically to provide real-time features.

With respect to more general features that the presented technologies exhibit, the
following characteristics are important:

Object orientation. Almost all relevant middleware technologies support object
oriented paradigms in the form of remote services (as, for instance, in CORBA
and Jini), remote objects (as, for instance, in RMI).
Software portability. The power of software portability has been sufficiently
proven. In this respect, emerging middleware technologies try to adjust to this fea-
ture. Originally Sun’s Java technology and later Microsoft’s .NET have developed
intermediate code generation technologies to address this issue. This presents
some drawbacks for real-time systems that will hopefully be addressed in the near
future.
Event based execution models. Distributed real-time applications usually exchange
asynchronous requests using event-based execution model. In the last years, the
OMG has improved the standard specifications with respect to real-time systems

 23.3 Trends 311

issues. It should be said that the OMG has made the most important effort in ad-
dressing real-time systems issues. For instance, it has adopted the Minimum
CORBA [Obj98a], Asynchronous Method Invocation (AMI) [Ojb98b], and Real-
Time CORBA specifications.
Timely invocations are of great importance for distributed real-time systems. They
are not easy to achieve because they involve the network. There are studies that
prove the performance QoS that certain RTCORBA implementations may achieve
for high speed and bandwidth networks. However, lower level issues that involve
the operation of the network protocols to handle retransmissions and the effect
they have for real-time behaviour have not been fully supported. Jini provides no
specific features for real-time systems. It relies on the underlying remote method
invocation mechanism (for instance RMI), therefore, its capabilities for timely in-
vocations of remote services depend on the features that RMI exhibits for real-
time. Currently, the DRTSJ is being developed, that will hopefully lead to the ful-
filment of some the requirements of timely invocations for distributed real-time
applications.
Interoperability of distributed applications. Gateways for interoperation are being
provided by the emerging middleware solutions, so that different applications are
able to use each other’s functionality no matter in what language they have been
developed. Additional packages and cross-language compilers are generated to
fulfil this goal. However, techniques to address interoperability in a more com-
fortable way and at a higher abstraction level could be developed.
Learning curve. Some of these technologies, for instance CORBA specifications,
imply a great deal of technologies and software components. Therefore, though it
is a very powerful technology, its learning curve is a problem.

23.3 Trends

QoS capabilities and adaptive resource management will play an important role in
next generation middleware, specially in fields like multimedia processing. This will
allow to achieve a high utilization of the system resources such as CPU, memory and
network, in order to enhance the system performance. Also, it will distribute and
allocate system resources according to the application requirements. Resource aware
middleware systems will need to use QoS management techniques to ensure that the
solicited service requirements are met.

Also, distributed real-time applications often rely on event propagation around
scattered logical or physical different nodes. Thus the publisher/subscriber model is
often enforced as a natural solution as it provides the required features for implemen-
tation efficiency e.g. existing implementations are scalable or fault tolerant; real-time
analysis, as this model is simple enough to allow complete analysis of its different
components; QoS constraints enforcement or filtering capabilities. Besides, asynchro-
nous message API enable at the lower level the efficient propagation of requests
through the network.

From an industrial point of view, it is not clear that the OMG CORBA specifica-
tions and services can be considered as a definitive solution in the distributed real-
time and embedded area. Both CORBA AMI and COS Event Service have their ad-

312 23 Real-Time Middleware

vantages and their drawbacks. One can consider that this may come from the initial
design of CORBA which was not dedicated to distributed real-time and embedded
applications. Besides, Jini and .NET are not designed for real-time and are outside the
scope of the study.

To this respect, message-oriented middleware (MOM) may provide an alternate so-
lution directly built upon the publisher/subscriber model. The Java Message Service
(JMS) [Sun] specification provides a solid foundation for MOM architecture, and is
accepted as a de facto standard for MOM API. Even if it lacks real-time features, it
enables message filtering based on a SQL’92 like syntax. Thus, real-time MOM can
be devised using a restricted set of this API. Nevertheless, existing projects and stud-
ies show real-time MOM are viable solutions [Raj95]; and proprietary solutions al-
ready exists [RTI00].

Such an approach should not be ignored as soon as real-time MOM industrial-
strength specifications become available. This is still an ongoing effort. Hence, OMG
has issued a Request For Proposal (RFP): the Data Distribution Service for Real-Time
systems (DDS) RFP to establish a MDA (Model Driven Architecture) specification
describing the application-visible interface and behaviour of a data-distribution ser-
vice that supports a data-centric publish-subscribe for real-time systems. A revised
submission is currently reviewed in the OMG specification adoption process
[OMG03].

From another perspective, it is important to observe that the emergence of applica-
tions operating independently of direct human control is inevitable. In fact, with the
increasing availability of technologies to support accurate and trustworthy visual,
auditory, and location sensing [Hig01] as well as the availability of convenient para-
digms for the acquisition of sensor data and for the actuation on the environment
[Add01], a new class of large-scale decentralized and proactive applications can be
envisaged.

However, research on high-level models for this class of applications--- e.g. on
autonomous agents and distributed AI--- has revealed the shortcomings of current
architectures and middleware interaction paradigms. Dealing with highly dynamic
interactions and continuously changing environments and, at the same time, with
needs for predictable operation, is still an open challenge. Since our focus is on com-
plex real-time systems made of embedded components, then even more stringent
requirements have to be taken into account, namely to achieve distributed, safe and
timely process control. In this context, the provision of adequate interaction para-
digms is a fundamental aspect [Bac00]. Typical characteristics of this class of applica-
tions, such as autonomy or mobility must be accommodated, while allowing the pos-
sibility to handle extra-functional requirements like reliability, timeliness or security.

In contrast with the client/server or RPC based paradigms supported by current
state-of-the-art object-oriented middleware [Hor97][OMG95], event models have
shown to be quite promising in this arena [Har97][Mei02]. However, the existing
middleware approaches offering event services, often lack one or several of the fol-
lowing key points: seamless integration with a programming model; architectures
with an adequate layer structure; and the provision of support for extra-functional
attributes.

Therefore, we identify an emerging trend in proposing new architectural constructs
that are adequate to such event-based interaction models and, at the same time, pro-

 23.4 Recommendations for Research 313

vide adequate support to address the specific requirements of real-time embedded
systems. In fact, architecting such a system, namely defining the placement and com-
position rules for software components, when objects are embedded systems, or col-
lections thereof, and where the differences between hardware and software are some-
times subtle, is a challenging task.

A possible research direction can be based on a component-based object model
[Crn02]. This model breaks with the traditional separation between the software and
hardware perspectives, pointing to seeing objects as mixed hardware/software com-
ponents, although it is obviously possible to conceive an object as a software-only
component. Quite interestingly, these components can be seen as sentient objects, as
defined in the scope of the CORTEX project [COR02]. Sentient computing estab-
lished the generic concept, presented in [Hop00], elaborated in CORTEX in the con-
text of object components.

23.4 Recommendations for Research

Some on-going and future research lines in QoS related to middleware are the follow-
ing:

System-wide resource management. Mechanisms and policies to build QoS re-
source management into middleware, integrating various resources, mainly: proces-
sor, memory, and network. It plays an important role to study the relation among
application semantics and study the effect that this may have on such mechanisms.
Also, implications of user actions are being studied with respect to the effects that
they have on the system-wide policy for resource management.

Architectures for QoS resource management middleware. Some existing middle-
ware architectures, that have become the de facto specifications, are very complete
but very large. Building QoS specifications into them even increases its size, and
therefore, its learning curve. In some environments, other architectural approaches to
middleware are possible and they are being investigated; they aim at being lighter and
more focused on QoS resource management for specific real-time environments
[Gar03].

Adaptive real-time middleware. Support for highly dynamic environments. This
requires integrating techniques/algorithms to monitor system behaviour, enforce re-
source usage, adapt to changes, and even, predict future changes.

Real-time support from communication media. Relation to real-time network pro-
tocols to achieve predictable remote invocations and packet delivery (invocation
time). Though some studies focus on the OS as the bottleneck in the invocation pre-
dictability, the network also plays an obvious important role in this.

Interoperability. There are different middleware solutions for developing distrib-
uted applications. General frameworks for interoperation among different solutions
are also being explored [Pau01].

New specifications for distributed middleware are also appearing such as the dis-
tributed specification for RTSJ; this is currently being worked on. Implementation of
such specs is also an open research direction.

314 23 Real-Time Middleware

23.5 References

[Add01] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A.
Hopper. Implementing a sentient computing system. IEEE Computer, 34(8):50–56,
aug 2001.

[Aru00] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Parsons, “The
Design and Performance of a Scalable ORB Architecture for CORBA Asynchro-
nous Messaging,” in Proceedings of the Middleware 2000 Conference, ACM/IFIP,
Apr. 2000.

[Bac00] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M.
Spiteri. Generic support for distributed applications. IEEE Computer, 33(3):68–76,
2000.

[COR02] Preliminary definition of CORTEX programming model. CORTEX project, IST-
2000-26031, Deliverable D2, Mar. 2002.

[Crn02] I. Crnkovic and M. Larsson, editors. Building Reliable Component-Based Soft-
ware Systems. Artech House Publishers, 2002.

[Gar03] M. García-Valls, A. Alonso, J. Ruiz, and A. Groba. “The Architecture of a Quality
of Service Resource Manager Middleware for Flexible Embedded Multimedia Sys-
tems”. Lecture Notes in Computer Science, vol. 2596. Springer Verlag, 2003.

[Gor01] P. Gore, R. K. Cytron, D. C. Schmidt, and C. O’Ryan, “Designing and Optimizing
a Scalable CORBA Notification Service,” in Proceedings of the Workshop on Op-
timization of Middleware and Distributed Systems, (Snowbird, Utah), ACM
SIGPLAN, June 2001

[Har97] T. Harrison, D. Levine, and D. Schmidt. The design and performance of a real-
time CORBA event service. In Proceedings of the 1997 Conference on Object Ori-
ented Programming Systems, Languages and Applications (OOPSLA), pages 184–
200, Atlanta, Georgia, USA, 1997. ACM Press.

[Hig01] J. Hightower and G. Borriello. Location systems for ubiquitous computing. IEEE
Computer, 34(8):57–66, aug 2001.

[Hop00] A. Hopper. The clifford paterson lecture, 1999 sentient computing. Philosophical
Transactions of the Royal Society London, 358(1773):2349–2358, Aug. 2000.

[Hor97] M. Horstmann and M. Kirtland. DCOM Architecture.
http://msdn.microsoft.com/library/, July 1997.

[Kle02] R. Klefstad, D. C. Schmidt, and C. O’Ryan. “The Design of a Real-Time CORBA
ORB using Real-Time Java”, in Proceedings of the IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing", April 2002.

[Kri04] A. Krishna, D. C. Schmidt, and R. Klefstad. “Enhancing Real-Time CORBA via
Real-Time Java”. Submitted for publication to the 24th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS). Tokyo, Japan. May 2004.

[Mei02] R. Meier and V. Cahill. Steam: Event-based middleware for wireless ad hoc net-
works. In Proceedings of the International Workshop on Distributed Event-Based
Systems (ICDCS/DEBS’02), pages 639–644, Vienna, Austria, 2002.

[Mic00] Microsoft. .NET Development. http://www.msdn.microsoft.com/net/ 2000.
[OMG95] Object Management Group, CORBA Services: Common Object Services Specifi-

cation, Revised Edition, 95-3-31 ed., Mar. 1995.
[OMG95] OMG. The common object request broker: Architecture and specification. Techni-

cal Report OMG Document 96-03-04, July 1995.
[OMG98a] Object Management Group, Minimum CORBA – Joint Revised Submission, OMG

Document orbos/98-08-04 ed., August 1998.
[OMG98b] Object Management Group, CORBA Messaging Specification, OMG Document

orbos/98-05-05 ed., May 1998.

 23.5 References 315

[OMG99] Object Management Group, Real-Time CORBA Joint Revised Submission, OMG
Document orbos/99-02-12 ed., March 1999.

[OMG00] Object Management Group. The Common Object Request Broker: Architecture
and Specification, 2.4 ed., October 2000.

[OMG03] Data Distribution System RFP Roadmap; http://mars.omg.org/mars_roadmap.htm
[Pau01] Laurent Pautet, Fabrice Kordon and Thomas Quinot, From functional to architec-

tural analysis of a middleware supporting interoperability across heterogeneous
distribution models, Proceedings of the 3rd International Symposium on Distrib-
uted Objects and Applications, 2001.

[Raj95] R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time Publisher/Subscriber
Inter-Process Communication Model for Distributed Real-Time Systems: Design
and Implementation,” in First IEEE Real-Time Technology and Applications
Symposium, May 1995.

[RTI00] Real Time Innovations, Inc., “NDDS: Real-time networking made simple.”
http://www.rti.com/products/ndds/ndds.html, 2000.

[Sch98] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of
Real-Time Object Request Brokers”, Computer Communications, vol. 21, pp. 294-
324, April 1998.

[Sch02] Douglas C. Schmidt and Mayur Deshpande and Carlos O’Ryan, Operating System
Performance in Support of Real-time Middleware, the 7th IEEE Workshop on Ob-
ject-oriented Real-time Dependable Systems, San Diego, CA, January, 2002.

[Sun] Java Message Service (JMS), Sun Microsystems; http:/java.sun.com/jms

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 316 – 337, 2005.
© Springer-Verlag Berlin Heidelberg 2005

24 Networks

During the last two decades, technological advances in hardware made possible the
embedding of both processing and communication functions in highly integrated,
low-cost components, fostering the use of a distributed approach in many application
fields including embedded systems. This fact led to the dissemination of so-called
Distributed Embedded Systems (DES), which became the core of intelligent equip-
ment with a high degree of autonomy, from robots to machine tools, from cars to
trains and planes. Another class of DES appeared from the interconnection of con-
sumer equipment, most notably computer peripherals and portable devices, such as
laptops, mobile phones, PDAs and digital cameras, as well as within intelligent home
systems, either for access control, location aware services, security and distributed
multimedia. In most cases, DESs have now a strong impact on human lives, either
because they are used within important economic processes, e.g. complex machinery
in factories, or because they control equipment that directly interacts with people, e.g.
transportation systems, or simply because they became an essential part of everyday
life e.g. interconnection of computer peripherals and portable devices. Current buzz
words such as X-by-wire, m2m (machine-to-machine communication), pervasive
computing, ad-hoc networks, mobile computing, sensor networks exhibit the current
importance of networking within embedded systems.

This section starts with a description of the different networks that are typically
used in distributed embedded systems found in several different application fields.
Following this description, an analysis of the role that networks play within a system
and of their current limitations is presented. These limitations lead to the identifica-
tion of fundamental trends in current networks research, to support the requirements
of new applications of distributed embedded systems. Finally, some recommendations
for research are made.

Aspects of middleware for implementing hardware real-time systems are also covered
in section 8.

24.1 Landscape

Today, a large variety of networks is currently available to build distributed embed-
ded systems. Some of them are competitors for the same application market, while
others are complimentary and address different requirements and application scenar-
ios. Killer applications that are currently shaping the industrial and research interest
around networks extend from the safety-critical domain, such X-by-wire, to specially
time sensitive applications, such as motion control, as well as to distributed monitor-
ing, such as sensor networks and ambient intelligence, to mobile computing and ad-
hoc networks, pervasive computing, multimedia streaming and VoIP.

Therefore, to deliver a relatively horizontal view of the field as background for the
remaining text, this section presents a brief description of several networks that be-
came particularly popular in specific application fields, namely ARINC629 in avion-

 24.1 Landscape 317

ics, WorldFIP in train control systems, PROFIBUS in automation equipment, CAN
and TTP in automotive systems, IEEE 1394 (FireWire) and USB for multimedia de-
vices and peripherals interconnection, Ethernet for office automation and now for
industrial automation and also for multimedia devices and peripherals interconnec-
tion, LonWorks for building automation, IEEE 802.11 for wireless LANs and mobile
computing, and finally Bluetooth, based on radio, and IrDA, based on infrared light,
to interconnect peripherals and portable devices.

CAN

The Controller Area Network (CAN) protocol was developed in the mid 1980s by
Robert Bosch GmbH. Despite its initial target being automotive applications, it soon
expanded into different application fields such as automation and robotics. It uses a
multi-master architecture on a broadcast shared bus, the transmission medium is usu-
ally a twisted pair cable and the network maximum length depends on the data rate,
which imposes a fundamental limit to the maximum speed attainable (e.g. 40m @ 1
Mbps; 1300m @ 50 Kbps). The arbitration uses a CSMA non-destructive bit-wise
protocol in which the controller transmitting the message with lowest identifier wins
access to the medium and continues transmission. The remaining controllers detect a
collision, back off and retry again as soon as the current transmission ends. Because
of this arbitration scheme, each message must have a unique identifier that also estab-
lishes the message priority. The traffic scheduling at the bus access level is thus based
on fixed priorities. Probably for this reason, CAN generated great interest for real-
time applications. The addressing is indirect and based on the identifiers, too. The
CAN protocol does not specify an application layer.

TT-CAN

The Time-Triggered CAN (TT-CAN) is a communication protocol based on CAN,
and thus inherits many of its properties, remarkably the physical layer. TT-CAN goals
are to reduce latency jitter and guarantee a deterministic communication pattern on
the bus. In TT-CAN nodes are synchronized either by a specific periodic message
(level 1) known as reference message or by executing a clock synchronization algo-
rithm (level 2). As nodes are synchronized, time slots can be reserved to specific
messages, which in this case are transmitted without contention (exclusive windows).
Moreover, TT-CAN also allows to reserve time slots for shared access, in which sev-
eral nodes can try to transmit on the same time slot (arbitrating windows), using the
native arbitration of CAN. The bus time is organized in basic cycles, consisting of
several slots. Several basic cycles may be combined to build the system matrix, which
completely characterizes the sequence of slots. The TT-CAN protocol offers an appli-
cation layer that includes a configuration interface for system set-up and an applica-
tion interface for time, interrupt and control management.

TTP/C Protocol

The TTP/C protocol is a fault-tolerance oriented communication protocol, including
clock synchronization and membership services, fast error detection and consistency
checks. A TTP/C network consists of a set of communicating nodes connected by a

318 24 Networks

replicated network. A node comprises a host computer and a TTP/C communication
controller. The medium access control is based on TDMA with bus time divided into
slots, each being statically assigned to one node. In each slot each node transmits one
frame. The frame cycle is called a TDMA round. A distributed fault-tolerant clock
synchronization algorithm establishes the global time base needed for the distributed
execution of the TDMA scheme. Each node holds a data structure containing the
message descriptor list (MEDL). Messages are piggybacked within the frames trans-
mitted by each node. The MEDL contains the information relative to all messages
exchanged on the system, including the respective transmission instants allowing,
thus, fast detection of missing messages. Despite being static, the MEDL can hold up
to 30 global pre-configured modes, which can be requested by nodes in a specified set
using dedicated messages. The TTP/C protocol defines 4 transmission speed classes (
500Kbps, 1Mbps, 2Mbps and more recently 25Mbps) and provides an application
layer that delivers configuration and messaging services.

FlexRay

The FlexRay protocol is promoted by the FlexRay Consortium, which includes some
of the top players on the automotive and electronics industries (BMW, DaimlerChrys-
ler, Motorola, Philips, GM and Bosch), and targets specifically power train, chassis
and body control on automotive applications.

The protocol supports both synchronous and asynchronous data transfers with de-
terministic collision-free bus access. The bus time is organized in fixed duration
communication cycles, comprising a static part, where the synchronous traffic is
transmitted, and a so-called dynamic part, conveying the asynchronous (on-demand)
traffic. Data transmission within the static part is time-triggered, which, once com-
bined with a time-synchronization protocol, allows for contention-free bus access. In
the dynamic part the traffic is transmitted on demand, with a mini-slotting contention-
resolution mechanism inherited from the BMW’s ByteFlight protocol. This mecha-
nism also supports collision-free deterministic bus access. Regarding the physical
layer, the protocol supports data rates of up to 10Mbit/sec, which may grow up to
20Mbit/sec with the (optional) use of two independent communication channels. Error
containment is enforced at the physical layer by the use of independent bus-guardians
within each ECU. To answer the specific requirements of automotive applications, the
FlexRay protocol is particularly flexible with respect to the network topology, sup-
porting bus, star and multiple-star topologies based on electrical or optical transmis-
sion mediums.

ARINC 629

The ARINC 629 communication standard has been developed as a successor to the
ARINC 429 standard, and provides general purpose data communications between
avionic subsystems. The ARINC 629 standard defines a multi-level protocol for inter-
subsystem data communications, using a bi-directional multiple access data bus. Both
broadcast and directed messages are supported and may have variable length. Cur-
rently 2 Mbps data transmission rate is supported, but higher bit rates, using optical
fibres, are currently being considered. The standard specifies two alternative data link

 24.1 Landscape 319

protocols, named basic and combined respectively. Both of these protocols support
periodic and sporadic transmissions. Periodic messages are scheduled automatically
according to a TDMA schedule defined at pre-run-time. Aperiodic messages are
transmitted on-demand within specified temporal windows. The arbitration of aperi-
odic messages is based on CSMA-CA (collision avoidance), also referred to as mini-
slotting, according to which one node is allowed to transmit only after sensing the bus
idle for a given time window whose length is different from node to node.

WorldFIP

The WorldFIP protocol is part of the European Standard EN 50170 and it was devel-
oped for factory and process automation to support real-time communication. It be-
longs to the class of the so-called field buses. There is also a light version of the pro-
tocol, DWF (Device WorldFIP), which aims specifically at embedded systems offer-
ing a reduced set of services. Despite being labelled as an automation protocol,
WorldFIP is particularly popular in embedded train control systems.

The protocol relies on a bus topology and can operate over copper wiring or optical
fibres. Concerning the transmission speed, the WorldFIP protocol defines 3 classes
for copper wire (21.25Kbps, 1Mbps and 2.5 Mbps) and a 5 Mbps class over optical
fibre.

In what concerns the medium access control, WorldFIP is based on the producer-
distributor-consumers (PDC) communication model. The distributor function is per-
formed by a special node, the bus arbitrator (BA), which schedules the producers
access to the bus, using master-slave transmission control. At run-time, the BA uses a
static schedule table (the BAT) to schedule periodic transactions. Aperiodic message
transfers are carried out in the time not used by periodic transactions. The addressing
method is based on identified variables, i.e., the addressed entities are variables to be
exchanged and not nodes, and both periodic and aperiodic messages are supported.

The WorldFIP protocol defines an application layer that includes PDC-based ser-
vices (MPS, Periodic and Sporadic Messaging system) and messaging services (a
subset of MMS, Manufacturing Message Specification).

PROFIBUS

The Profibus protocol is also a field bus included in the European Standard EN 50170,
which aims at automation systems. There are several flavours that are better suited to
different applications, such as FMS (field bus messaging specification) directed to
cell control, DP (Device automation) for machine control and PA (Process Automa-
tion) meant for process control which differs from DP in what concerns the physical
layer and data link interface. DP is probably the profile better suited to embedded
systems.

At the physical layer, PROFIBUS (both FMS and DP) can use either RS-485 or
optical cabling with transmission rates up to 12Mbps. In what concerns the data link,
there are two type of nodes, master and slaves. The former ones can initiate network
transactions while the latter ones just respond to master commands. The medium
access control among the masters is based on token-passing, following a simplified
version of the Timed Token Protocol. In Profibus, a token circulates between the

320 24 Networks

masters of a logical ring, which is implemented on a physical bus. Master stations
manage the token and control communications with the slave stations. Messages are
transmitted in a message cycle, which comprises an action frame (request or
send/request frame), a reply frame (acknowledgement or response frame) and possible
retries. The Profibus protocol distinguishes between high-priority and low-priority
traffic.

Unlike the Timed Token Protocol, the Profibus does not provide for a synchronous
bandwidth allocation specifying the length of time a station has at its disposal to
transmit, but each station can use the token for a time interval, called the Token Hold-
ing Time (TTH). The TTH is determined by the station on each token visit as TTH =
TTR – TRR, where TTR is the Target Token Rotation time (a design parameter speci-
fying the time that the token should theoretically take to make a complete round of the
ring) and the TRR is the Token Real Rotation time (i.e., the time measured between
two consecutive arrivals of the token in the station). In order to reduce the blocking
that a station could be subject to when other stations submit heavy traffic, in each
token visit it is always possible to send at least one high priority message.

IEEE 1394

The IEEE 1394 protocol is the industry-standard implementation of Apple’s FireWire
digital I/O system, and mainly targets the interconnection of peripherals and con-
sumer electronics devices. This protocol provides guaranteed delivery of multiple data
streams through isochronous data services, up to 1k interconnected links, up to 63
devices per link, 4.5m separation between contiguous devices (longer distances are
possible using special cabling), up to 16 hops between devices, and data transfer rates
of 100, 200, and 400Mbps (800Mbps and 1.2 Gbps versions in development – 1394b).
The 1394 protocol is a peer-to-peer network based on a tree topology. Devices may
have several ports, acting as repeaters. Configuration of the bus occurs automatically
on power-on, whenever a new device is plugged in, on errors, or after explicit applica-
tion request. Upon configuration, the current network topology is identified and IDs
are assigned to each node. During this process a cycle master (root node), an isochro-
nous resource manager and a bus manager are elected, possibly residing in the same
node.

The 1394 protocol supports isochronous and asynchronous data transfers that take
place within a cyclic framework of fixed time slots with 125μs duration. A cycle
master triggers each cycle by sending a cycle start packet (CS). The isochronous
transfers may use up to 100μs in each cycle and are always transmitted at a constant
rate in a one-to-one or one-to-many fashion. This mode does not support error correc-
tion nor retransmission. The isochronous resource manager keeps track of the band-
width and channels currently allocated to isochronous streams and performs an ad-
mission control of new requests. Asynchronous transfers are directed to a specific
node by an explicit address, and are acknowledged, supporting error-checking and
retransmission mechanisms. No bandwidth guarantees are provided to this type of
traffic.

The bus operation is synchronized by the reception of the CS packet upon which
all devices wishing to transmit isochronous data issue a request to the root. The root
node handles these requests and grants the right to transmit. Isochronous channels can

 24.1 Landscape 321

only be used once per cycle although devices can hold more than one channel. In each
cycle, the bus time available after processing all pending isochronous transfers can be
used for asynchronous transfers in a similar bus access scheme.

Due to its high bandwidth and bandwidth reservation scheme, the IEEE 1394 pro-
tocol is well adapted to support multimedia applications as well as bulk data transfers.
It is now being considered for use within cars and planes as a backbone to support the
interconnection of multimedia consumer devices.

USB

The Universal Serial Bus (USB) protocol, currently in its 2.0 revision, resulted from
the joint effort of a group of major players in the telecommunications and personal
computer (PC) fields. The main objective was to provide a universal solution, able to
replace the vast mix of connectors usually required to interconnect peripherals to the
PC. To cope with these requirements, the USB protocol supports plug and play, dis-
tinct data types and small connectors, which already include power lines. Low-power
peripherals may be thus completely bus-powered. USB acceptance has been remark-
able, being now a cheap, robust and efficient interconnection technology, with over 1
billion of USB-enabled products.

USB now specifies 3 distinct bus speeds: 1.5 and 12Mbps, as defined by USB revi-
sions 1.0 and 1.1, and 480Mbps, introduced by USB revision 2.0. The USB topology
is a “tiered star”, with the peripherals interconnected via hubs. Hubs act as repeaters,
and thus, from the logical point of view, the USB network behaves like a bus. In the
network there must be one root hub, which is the system master, controlling and
scheduling all the communication activities. Peripherals attached to the USB bus
should only respond to the root hub commands. Upon connection, a device is polled
by the host, which identifies the peripheral, assigns a unique identifier to the node and
loads the appropriate device drivers, a process called enumeration. Each peripheral
may have up to 16 communication endpoints. Endpoint 0 is reserved for control trans-
fers, while the remaining ones may be used for generic data transfers. USB transac-
tions use pipe semantics connecting the host with each one of the peripheral end-
points. When establishing a connection, each endpoint returns its communication
requirements, like the type of transaction, data packet size, bandwidth, maximum
latency. These communication requirements may be accepted, rejected or changed by
the host, depending on the resource availability.

USB defines 4 different data transfer types, for configuration and control (Con-
trol), reliable transfer of large amounts of data without timeliness requirements
(Bulk), peripheral poll for events (Interrupt) and isochronous data (Isochronous),
originated e.g. from audio/video streams. The host handles these distinct data transfer
types differently: Bulk transfers are carried out only whenever there are no other
communication activities (background); Interrupt transfers have a guaranteed maxi-
mum latency and Isochronous transfers have a guaranteed bandwidth. Furthermore,
Isochronous transfers are not protected by CRC.

USB communication occurs within 1ms or 125 s frames, for v1.1 or v2.0 respec-
tively. All the frames start by a start of frame (SOF) field and end with a minimum
period of bus idle, called end of frame (EOF). Within each frame the host may trigger

322 24 Networks

different data transfers, eventually of different types, according to the system commu-
nication requirements.

Despite being master-slave, there is the “On-The-Go” supplement (OTG Supple-
ment, Revision 1.0a, 07-09-2003), which provides a means for special devices being
able to play both master and slave roles. This supplement was fostered by the need to
allow portable devices to behave either as peripherals of a given root or as roots with
their own peripherals, depending on the circumstances.

Ethernet

Ethernet was invented about 30 years ago, and its initial purpose was to connect of-
fice equipment. Along the time this protocol has evolved in many ways, it became
adopted as an IEEE standard and achieved unprecedented acceptance mainly in the
office environment. Due to its current wide acceptance, Ethernet has also been sug-
gested for use in many diverse application fields such as automation and even embed-
ded systems. In terms of transmission speed, Ethernet is available in 10Mbps,
100Mbps and more recently 1Gbps and 10Gbps. Concerning the network topology,
Ethernet also evolved from the initial bus configuration to a more structured and fault-
tolerant approach, based on a star. Ethernet uses a Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) arbitration mechanism, according to which a net-
work controller having a message to be transmitted must wait for the bus to become
idle and then starts transmission. Other nodes can start to transmit at the same time,
originating a collision and message corruption. This is detected by all nodes that abort
the transmission of the current message, wait for a random time interval as dictated by
the BEB (truncated binary exponential back off) algorithm and try again. The number
of retries is limited to sixteen, after which a packet is discarded. This situation be-
comes common when the network load grows above a given threshold, generating
many chained collisions. Consequently, this protocol does not provide, by itself, pre-
dictable message transmission times.

However, during Ethernet’s history, several techniques have been proposed to
overcome the lack of predictability of its CSMA/CD arbitration protocol. These range
from modification of the MAC to addition of transmission control layers above the
original MAC. Examples of such approaches are Master/Slave, Token-passing, Timed
Token, TDMA, Virtual Time Protocol and Traffic shaping, providing different de-
grees of efficiency, flexibility and timeliness guarantees. The low-cost, wide avail-
ability and high-bandwidth made available by this technology raised the interest of
the industrial community, which has spawned several protocols, e.g. NDDS (Network
Data Distribution Service) and PowerLink.

More recently, switches replaced hubs due to their capacity to create a single colli-
sion domain in each of its ports. As long as a single equipment is connected to each
port (micro-segmentation) collisions never occur unless they are created on purpose
for flow control. Switched Ethernet allows achieving a more predictable traffic behav-
iour as long as the flows of messages arriving at each port can be adequately charac-
terized and are well behaved in the sense that they do not cause overflow in the ports
queues, e.g. due to excessively long bursts, or excess of broadcast/multicast packets.

Resembling the case of shared Ethernet, a considerable amount of work has also
been devoted to enhance the real-time behaviour of switched Ethernet networks, tak-

 24.1 Landscape 323

ing advantage of the better properties of this architecture. The industrial community
has been particularly active on this domain, with several proposals currently active,
e.g. Ethernet/IP, PROFInet/IRT and EtherCat.

LonWorks

LonWorks, and its LonTalk protocol, targets peer-to-peer control systems, integrating
large number of nodes spanning to relatively large distances and with broad ranges of
processing capability, such as the ones found in home and building automation, sup-
porting e.g. HVAC and surveillance subsystems. The protocol supports a wide range
of physical media, ranging from power-line to twisted-pair bus. However, the particu-
lar physical medium constrains the speed, distance and number of devices allowed in
a system (e.g. 5.4 Kbps, 125m and 64 devices for power-line medium). The message
arbitration mechanism is independent of the physical medium, and allows reducing or
even completely avoiding collisions. The protocol is generally based on p-persistent
CSMA with the possibility to use predictive p-persistent CSMA with acknowledged
services. The predictive aspect consists on dynamically adjusting p according to the
channel load and allows strongly reducing the probability of collision under heavy
loads, avoiding the effect of thrashing. On the other hand, the protocol also allows
defining up to 8 contention-free priority slots synchronized upon the end of the last
transmission, which are statically allocated to specific devices. These slots are meant
for messages with short and guaranteed response time requirements. Moreover, the
protocol also provides authenticated services, which allow secure communications
among system devices.

IEEE 802.11

IEEE 802.11 is a wireless LAN developed for use in the SOHO (Small Office / Home
Office) environment. It has, however, been suggested for the interconnection of em-
bedded equipment with the external world, e.g. for remote monitoring and manage-
ment, as well as for the interconnection of systems formed by several mobile units
such as robots. The standard defines the physical and medium access control layers.
Currently, available transmission rates range from 1 and 2Mbps, as defined by the
basic version to 11Mbps (802.11b) and 54Mbps (802.11a and 802.11g). The radio
frequency bands are the 2.4GHz ISM license-free band for 802.11{b,g} and 5GHz for
802.11a. Comparing both high speed versions, 802.11a and 802.11g, the latter, de-
spite its recent emergence (deployment in 2003), is finding widespread use due
mainly to its retro-compatibility with 802.11b. Nevertheless, it presents a few weak-
nesses with respect 802.11a, namely the reduced number of channels (3 against 12)
and operation in a much noisier band.

Concerning the medium access policy, the IEEE 802.11 standard defines two
modes of operation: DCF (Distributed Coordination Function) and PCF (Point Coor-
dination Function). The DCF mode employs a fully distributed arbitration mechanism
of the CSMA-CA type (CSMA with collision avoidance). Stations are allowed to
transmit only after sensing the medium idle for an interval called DIFS (distributed
inter-frame space). If activity is detected then they wait for a random interval before
starting transmission according to the BEB algorithm similarly to Ethernet. The wait-

324 24 Networks

ing time is suspended whenever another transmission is detected. Collisions can still
happen and are detected using an acknowledgement frame sent by the receiver SIFS
(short inter-frame space) after a successful transmission. To further reduce collisions
an optional 3-way handshake can be used. A transmitter willing to send a data packet
starts by sending a reservation frame (RTF, request to send) that indicates the time
needed to transmit the data packet. The receiver acknowledges the RTS issuing a
control frame (CTS, clear to send). Other stations that receive one RTS or CTS refrain
from transmitting during the time therein indicated, while the transmitter sends its
data packet. These mechanisms become inefficient for short data packets and still do
not completely prevent collisions. Therefore, DCF does not support temporal guaran-
tees.

Time constrained traffic can be supported using the PCF mode. In this case, a spe-
cial node, the PC (Point Coordinator) assumes the network management, creating
traffic cycles. Each cycle is divided in two parts. In the first part, the PC explicitly
controls the access to the medium, thus there is no contention. In the second part, the
operation is like in DCF, and thus all nodes can compete as in the previous mode.
However, most available equipment supports DCF, only, since PCF has generally
received low attention. Currently, given the raising interest in streaming and interac-
tive applications, a new specification called WME (wireless multimedia enhance-
ments) is being proposed to provide 802.11 with prioritized traffic and queuing. These
features will be integrated in the upcoming 802.11e standard.

The standard also defines encryption methodologies to protect the data exchanges
such WEP (Wired Equivalent Privacy), a simple encryption method, and, more re-
cently, WPA (Wi-Fi Protected Access), which overcomes many of the weaknesses
exhibited by the former. Securities issues are addressed by the 802.11i standard,
which will be released soon.

Bluetooth

Bluetooth is an industry standard for short range radio in office and home environ-
ments that aims at replacing cabling connections between personal portable devices
such as mobile phones, laptops, PDAs, cameras, etc.. Bluetooth networks are ad-hoc
in the sense that the network, called piconet, is set-up automatically whenever Blue-
tooth-enabled pieces of equipment come close enough to each other. These networks
of personal devices are often referred to as Personal Area Networks (PANs). Several
piconets in the same geographical area can be interconnected, forming a scatternet.

Bluetooth operates in distances up to 10 meter, but this range is expected to in-
crease in upcoming extensions of the standard (a version with 100m range is under
consideration). The raw bit rate is 1Mbps and it uses the 2.4GHz ISM license-free
band with FHSS (frequency hopping spread spectrum) modulation. Nevertheless, the
maximum achievable data rate is 723Kbps. Bluetooth uses a master-slave medium
access control, with at most 7 active slaves in each piconet. More slaves may remain
synchronized with the master but not engaged in active communication (parked
slaves). The piconet master polls a single slave in one hop of the FHSS sequence. The
slave has to answer in the next hop. The order in which slaves are polled is not de-
fined by the protocol but depends on the pending traffic. An interesting feature of

 24.2 Assessment 325

Bluetooth is that any node can be either master or slave, depending on the automatic
piconet setup procedure.

Bluetooth supports two types of communication links, SCO (synchronous connec-
tion-oriented) links and ACL (asynchronous connection-less) links. The former ones
have reserved bandwidth and are meant for voice communications, with a bit rate of
64 Kbps on each direction. Each slave supports at most 3 SCOs. On the other hand,
ACLs are meant for data communications and can be configured in symmetric up and
downlinks with up to 433Kbps or asymmetric with up to 722Kbps in one way 57Kbps
in the other way. With ACLs there are no temporal guarantees but there is a larger
bandwidth that can be exploited to convey high quality audio, for example. Data ex-
changes can be protected by authentication and ciphering services. Moreover, Blue-
tooth includes a service discovery protocol that allows finding a node with specific
capabilities, as well as interfaces based on a serial link emulation (RFComm), the
PPP/IP/TCP-UDP suite and the object exchange protocol OBEX.

IrDA

IrDA is an industry standard defined by the Infrared Data Association (IrDA). It pro-
vides a transmission rate up to 115Kbps in asynchronous mode (SIR, serial infrared),
and up to 4Mbps with synchronous transmission (FIR, fast infrared). A new version
supporting up to 16 Mbps is expected soon based on the IrDA Air (Advanced Infra-
red) specification. Its range can cover a complete room, providing point-to-point and
multipoint (IrDA Air only) connections, and its physical layer is based on modulated
infra-red light.

With IrDA Air, the medium access is similar to the 802.11 DCF scheme, and thus
there is no support to guaranteed traffic. The IrDA specification presents a layered
architecture, comprising required and optional protocols, such as serial and parallel
connection emulation (IrCOMM), object Exchange Protocol (IrOBEX) for data object
transfer and a transport protocol (TinyTP), providing stream flow-control. The main
interest on IrDA concerning embedded systems is as an external interface for remote
monitoring, data upload/download, and management.

24.2 Assessment

Throughout the last decade, DESs have evolved towards highly distributed systems,
following the concept of encapsulating different functionality in separate intelligent
nodes (e.g. intelligent sensors and actuators) or simply aggregating separate pieces of
equipment that were already used for specific stand-alone functionality. This resulted
in a growing number of nodes, leading to higher connectivity and scalability require-
ments [Kop97]. However, it also resulted in higher system complexity, even with
simpler individual nodes, and led to a stronger impact of the network on the global
system properties.

Therefore, the network within a DES plays now a vital role since it supports all the
interactions among the set of interconnected nodes and, in general all global system
services. The network, or generally the communication system, determines, to a great
extent, the support for properties such as composability, timeliness, flexibility and
dependability as well as determines the efficiency in the use of system resources.

326 24 Networks

Hence, networks with adequate protocols and throughputs must be used in order to
grant those properties to the respective systems, as appropriate [Tho99].

Currently, there is a relatively wide choice of networks adapted for embedded sys-
tems in the most diverse application domains, as expressed in the previous section.
The degree at which the network supports the properties referred above is variable
and must be verified against the application specific requirements. This aspect is par-
ticularly important because some properties cannot be efficiently enforced at the mid-
dleware or higher layers in the software architecture without adequate and direct sup-
port of the underlying network. For example, it is costly in bandwidth to transmit
aperiodic information on time-triggered networks, or to implement multicasting on
networks supporting unicasts, only.

Some of the current limitations on the use of networks in embedded systems arise
from different options concerning conflicting concepts, taken in the design of the
respective protocols. For example, safety concerns typically lead to protocols that use
static definition of either traffic as well as system components [ARI99]. This impairs
the use of such networks in more dynamic environments where the system configura-
tion may change on-line and in which the communication requirements may also
vary. Moreover, such static protocols also reduce the efficiency in the use of network
bandwidth when a substantial number of information flows are of a sporadic nature
(event-triggered) or when (quasi) periodic flows change their rates dynamically. If the
network does not directly support consistency and replica determinism for fault mask-
ing, then implementing such mechanisms at higher software layers conflicts with low
computation and communication overhead. Fault tolerance on the basis of time re-
dundancy, such as re-transmission upon error, may conflict with real-time require-
ments [Bro01]. Fault tolerance on the basis of spatial redundancy, such as replicated
nodes and network, typically conflicts with low cost and low power consumption.

Apart from these conflicts, the communication medium is also a source of potential
limitations to the use of networks in embedded systems. For example, wireless com-
munication is inherently open and thus non-secure. Moreover, it is also very suscepti-
ble to interferences causing errors and unavailability. The transmission rate supported
by the medium can also be a limiting factor for several applications. For example, the
increasing use of multimedia streams, e.g. for machine vision, might require higher
bandwidth than normally offered by current networks used in the embedded domain
[Dec01]. The limitations of wireless communication are particularly challenging in
the field of wireless sensor networks, where the combination of real-time require-
ments, severe resource and cost constraints and reconfigurability and redundancy
management pose problems that push the frontier of current technologies [Sta03].

Proper design of the network can help solving these conflicts while at the same
time keeping the cost of the final system within bounds. This is essential to support a
new generation of applications that are dynamic and exhibit real-time, dependability
and efficiency requirements.

24.3 Trends

This section identifies several trends concerning networks for distributed embedded
systems (DES). Emphasis is given on the trends and issues that are, somehow, related

 24.3 Trends 327

to the general perspective of ARTIST – Action 3, i.e. adaptability in real-time appli-
cations. In particular, it will focus on the move towards higher distribution, higher
integration, integration of TT and ET traffic, dependability issues, higher flexibility,
wireless connections and Internet connectivity. The references included in the text do
not pretend to be exhaustive but illustrative, only.

Higher Distribution

One trend that has been verified for more than a decade is the evolution towards
highly distributed systems, following the concept of encapsulating different function-
ality in separate intelligent nodes [Kop97]. This fully distributed scenario has several
advantages: it favours dependability through easy replication of nodes and definition
of error-containment regions; composability since the system can be built by integrat-
ing nodes that constitute independent subsystems; scalability through easy addition of
new nodes to support new functionality; and maintainability due to the modularity of
the architecture and easy node replacement. Despite being witnessed in different ap-
plication scenarios, this trend is particularly materialised in the field of sensor net-
works [Sta03], in which large numbers of simple and small communications-enabled
nodes self-organise to gather and route information on the respective environment.
Smartdust [Kah99], a project developed in the University of California at Berkeley,
USA, is just as an example of this paradigm.

Higher Integration

Following the previous trend, it became apparent that to achieve higher benefits from
fully distributed architectures it was necessary to improve the integration among the
system components. There are two main reasons: on one hand, it is necessary to inte-
grate the information from the subsystems in order to improve the knowledge of the
global system state and improve the control over it; on the other hand, efficiency
gains can be achieved if different subsystems share information, e.g. that produced by
the respective sensors. In this latter case, functions can spawn over several compo-
nents and use their local resources.

The way to higher integration has been extensively pursued in certain application
areas such as process control and factory automation [Pim90]. It has been the basis for
the architectures of modern industrial systems, structured in layers with horizontal
(within the same layer) and vertical (across different layers) communication flows.
Computer Integrated Manufacturing (CIM) is an example of such architecture.

Other application fields have been similarly pursuing higher integration, such as
home and building automation, where the objective is to integrate information from
the home or building environment in order to improve energy management, support
the remote control of devices, improve safety mechanisms, support localization-aware
applications, etc. Similarly, precision agriculture, disaster relief, pollution monitoring,
forest fire detection are all application areas that require the integration of large num-
bers of dispersed embedded equipment, for example using sensor networks [Sta03]. In
a different scale, the integration of peripherals and portable devices has been consis-
tently growing, either using cabled interconnections, such as USB, or wireless such as
802.11, Bluetooth and IrDA, forming ad-hoc networks [Wu04].

328 24 Networks

Even within machines or vehicles, higher integration seems to be a hot topic,
mainly due to the potential to reduce costs [Rus01]. For example, automotive industry
analysts are expecting that the number of microprocessors in current high-end car
models will grow more slowly in the near future than it did in recent years (current
numbers account for close to 100 microprocessors). In fact, the total computing power
installed is several times what is needed and the same functionality can be imple-
mented with substantially less processors if higher integration between subsystems is
used. There are several problems, however, such as how to assure a similar level of
error-containment and composability [Rus01], and also how to put in practice such
integration when those subsystems are built by different makers [Ell02]. These issues
are deeply related with the network that supports the integration of all subsystems in
the global system.

Dependability Issues

An aspect that merits particular attention in safety-critical applications is dependabil-
ity. DESs are increasingly used to control systems whose failures may cause human
life losses (e.g. x-by-wire applications in cars and planes). In consequence, specific
dependability attributes such as reliability and safety have to reach higher values than
in normal applications. Such high values of dependability are typically achieved
through fault tolerance techniques, typically based on redundancy, either temporal,
spatial or both. Although there has been significant work in this area, it is nevertheless
important to be careful when applying existing solutions to DESs. Well-balanced
designs must take into account the specificities of these systems (e.g., low cost and
power consumption requirements) and still achieve the required levels of dependability.

Besides having to fulfil specific dependability requirements, the network also
should play a central role as provider of low-level services, which are fundamental to
help the global system to achieve the required level of dependability. If a specific
service is not provided at low level, a higher-level protocol implemented in software
at the various nodes has to be used. Under these circumstances the well-known prob-
lem of amplification of failures is likely to appear [Gop91]. On the other hand, if the
network provides such services, the system software, system architecture and higher-
level protocols are all simplified, keeping global costs within reasonable levels and
preventing not only amplification of failures, but also an excessive communication
overhead in the system. For instance, use of replication techniques such as active
replication to tolerate node failures requires an intense communication among replicas
in order to achieve replica determinism. Networks typically used in DESs offer low
bandwidth. Therefore, providing consistent communication (e.g. atomic broadcast) at
the data-link layer is very important to reduce the communication overhead generated
[Pin01][Pro00].

In the case of systems formed by the interconnection of large numbers of relatively
small embedded systems, such as sensor networks, fault-tolerance is normally based
on the large scale redundancy that is inherent to such systems, thus coping with the
unreliability of each individual node. In fact, it is not the information of one node that
is important but the information about a given area [Sta03]. The issue of security,
which is also a dependability attribute, is particularly relevant in this case because of
the use of wireless transmission. This issue is addressed in the respective section
further on.

 24.3 Trends 329

Higher Flexibility

The emergence of new classes of safety-critical embedded applications, distributed in
nature and operating in highly dynamic and uncertain environments (e.g., teams of
autonomous robots, combat vehicles, even cars in high traffic lanes), is, however,
revealing the shortcomings of current existing approaches in the dependability area.
For example, the provision of safety assurances requiring the satisfaction of timeli-
ness or security constraints, becomes considerably more difficult when at least some
parts of the supporting infrastructure, namely the networks (e.g., wireless networks),
do not provide the necessary baseline properties. Flexible solutions regarding com-
munication paradigms are fundamental when it comes to the introduction of fault-
tolerance or, more generically, dependability measures in such systems, to support
approaches such as graceful degradation [She03] and quality-of-service (QoS) adapta-
tion [Cas01].

Generally, the interest on flexibility comes from its potential to simplify installa-
tion, maintenance, and reconfiguration, and improve efficiency in the use of system
resources, e.g. network bandwidth. This is particularly important for the situations
referred above, when DESs are used in dynamic environments in which the commu-
nication requirements vary substantially during system operation. This variation
might be caused, for example, by subsystems that either operate during short periods
of time, e.g. the brakes in a car, or that may operate with variable levels of QoS, e.g.
multimedia streaming or even feedback control in some cases [Mar02], or finally
because the system may receive variable load from the environment, e.g. collision
avoidance, traffic control and defence systems.

Current network protocols based on time-triggered communication, despite favour-
ing composability, predictability and safety, consider static communication require-
ments, only, with at most a limited number of static modes. To circumvent this limita-
tion while maintaining the positive properties of that paradigm, new approaches are
being proposed which combine the time-triggered paradigm with operational flexibil-
ity [Alm02] supporting on-line rate adaptation of periodic message streams, according
to the application instantaneous requirements.

Despite the lack of generalized consensus concerning the applicability of flexible
approaches in safety-critical applications, the fact is that such issue is currently a hot
topic, and there is substantial attention, for example, dedicated to the certification of
real-time systems using dynamic resource management [Cha03].

Other approaches relax the safety concerns and further improve the flexibility of
the network. For example, the options around the use of the IEEE 1394 (FireWire)
protocol allow providing deterministic timeliness guarantees for high-quality multi-
media streams together with a full support for Plug-and-Play features. Namely, it uses
dynamic assignment of node IDs, network configuration upon reset and supports
dynamic resource reservation. The configuration changes are, however, accomplished
by means of network resets, which disrupt communication during a time window that,
despite short for most multimedia streams, might be too long for control applications.
The IEEE 1394 is now being proposed for backbone networks within cars and trucks
to support the interconnection of consumer electronic products such as CD players,
DVDs, games or computers [Col02].

330 24 Networks

Another adaptive approach to timeliness is, for example, the fuzzy traffic smooth-
ing technique proposed in [Car02]. It controls the bursts of non-real-time traffic in an
adaptive way in order to exploit the instantaneous available bandwidth and still pro-
vide probabilistic bounds on timeliness. Generally, probabilistic approaches allow
higher bandwidth efficiency and flexibility than other ones based on deterministic
worst-case analysis. This is also the case with the analysis of the impact of network
errors, with those using probabilistic error models [Bro02] being more efficient than
their deterministic counterparts. Notice that it is still possible to combine these error-
modelling approaches with safety applications by considering a sufficiently small
probability of failure.

Integration of TT and ET Traffic

In general, the support for composability is very important in DESs so that they can
be built by integrating subsystems while keeping their properties upon integration
[Kop97]. This allows coping with the complexity inherent to large systems. Particu-
larly in the time domain, composability has been achieved by means of the time-
triggered communication framework of which TTP (Time-Triggered Protocol)
[TTT99] is one example. This framework supports improved system timeliness and is
particularly adequate to situations with safety-critical requirements. It integrates well
with synchronous approaches to system specification and modelling, supporting for-
mal verification of system properties. Moreover, this framework supports phase con-
trol among different streams, which grants some level of control over transmission
jitter. This is typically considered relevant for control applications in which the net-
work-induced jitter may cause degradation in the quality of control.

On the other hand, the time-triggered framework is also known for its low band-
width efficiency when a substantial part of the network traffic is of a sporadic nature
(event-triggered). In fact, the mapping of event-triggered information onto time-
triggered messages establishes a delicate compromise between responsiveness and
allocated bandwidth. This leads to the current trend towards efficiently combining
event and time-triggered traffic, in an attempt to benefit from the advantages of both
frameworks, namely the flexibility and efficiency of event-triggered systems and the
predictability, composability and safety of the time-triggered ones. Several efforts are
being taken in this direction such as the work around TT-CAN (Time-Triggered
CAN) [ISO01] and the definition of FlexRay [Bel02].

Wireless Interconnections

Advances in wireless technology made it possible to integrate it within embedded
systems, either for communication with other systems [Wu04] as well as between
components within large systems [Kah99]. This allows cabling to be reduced and
system installation and management to become more flexible. These aspects are very
interesting in industry, for example to interconnect rotating or difficult to access
equipment, or even to interconnect mobile units such as AGVs to global con-
trol/information systems. Some efforts have been made with this aim, based on the
extension of existing wired fieldbus protocols such as OLCHFA with WorldFIP and,
more recently, R-Fieldbus with ProfiBus [Alv02]. Other protocols already include the

 24.3 Trends 331

possibility of using either wired or wireless physical layers, such as LON and FF-H1.
In some other cases, when the equipments to interconnect are geographically distant,
a dedicated GSM network is used instead. This is, for example, the case with the
European Train Control System that aims at supporting higher track utilization and
higher interoperability across Europe [Zim03].

The physical flexibility granted by wireless technology is also very interesting for
consumer electronics. For example, Bluetooth and IrDA have been used extensively
in PDAs and cellular phones to simplify the connection to a remote PC and synchro-
nize personal documents and databases. Also, recent cars start to appear with Blue-
tooth included as an interconnection for several on-board equipments such as cell
phones, PDAs and computers [Phi03]. Bluetooth provides up to 3 synchronous chan-
nels per piconet that are adequate for conveying audio streams. Its use in time-critical
applications has been generating growing interest as the protocol becomes more and
more widespread [Wib01]. Given the master-slave nature of medium access control
within each Bluetooth piconet, the traffic timeliness is highly dependent on the way
the master schedules transmissions [Joh00]. Such scheduling can also be carried out
aiming at power consumption reduction as in [Gar00]. Another topic that received
substantial interest is inter-piconet routing within scatternets, allowing Bluetooth
networks to expand unlimitedly in an ad-hoc fashion. Ah-hoc networking is a field
generating substantial interest due to its inherent flexibility. Ad-hoc networks are
expected to grow in acceptance and dissemination as they will be used to interconnect
ubiquitous equipment, from laptops to desktops, PDAs, cellular phones, even cars
[Wu04] The main problems that these networks face include link establishment to
support effective data communication, service discovery and access, and topology
management to cope with nodes mobility and still support connectivity and real-time
performance.

IEEE 802.11 also supports ad-hoc connectivity but its largest use is as structured
networks built around base stations that connect the wireless nodes to wired back-
bones. Early interest in using this protocol in real-time applications led to the inclu-
sion of a controlled medium access mode (PCF) that supports traffic timeliness guar-
antees. However, this has not received generalized acceptance and is now seldom
supported by manufacturers, while the successful uncontrolled mode (DCF) is the
basis of almost all the installed 802.11 systems. Currently, there is renewed interest
on real-time support arising from delay-sensitive applications such as Voice over IP
(VoIP). For this purpose, new QoS mechanisms are being proposed as part of a new
standard, 802.11e, which work over DCF as well as PCF.

A negative aspect about both Bluetooth and 802.11 (b and g variants) is that they
operate in a license-free band (ISM), which makes them particularly sensitive to inter-
ferences, decreasing their robustness [Dec02]. In general, there are still other draw-
backs concerning wireless technology that need further attention, e.g. when compared
to cabled networks, wireless adapters are still more expensive, bit error rates are
higher and throughput is normally lower. Moreover, the natural openness of the wire-
less medium makes it more prone to security breaches, which calls upon the use of
cryptographic techniques.

Another wireless related application domain that is gaining momentum is that of
sensor networks, in which the problems above gain higher relevance due to the small,
constrained and unreliable nature of the nodes [Kah99]. Network level issues that

332 24 Networks

need further attention include the support for content addressing, location awareness
and distributed routing [Sta03]. Moreover, these networks have to cope with highly
variable workloads, non-uniform nodes distribution, high fault rates and energy con-
straints. Under these circumstances, achieving secure real-time communication is a
true major challenge that still needs a substantial research effort.

Internet Connectivity

The system management and monitoring is also an important issue, particularly in
large and complex systems. In this aspect, a growing pervasiveness of Internet has
been witnessed so that well-known and accessible Internet technologies and protocols
can be used (e.g. equipment configuration via HTTP and components description and
configuration via XML). In fact, many existing networks used in embedded systems,
mainly in automation, already provide a certain level of support for IP protocols, e.g.
through tunnelling.

Furthermore, many distributed embedded systems also include a transparent con-
nection to the Internet allowing real-time system diagnosis, automated software defect
correction and upgrades, monitoring of operating environment conditions [Koo02],
and connectivity to other systems. However, a connection to the Internet also poses
many problems related to security such as unauthorized access to system manage-
ment, or simply to system internal data [Pal00]. These are still open areas of research
that consider, for example, adequate designs for firewalls and use of cryptography.

Another issue that gains particular relevance as embedded systems, or parts of
them, become interconnected through the Internet is QoS to support time-sensitive
traffic such as audio and video streaming or even streaming of control information for
example related with remote virtual labs. However, the service currently offered over
the Internet by the standard Internet Protocol (IP) does not provide for diversified
management of real-time flows. The currently-used Internet Protocol version 4 (IPv4)
is unable to efficiently support QoS, a task entrusted to higher-level protocols. A new
version, IPv6, has been proposed by the IETF to overcome such and other limitations.
For example, it solves the problem of limited number of available IPv4 addresses and
also adds many improvements in areas such as routing, network self-configuration
and QoS support. Most importantly, IPv6 offers native QoS support, in the sense that
it provides fields in the header of IP packets that allow managing traffic flows in a
differentiated fashion, according to their QoS requirements. The protocol has also
been streamlined to expedite packet handling by network nodes and provides support
for congestion control, reducing the need for reliable but untimely higher-level proto-
cols (e.g. TCP) [LoB03]. Moreover, IPV6 characteristics can be exploited inside
routers to entrust them with the task of providing diversified scheduling for real-time
and non-real-time flows [Fic03].

Until recently, the adoption of IPv6 has been limited. More effort on the transition
is necessary to make it as simple as possible and open the way for the potential of the
IPv6. IPv6 is expected to gradually replace IPv4, with the two coexisting for a num-
ber of years during a transition period, thanks to Tunnelling and Dual Stack tech-
niques. Several companies are interested in IPv6 technology to overcome IPv4 limita-
tions for robust real-time IP-based multimedia communications [VaSt03].

 24.4 Recommendations for Research 333

24.4 Recommendations for Research

The trends identified in the previous section have in some way pointed out the main
directions that are currently being pursued in the area of networks for distributed
embedded systems (DESs), with special focus on the support for flexible and adaptive
behaviours. These networks are required to support the growing levels of integration
that will allow gathering more accurate, abundant and timely data about the environ-
ment or system, in order to better control, manage and plan, using fewer resources.
This is fundamental in order to support a myriad of services upon which modern so-
cieties depend in unprecedented ways, from military systems to transportation sys-
tems, telecommunications, industrial, building and office automation, space systems,
climate and assets monitoring… The development of the necessary communication
infrastructures that must be flexible, real-time, dependable, pervasive and interoper-
able entails technological challenges that require a substantial research focus. In this
section we briefly recall the open issues previously raised that need such research
attention.

The limitations of current networks arise, up to a large extent, from options in the
design of the respective protocols concerning conflicting requirements. Therefore, in
order to support the new generation of applications referred above it is necessary to
overcome current limitations and design new networks, either based on current stan-
dards or not, which do not show the conflicts that typically arise among fundamental
properties, e.g. real-time behaviour and dependability. This harmonization of proper-
ties has to be achieved while, at the same time, keeping the cost of the final system
low.

Providing higher integration within DESs, as referred above, is a fundamental issue
to exploit the system resources more efficiently, e.g. computing resources, and to
acquire a more accurate view of the system, or simply to facilitate data migration.
However, this increase of integration must be done without affecting other relevant
properties such as error containment and composability [Rus01]. Another challenge is
to increase integration among subsystems built by different makers, calling upon
strong interoperability support, and definition of adequate architectures and languages
[Ell02].

For DESs used in safety-critical applications it is vital to achieve very high levels
of reliability and safety, e.g. by means of fault tolerance. However, fault tolerance
must be used in balance with other important properties of DESs such as low cost and
low power consumption. Still in safety-critical applications, the network services that
support dependability must be improved and increased. This has to be done at the
lowest layers of the network in order to prevent the problem of amplification of fail-
ures and to reduce the communication overhead. Relevant services to be provided are
fault-tolerant broadcast and error containment. Also, the typical bus topology used
within contained embedded systems, e.g. machines, vehicles, needs to be re-evaluated
with respect to other topologies, such as the star that seems more adequate for the
design of future dependable networks.

Flexibility in the networks referred above is of primary interest for resource effi-
cient operation in dynamic environments in which the communication requirements
vary substantially during system operation. In the case of safety-critical applications,
this must be achieved with the right balance with dependability related properties

334 24 Networks

such as predictability and reliability. To improve this balance, new analysis of timing
faults [Bro02] are required, probabilistic in nature, which can be integrated with the
probability of system failure in general, a fundamental parameter in safety-critical
systems. A hot topic in what concerns flexible mechanisms is the certification of real-
time systems using dynamic resource management [Cha03]. This will allow to define
base line properties, upon which global system properties can be established.

A specific type of flexibility concerns the support for different types of traffic, such
as time and event-triggered [Alm02]. This particular combination has been generating
substantial interest [Bel02] in order to allow benefiting from the advantages of both
frameworks.

When talking about flexibility and adaptability, one fundamental issue is establish-
ing the bounds for such adaptations in what concerns the QoS delivered to the appli-
cation [Cas01]. In fact, if the adaptation is such that the QoS lowers below a mini-
mum acceptable value for the application, then it might be wiser just to reject such
service and use the released resources to improve the QoS of other services. However,
establishing such QoS minimum thresholds for the application needs new paradigms
for requirements specification to support appropriate QoS adaptation.

In terms of the use of wireless technology there are several open issues either in
structured as well as ad-hoc networks. For example, the provision of QoS guarantees
or secure transmissions are two major challenges that have to be dealt with to further
explore the technologies in even wider contexts. These challenges require substantial
work in traffic scheduling and medium access protocols as well as in the design of
adequate cryptographic support to achieve the right combination of resource require-
ments and efficiency. Examples of driving applications concerning wireless commu-
nication are mobile computing, ad-hoc networks and sensor networks. In the scope of
the former, further developments concerning QoS support are needed as well as
prompt hand-over mechanisms to enhance the mobility capabilities without disruption
of services. As for ad-hoc networks, main open issues regard the establishment of
links, service discovery and topology management [Wu04]. Sensor networks are a
special case of ad-hoc networks whose needs for mobility support are lower but
whose nodes are highly resource constrained, e.g. CPU, memory and energy, are
unreliable, but are deployed in large scale with substantial redundancy. The properties
of the system arise from the ensemble and not from the individual nodes [Sta03].
Open issues that require further research efforts include content addressing, location
awareness, distributed routing, highly variable workloads, non-uniform nodes distri-
bution, high fault rates and energy constraints.

Finally, concerning embedded systems and the Internet, open issues include how to
support IP functionality directly in nodes with scarce resources and how to convey IP
packets on top of low bandwidth networks or, alternatively, how to design appropriate
gateways. Internet connection of embedded systems allows real-time system diagno-
sis, automated software defect correction and upgrades, monitoring of operating envi-
ronment conditions [Koo02], and connection between remote equipment. However,
security issues become of major importance and require further research in the design
of firewalls and use of cryptography [Pal00].

The provision of QoS and secure communication through the Internet are also am-
bitious objectives that need further research to support new applications such as re-

 24.5 References 335

mote virtual labs, distributed games, VoIP, video streaming and video conferencing,
just to name a few that somehow exhibit some affinity with embedded systems.

24.5 References

[Alm02] Almeida, L., Pedreiras, P., Fonseca, J. A., The FTT-CAN Protocol: Why and How,
IEEE Transactions on Industrial Electronics, vol. 49, no. 6, December 2002.

[Alv02] M. Alves, E. Tovar, F. Vasques, G. Hammer, K. Roether, Real-Time Communica-
tions over Hybrid Wired/Wireless PROFIBUS-based Networks, in Proceedings
ECRTS’02 – 14th Euromicro Conference on Real-Time Systems – ECRTS’02, pp.
142-150. IEEE Press, June 2002.

[ARI99] ARINC/RTCA-SC-182/EUROCAE-WG-48, Minimal Operational Performance
Standard for Avionics Computer Resources, Washington D.C, 1999.

[Bel02] R. Belschner et al, FlexRay Requirements Specification Version 2.0.2, FlexRay
Consortium, http://www.flexray-group.com, 2002.

[Bro01] I. Broster, A. Burns. Timely use of the CAN Protocol in Critical Hard Real-time
Systems with Faults. Proceedings of ECRTS’01 – 13th Euromicro Conference in
Real-time Systems, IEEE Press, June 2001.

[Bro02] I. Broster, A. Burns, G. Rodriguez-Navas. Probabilistic Analysis of CAN with
Faults. Proceedings of RTSS 2002, IEEE Press, December 2002.

[Car02] A. Carpenzano, R. Caponetto, L. LoBello, O. Mirabella. Fuzzy Traffic Smoothing:
An Approach for Real-Time Communication over Ethernet Networks. Proc of
WFCS 2002 – 4th IEEE Workshop on Factory Communication Systems. IEEE
Press. August 2002.

[Cas01] A. Casimiro and P. Veríssimo. Using the Timely Computing Base for dependable
QoS adaptation. In Proceedings of the 20th IEEE Symposium on Reliable Distrib-
uted Systems, pages 208–217, IEEE Press, Oct. 2001.

[Cha03] Challenge Problem: System Certification for Real-Time Systems that Employ
Dynamic Resource Management. Organized in conjunction with WPDRTS 2003,
22-23 April 2003, Nice, France. (http://wpdrts.cs.ohiou.edu)

[Col02] Collaboration with IDB Forum Creates Flexible Network Backbone. 1394 Trade
Association News Report, Dallas, USA. 17th October, 2002.
http://www.1394ta.org/Press/2002Press/october/10.17.a.htm

[Dec01] Decotignie, J.-D. A Perspective on Ethernet as a fieldbus, Proceedings of FET
2001 – 4th IFAC Conf. on Fieldbus Systems and their Applications. November
2001.

[Dec02] Decotignie, J.-D., Wireless Fieldbusses – A Survey of Issues and Solutions, Proc
of IFAC 2002 World Congress, Elsevier, July 2002.

[Ell02] J-P Elloy, F. Simonot-Lion. An Architecture Description Language for In-Vehicle
Embedded System Development. Proc of IFAC 2002 World Congress, Elsevier,
July 2002.

[Fic03] S. Fichera, S.Visalli, O. Mirabella, “QoS Support for Real-Time Flows in Internet
Routers”, RTLIA’03, 2nd Intl. Workshop on Real-Time LANs in the Internet Age,
Satellite Workshop of the 15th Euromicro Conference on Real-Time Systems
(ECRTS03), June 2003, Porto, Portugal.

[Gar00] S. Garg, M. Kalia, R. Shorey, “MAC scheduling for power optimisation in Blue-
tooth: A master-driven TDD wireless system”, in Proc. of VTC 2000, pp. 196-200,
2000.

[Gou91] Gopal, A., Toueg, S., Inconsistency and contamination, in Proceedings of the 10th
ACM Symposium on Principles of Distributed Computing, pp. 257-272, August
1991.

336 24 Networks

[ISO01] ISO, Road vehicles – controller area network (CAN) – part 4: Time triggered
communication, 2001.

[Joh00] N. Johansson, U. Korner, P. Johansson, “Performance Evaluation of Scheduling
Algorithms for Bluetooth”, In Broadband Communications: Convergence of Net-
work Technologies, Danny H. K. Tsang and Paul J. Kuhn Editors, Kluwer Aca-
demic Publishers, pp. 139-150, 2000.

[Kah99] J. M. Kahn, R. H. Katz and K. S. J. Pister. Mobile Networking for Smart Dust.
ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom 99), Se-
attle, WA, Aug 1999.

[Koo02] P. Koopman. Critical Embedded Automotive Networks. IEEE Micro, IEEE Press,
July/August 2002.

[Kop97] Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers, 1997.

[LoB03] L. Lo Bello, S. Fichera, S.Visalli, O. Mirabella ,“Congestion Control Mechanisms
for Multi-Hop Network Routers”, IEEE Int. Conf. on Emerging Technologies and
Factory Automation ETFA2003, Oct.2003, Lisbon, Portugal.

[Mar02] P. Marti, G. Fohler, K. Ramamritham, J. M. Fuertes. Improving Quality-of-Control
using Flexible Timing Constraints: Metric and Scheduling Issues. Proceedings of
RTSS 2002, IEEE Press, December 2002

[Pal00] P. Palensky; T. Sauter. Security Considerations for FAN-Internet Connections.
IEEE International Workshop on Factory Communication Systems, pp 27-35,
IEEE Press, Sept. 2000.

[Phi03] P. Ross. Top 10 Techno-Cool Cars. IEEE Spectrum, February 2003.
[Pim90] J. Pimentel. Communication Networks for Manufacturing. Prentice Hall, 1990.
[Pin01] L. Pinho, F. Vasques. Timing Analysis of Reliable Real-Time Communication in

CAN Networks. Proc. of ECRTS’01 – Euromicro Conf. on Real-Time Systems.
IEEE Press, June 2001.

[Pro00] J. Proenza, J. Miro-Julia. Major{CAN}: A Modification to the {C}ontroller
{A}rea {N}etwork Protocol to Achieve {A}tomic {B}roadcast}, in Proceedings of
IWGCC’00 – IEEE Int. Workshop on Group Communications and Computations.
IEEE Press, April 2000.

[Rus01] Rushby, J., Bus Architectures For Safety-Critical Embedded Systems, in Proceed-
ings of the First Workshop on Embedded Software, Lecture Notes in Computer
Science vol. 2211, pp 306-323, 2001.

[She03] C. Shelton, Phil Koopman. A Framework for Scalable Analysis and Design of
System-wide Graceful Degradation in Distributed Embedded Systems. Proc. of
WORDS’03 – IEEE Workshop on Object-Oriented, Real-time and Dependable
Systems, IEEE Press, January 2003.

[Sta03] J. Stankovic, T. Abdelzaher, C. Lu, L. Sha and J. Hou. Real-Time Communication
and Coordination in Embedded Sensor Networks. Proceedings of the IEEE vol. 91,
no. 7, July 2003.

[Tho99] J-P. Thomesse, M.L Chavez. Main Paradigms as a Basis for Current Fieldbus
Concepts, Proc. of FeT’99, Magdeburg, Germany, September 1999.

[TTT99] TTTech Computertechnik AG, Specification of the TTP/C protocol v0.5, July
1999.

[VaSt03] P. Van der Stok, M. van Hartskamp. Robust real-time IP-based multimedia com-
munication. RTLIA’03, 2nd Intl. Workshop on Real-Time LANs in the Internet
Age, Satellite Workshop of the 15th Euromicro Conference on Real-Time Systems
(ECRTS03), June 2003, Porto, Portugal.

[Wib03] P-A Wiberg, U. Bilstrup. Wireless Technology in Industry – Applications and User
Scenarios, Proc. of ETFA ‘01, IEEE Conf on Emerging Technologies for Factory
Automation, IEEE Press, October 2001.

 24.5 References 337

[Wu04] J. Wu and I. Stojmenovic, Ad-Hoc Networks. IEEE Computer, vol. 37, no. 2, Feb
2004.

[Zim03] A. Zimmermann, G. Hommel. A Train Control System Case Study in Model-
Based Real-Time System Design. Proc of WPDRTS’03 – IEEE Workshop on Par-
allel and Distributed Real-Time Systems. IEEE Press, April 2003.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 338 – 351, 2005.
© Springer-Verlag Berlin Heidelberg 2005

25 Programming Languages for Real-Time Systems

The real-time and embedded systems market is huge and growing all the time. It has
been estimated that 100 times more processors are destined for embedded systems
rather than the desktop [Egg02]. Embedded real-time systems [Bur01]:

are mainly small (for example, mobile phones) but can also be extremely large and
complex (for example air traffic control systems)
have potentially complex mathematical models of their controlled environment
must be dependable
are inherently concurrent
must interact within the time frame of the environment
must interact with low-level mechanisms such as hardware devices and memory
management faculties.

The interdependence between functional and real-time semantics of real-time soft-
ware makes its design, implementation and maintenance especially difficult. Provid-
ing a programming language that directly supports the characteristics of embedded
real-time software can significantly ease these difficulties. In addition, embedded
software systems are not portable as they depend on the particular underlying operat-
ing system and hardware architecture. Providing implementation-independent pro-
gramming models also increases the portability.

25.1 Landscape

Rather than consider all possibly real-time programming languages, this section fo-
cuses mainly on three representatives groups of the landscape: C/C++ based lan-
guages, Ada and Real-Time Java (in particular the Real-Time Specification for Java).
Sequential languages such as C and C++ are not reviewed in their own right as (a)
their advantages and disadvantages are well known (see Barr [Bar99] for a full dis-
cussion) (b) they do not support the main characteristics of embedded real-time sys-
tems and consequently (c) their use requires direct interaction with the facilities of an
underlying operating system (which are considered in sections 21 and 22).

Ada represents the group of concurrent real-time programming languages that were
developed in late 1970s and early 1980s (including Pearl and CHILL). These have
been extended over the years to embrace object-oriented programming and to give
better support for real-time and distributed systems. Real-time Java represents the
current trend of supporting architectural neutral real-time systems potentially in an
open environment (and points to the direction that languages like C# might in future
take). Synchronous languages (such as Esterel, Signal or Lustre) and functional lan-
guages (such as Erlang) are not considered, as their use is either confined to a particu-
lar company (e.g. Ericsson and Erlang) or targeted at supporting only reactive systems
(e.g. Esterel).

 25.1 Landscape 339

Ada 95

The development of the Ada programming language forms a unique and, at times,
intriguing contribution to the history of computer languages. As all users of Ada must
know, the original language design was a result of competition between a number of
organizations, each of which attempted to give a complete language definition in
response to a series of requirements documents. This gave rise to Ada 83. Following
ten years of use, Ada was subject to a complete overhaul. Object-oriented program-
ming features were added (through type extensibility rather than via the usual class
model), better support for programming in the large was provided (via child pack-
ages) and the support for real-time and distributed programming was enhanced. The
resulting language, Ada 95, is defined by an international ISO standard.

An important aspect of the Ada 95 language is the model it presents for concurrent
programming. This model is both complex and wide ranging. It builds upon the origi-
nal Ada 83 language features for tasking but provides many additional facilities re-
quired to meet the challenges of modern systems development particularly in the
areas of real-time and embedded systems.

The Ada 95 definition has a core language design plus a number of domain-
specific annexes. A compiler need not support all the annexes but it must support the
core language. Most of the tasking features are contained in the core definition. But
many of the important features for real-time programming are to be found in Annex D.

A listing of the key language features of Ada (for real-time programming) would
contain: protected objects for efficient encapsulation of shared data and interrupt
handling, fixed priority scheduling integrated with a priority ceiling protocol, the
requeue statement that eliminates many sources of race condition in application code,
a monotonic clock with associated abstract data types for time with absolute and rela-
tive delay primitives, dynamic priorities and an asynchronous transfer of control ca-
pability that is integrated into the syntax of the core language. These features provide
an expressive environment for programming both hard real-time systems and flexible
applications [Ber01].

A complete technical description of the Ada language can be found at
http://www.adahome.com/.

Real-Time Java

Since its inception in the early 1990s, there is little doubt that Java has been a great
success. The Java environment provides attributes that make it a powerful platform to
develop embedded real-time applications. Since embedded systems normally have
limited memory, an advantage that some versions of Java (for instance J2ME) present
is the small size of both the Java runtime environment and the Java application pro-
grams. Dynamic loading of classes also facilitates the dynamic evolution of the appli-
cations. Additionally, the Java platform provides classes for building multithreaded
applications and automatic garbage collection; these make it an attractive environ-
ment to develop embedded real-time applications. Unfortunately, the problem with
garbage collection is that it introduces random pauses in the execution of applications.
Consequently, Java does not guarantee determinism nor bounded resource usage,
which are needed in embedded real-time systems.

340 25 Programming Languages for Real-Time Systems

For these reasons, Java was initially treated with disdain by much of the real-time
community. Although the language was interesting from a number of perspectives the
whole notion of Java as a real-time programming language was laughable. “Java and
Real-time” was considered by many as an oxymoron.

In spite of the real-time community’s misgivings, Java’s overall popularity led to
several attempts to extend the language so that it is more appropriate for a wide range
of real-time and embedded systems. Much of the early work in this area was frag-
mented and lacked clear direction. In the late 1990s, under the auspices of the US
National Institute of Standards and Technology (NIST), approximately 50 companies
and organizations pooled their resources and generated several guiding principles and
a set of requirements for real-time extensions to the Java platform [Car99]. Among
the guiding principles was that Real-Time Java (RTJ) should take into account current
real-time practices and facilitate advances in the state of the art of real-time systems
implementation technology. The following facilities were deemed necessary to sup-
port the current state of real-time practice [Car99].

Fixed priority and round robin scheduling.
Mutual exclusion locking (avoiding priority inversion).
Inter-thread communication (e.g. semaphores).
User-defined interrupt handlers and device drivers – including the ability to man-
age interrupts (e.g., enabling and disabling).
Timeouts and aborts on running threads.

The NIST group recognized that profiles (subsets) of RTJ were necessary in order to
cope with the wide variety of possible applications, these included: safety critical, no
dynamic loading, and distributed real-time profiles. There was also an agreement that
any implementation of RTJ should provide the following.

A framework for finding available profiles.
Bounded pre-emption latency on any garbage collection.
A well-defined model for real-time Java threads.
Communication and synchronization between real-time and non real-time threads.
Mechanisms for handling internal and external asynchronous events.
Asynchronous thread termination.
Mutual exclusion without blocking.
The ability to determine whether the running thread is real-time or non real-time.
A well-defined relationship between real-time and non real-time threads.

Solutions that comply with the NIST requirements are API-based extensions. There
are three proposed approaches.

1. The Real-Time Specification for Java [Bol00], gives a new and very different
specification to meet the requirements.

2. The Real-Time Core Extension for the Java Platform (RT Core) [J-C00] con-
sists of two separate APIs: the Baseline Java API for non real-time Java
threads, and the Real-Time Core API for real-time tasks.

3. The Basic RT JavaO specification [Kra99] is very simple extension, is pre-
sented as an alternative or a complement to this last solution.

 25.1 Landscape 341

There are some API-based solutions that were introduced before the NIST document.
The simplest one is the Real-Time Java Threads (RTJT) [Miy97], a prototype that
introduces tasks support. Another proposal is the Portable Executive for Reliable
Control (PERC) [Nil98] that subdivides into two packages: the Real-Time package
provides abstractions for real-time systems, whereas the Embedded package provides
low-level abstractions to access the hardware. This solution is close to RT Core,
which is actually an evolution of PERC. Finally, a very different solution is the
Communication Threads for Java (CTJ) [Hil98], that is based on the CSP algebra, the
Occam2 language and the Transputer microprocessor. Another type of solutions is to
integrate the JVM into the operating system. This approach is undertaken by GVM
[Bac98], a prototype centred around resource management. Another option to im-
prove Java performance is to integrate the JVM in a microprocessor. picoJava-I
[McG98] is a standard specification for the design of Java micro controllers. An im-
plementation is the JEM-1 microprocessor of Rockwell Collins.

Perhaps the attempt with the highest profile is the one backed by Sun and pro-
duced by The Real-Time for Java Expert Group [Bol00]. This effort now has con-
siderable momentum. In contrast, progress with the J-consortium’s CORE-Java has
been hampered by the lack of a reference implementation and poor support from
potential users.

The approach taken by the Real-Time Specification for Java (RTSJ) has been to
extend the concurrency model so that it support real-time programming abstractions,
and to provide a complementary approach to memory management that removes the
temporal uncertainties of garbage collection. In particular, the RTSJ enhances Java in
the following areas:

memory management
time values and clocks
schedulable objects and scheduling
real-time threads
asynchronous event handlers and timers
asynchronous transfer of control
synchronization and resource sharing
physical memory access

It should be stressed that the RTSJ only really addresses the execution of real-time
Java programs on a single processor systems. It attempts not to preclude execution on
shared-memory multiprocessor systems but it has no facilities directly to control, say,
allocation of threads to processors. A reference implementation is now available from
the TimeSys Corporation (http://www.timesys.com).

A complete technical description of the Real-Time Specification for Java can be
found at http://www.rtj.org.

Research Landscape

Research in real-time programming languages has focused on providing language-
level support for the main characteristics of embedded real-time systems outlined in
the introduction to this section.

342 25 Programming Languages for Real-Time Systems

Size and Complexity
Although addressing issues associated with scale and complexity requires more than
just programming language support, most modern real-time programming languages
have settled for supporting the object-oriented programming paradigm within a mod-
ule/package framework. Unfortunately, the dynamic nature of this approach has had a
impact on the analyzability of the program source and resulted in language subsets
being used in high-integrity systems (see section 26.3). Although some research has
attempted to support component-oriented real-time programming [Fra00], this has not
had a major impact.

Complex Mathematical Modelling
Support for real and floating point numbers are accepted components of all modern
real-time languages.

Dependability
There are many aspects to dependability (reliability, availability, safety, confidential-
ity, integrity, maintainability), however real-time embedded programming languages
have focused on support for reliability and error recovery. The early attempts to intro-
duce language support for backward error recovery (recovery blocks) [Shr78] failed
to get support from other languages and forward error recovery within an exception-
handling framework became the dominant approach. Similarly, the attempts to intro-
duce reliable cooperation between groups of processes via atomic actions and conver-
sations [Ran75] gave way to language support for more primitive operations, such as
asynchronous transfer of control in Ada and the Real-time Specification for Java.
Today research focuses on the appropriate exception handling facilities for modern
concurrent distributed real-time programming languages [Rom01].

Concurrency
Whether a programming language should support concurrency is a debate that has
rumbled on for over three decades. Those that do, have typically supported explicit
language-level processes (tasks, threads etc) and allowed the programmer to develop
their own high-level abstractions (for example, Ada). Early attempts by languages like
Real-Time Euclid [Kli86] and Pearl [Wer85] to provide higher-level abstraction di-
rectly in the language failed to gain widespread support. However, given that many
real-time activities can be classified as periodic, sporadic or aperiodic, there is grow-
ing acceptance that having direct representation of these in programs can lead to more
reliable and maintainable systems. This is illustrated in both pure research languages
like the C-based Alert language [Pal99] and the emerging Real-time Specification for
Java standard.

Real-Time and Scheduling
The specification of timing constraints and their means of implementation is clearly
the defining attribute of a real-time programming language. Historically, timing con-
straints have been associated with processes although some attempts have been made
to provide them at a finer granularity (e.g., DPS [Lee85] and Timber [Bla02]). The
notions of time and event triggered processes with periodic, sporadic and aperiodic
release (or arrival) profiles have become commonplace. In some languages (like Ada)

 25.1 Landscape 343

these constraints and profiles have to be programmed directly (and may not be explic-
itly visible in the program source). In others, like the Real-Time Specification for Java
and Alert [Pal99] they have explicit representation. Implementing timing constraints
is the realm of the scheduler (see section 20). Whilst this aspect is crucial, it currently
has little impact on the design of language features. Rather, the attributes of priority
or deadline are used to provide information to a language’s run-time support system.
As flexible scheduling becomes more prevalent, so the impact on the program struc-
tures will increase and the need to develop abstractions that allow interactions with
the scheduler will become a driving force (for example, alternative modules or op-
tional components).

Device Driving and Memory Management
The pioneering research on high-level language support for device driving and inter-
rupt handling was done by Wirth in the context of the Modula language [Wir77] dur-
ing the 1970s. Ada extended the approach to allow a programmer to provide details to
the compiler on how to map programmer-defined types onto the underlying hardware
resources. In recent years, embedded programming languages have attempted to in-
fluence more directly the code generation of the compiler, for example ‘C [Pol99] in
order to get better control over the use of low level resources.

Memory is a scarce and costly low-level resource in embedded systems. Thus, it
needs to be carefully managed. As well as considering how types and objects in high-
level language can be mapped to bits and words in memory, attention has also focused
on the allocation and deallocation of memory in general. The goal of allowing the
programming to allocate memory when required and providing automatic reclamation
via garbage collection has not been fully embraced by the real-time community; par-
ticularly in those systems where timing constraints are stringent and the penalties for
missing deadlines are severe. The execution time of software with dynamic memory
reclaiming is notoriously difficult to predict. This is why the use of dynamic memory
is actually forbidden in software required to be certified according to high-level safety
standards such as DO178-B, EN-50128, IEC-880. Furthermore, many garbage collec-
tion techniques need large amounts of extra memory. This is a serious drawback that
prevents using them in embedded applications with scarce memory space. Whilst
there have been attempts to provide real-time garbage collections [Hen99, Kim99,
Sie99, Siel00, Hui02, Rit01, Bac03], the real-time versions of Java have also sought
to provide other mechanism (such as stackable objects in Core Java [J-C00] and
Scoped Memory regions in the Real-time Specification for Java [Sal01, Det02]).

More general, real-time systems programs are no longer destined to be imple-
mented solely in software. Recent advances in reconfigurable hardware means that
the flexibility provided by software can now be matched by Field Programmable Gate
Arrays (FPGA). Initially, a version for the C language has been used (Handle C
[Pag96]) to program such systems. More recently an Ada compiler has been produced
which compiles Ada down to FPGAs [War02].

Industrial Landscape

For small embedded applications, use of sequential languages like C and C++ reign
supreme albeit with the help of an underlying real-time operating system. For the
larger real-time high integrity systems (such as air traffic control, or flight control

344 25 Programming Languages for Real-Time Systems

software), Ada still dominates. In the telecommunications market, CHILL is popular.
In Germany, Pearl is widely used for process control and other industrial automation
applications. Older real-time languages such as Coral 66, Jovial and RTL/2 have
fallen from favour and can now only be found in legacy systems.

Although there is little doubt that the Java language has been immensely successful
in a wide range of application areas, it has yet to establish itself completely in the
real-time and embedded markets. The introduction of a Real-Time Specification for
Java could dramatically alter the status quo. In the future, if MicroSoft’s C# pro-
gramming language starts to gain momentum, extensions will inevitably be consid-
ered to make it more appropriate for real-time systems.

Industrial use of modern languages is in general conservative, particularly in the
high-integrity application area where subsets and programming guidelines are used.
Complex or costly language features are usually forbidden, as is the use of garbage
collection. The typical approach is to ensure all resourced (including memory) are
allocated during the initialization phase and freed during termination.

25.2 Assessment

Although there is a wide variety of language that have been used to implement real-
time systems only Ada has been successful in providing language-level support for
the defining characteristic of the domain. The Real-Time Specification for Java
(RTSJ) hopes in the near future to compete at this level. For these reasons, this section
focuses its assessment on these two languages.

Ada 95

The Ada 95 programming language addresses most of the issues associated with
building fixed-priority real-time systems. Although Ada has not had the same com-
mercial success as Java, it is widely accepted (even by its opponents) that Ada has a
good technical solution for a wide range of real-time problems (for example, see the
Preface to [Bol00]).

The definition of Ada benefits from being an international standard. Currently the
definition is being reviewed (as ISO requires every ten years). Major changes will not
be made to Ada but a number of amendments will update the definition. Many of
these will be in the real-time domain and are likely to include the incorporation of
timing events [Bur02] support for a wider range of scheduling paradigms [Ald02] and
execution-time budgeting.

One important new addition to the language is support for high-integrity concur-
rent real-time programs. Ada 95, via the introduction of restrictions on the use of the
language, allows different execution profiles to be defined. However, in the past the
language has shied away from profiles. In recent years, the real-time Ada community
has developed its own profile called Ravenscar [Bur03]. This profile defines a subset
of the tasking and real-time features, and is aimed at the high integrity real-time do-
main where predictability, efficiency and reliability are all crucial. Ravenscar is now
being used in this domain with a number of vendors offering Ravenscar-specific run-
time kernels (including one open-source version). As a consequence of its success, it
has been decided to incorporate the profile into the language definition.

 25.2 Assessment 345

Clearly Ada is not as popular as it was in the 90s. Although it does support object-
oriented programming, languages such as C++ and Java have been more successful in
propagating this form of programming. This is partly a result of choosing the type
extensibility model, but also because Ada has never been able to regain the momen-
tum it lost during the early years when compilers were expensive and efficiency of
code execution was perceived to be poor. As a result there is a shortage of Ada pro-
grammers, and Ada is taught less in universities.

Ada remains the language of choice in many high integrity domains and often
these are also real-time. Arguable Ada provides greater support than any other main
stream engineering language for producing real-time and embedded code. By taking a
language focus (rather than an API approach) Ada enables significant static analysis
to be undertaken by the compiler and associated tools. This leads to high quality code
and cost-effective code production.

RTSJ

In section 26.1, the NIST core requirements for real-time Java extensions were identi-
fied. It is possible to review these requirements to see the extent to which the RTSJ
has met them [Wel04]. Firstly, the facilities needed to support the current state of
real-time practice:

Fixed priority and round robin scheduling – RTSJ supports fixed priority sched-
uler and allows implementations to provide other schedulers.
Mutual exclusion locking (avoiding priority inversion) – the RTSJ supports prior-
ity inheritance algorithms of synchronized objects and requires that all RTSJ im-
plementations avoid priority inversion.
Inter-thread communication (e.g. semaphores) – schedulable objects can commu-
nicate using the standard Java mechanisms.
User-defined interrupt handlers and device drivers (including the ability to manage
interrupts; e.g. enabling and disabling) – the RTSJ allows interrupts to be associ-
ated with asynchronous events.
Timeouts and aborts on running threads – the RTSJ allows asynchronous transfer
of controls via asynchronous exceptions; they can be event triggered or time trig-
gered.

In terms of implementation requirements:

A framework for finding available profiles – the RTSJ does not explicitly address
the issues of profiles other than by allowing an implementation to provide alterna-
tive scheduling algorithms (e.g., EDF) and allowing the application to locate the
scheduling algorithms. There is no identification of, say, a safety critical systems
profile or a profile that prohibits dynamic loading of classes. Distributed real-time
systems are not addressed but there is another Java Expert Group that is consider-
ing this issue [Jav00][Wel02].
Bounded pre-emption latency on any garbage collection – supported by the Gar-
bageCollector class.
A well-defined model for real-time Java threads – supported by the Realtime-
Thread and NoHeapRealtimeThread classes.

346 25 Programming Languages for Real-Time Systems

Communication and synchronization between real-time and non real-time threads
– supported by the wait free communication classes.
Mechanisms for handling internal and external asynchronous events – supported
by the AsyncEvent, AsyncEventHandler and POSIXSignalhandler classes.
Asynchronous thread termination – supported by the AsynchronouslyInterrupt-
edException class and the Interruptible interface.
Mutual exclusion without blocking – supported by the wait free communication
classes.
The ability to determine whether the running thread is real-time or non real-time –
supported by the RealtimeThread class.
A well-defined relationship between real-time and non real-time threads – sup-
ported by the real-time thread, the scheduling and memory management models.

Overall then, it can be seen that the RTSJ addresses all the NIST top-level require-
ments in some form or other. It is, however, a little weak in its support for profiles.

25.3 Trends

The future for Ada is unclear, as it is perceived to be an “old” language in many areas
of computing. This makes it more difficult to obtain funding for research. However,
the Ada real-time community in Europe is still very active (see the latest International
Real-Time Ada Workshop proceedings [Var03] for a summary) and topics currently
being addressed include: subsets for high integrity applications, kernels, and hardware
implementations. Arguably there has never been a better time to do real-time research
using Ada technology.

In contrast with Ada, the future for Java augmented by the RTSJ is more positive.
However, there are still obstacles to be overcome before Java can replace its main
competitors in the embedded and real-time systems application areas. The main issues
are in the following areas [Wel04, Dib04]:

Specification problems and inconsistencies – A preliminary version was released
in June 2000 in parallel with the development of a “reference implementation”
(RI). Inevitably, the completion of the RI showed up errors and inconsistencies in
the specification. Many of these will be removed in the 1.01 version that is due for
released in 2004. However, some outstanding issues remain whose resolution may
require more significant changes. [Wel04, Dib04].
Profiles – There is a need to consider RTSJ in the context of J2ME and, in particu-
lar, to produce a profile for use in high-integrity (and possibly safety-critical) sys-
tems. The Ravenscar-Java [Kwo03] profile is perhaps the first step along this road.
Currently, the Open Group is attempting to create a Java Specification Request to
address this important application domain.
Implementation – to generate efficient implementations of real-time virtual ma-
chines (both open source and propriety ones) for the full specification and the pro-
files;
Maintaining Momentum – to stimulate evolution of the specification in a con-
trolled and sustained manner to add new functionality (new schedulers, multiple
schedulers, multiple criticalities, alternative interrupt handling models, real-time

 25.4 Recommendations for Research 347

concurrency utilities) and to address new architectures (multiprocessor and dis-
tributed systems). Currently, the Distributed Real-Time Specification for Java
(DRTSJ) group is extending RMI and integrating these extensions in the RTSJ
specification, to provide support for predictability of end-to-end timeliness of
trans-node activities [Wel02].

Concurrency is an integral part of most real-time embedded systems. Efforts have
been underway that attempt to ameliorate some of the well-known problems in this
area. The improvements to the Java Memory Model [Java Community Process, JSR
133, 2001] will allow more precise semantics to be given to concurrent Java pro-
grams. The provision of a full set of concurrency utilities [Jav02] will ease the diffi-
cult task of constructing correct multi-thread programs. These improvements are
scheduled for introduction into the forthcoming Java 1.5 release.

25.4 Recommendations for Research

The introduction for this section identified the defining characteristics of a real-time
embedded system. This section identifies possible research avenues to explore within
some of those characteristics.

Size and Complexity
Object-oriented programs are now highly dynamic. In contrast real-time systems must
be predictable. Usually the more dynamic a system, the less predictable it is. A com-
promise is needed that allows the advantages of object-oriented programming without
the drawbacks. This compromise may lie in allowing programmers to annotate their
code with application-specific knowledge so that other tools in the programming
environment (such as worst-case execution time analysis tools) can produce more
reliable results. Although techniques for introducing this metadata into programs will
appear in the next version of Java (Java 1.5) and is available in C#, it is typically not
available at the statement level but only the class and method level. Current ap-
proaches rely on the introduction of formal comments to provide such information.
There is a need for a standard set of annotations that are properly typed checked and
semantically coherent. Although, composability of large real-time systems is a key
area, it is unlikely that the issues will be initially addressed at the programming lan-
guage level.

Dependability
The integration of support for dependability and real-time continues to be an impor-
tant research topic (both from a timing specification and scheduling perspective).
Now that the low-level mechanisms for asynchronous transfer of control, budget
timers and processing groups are understood, the time is ripe to re-consider the high-
level abstractions that can provide a better integration for reliable real-time atomic
actions and their introduction into high-integrity applications.

Concurrency
The model of concurrency is the core component of a real-time program. Processes
facilitate parallel execution, the placement of timing specification and the handling of

348 25 Programming Languages for Real-Time Systems

faults. Whilst the concurrency model (often called Ravenscar) of high-integrity sys-
tems is now well understood and has found representation in subsets of languages like
Ada and Java, the model is conservative. There is a need for more expressive subsets.

Real-Time and Scheduling
As mentioned earlier, as flexible scheduling becomes more prevalent, so the impact
on the program structure will increase and the need to develop language abstractions
which allow interactions with the scheduler will become a driving force (for example,
alternative modules or optional components).

Memory Management
There is still no satisfactory solution to real-time memory management that is both
predictable and efficient yet does not require the programmer to be concerned with
low-level allocation and deallocation issues. One possible solution in this area is to
provide abstractions that allow the lifetime of objects to be specified in the program.
Inevitably these will be related to the scope rules of the language but a one-to-one
relationship is too constraining.

In addition to the above, two driving forces can be identified for future real-time sys-
tems that will inevitably have an impact on real-time programming languages. The
first is the need for more architecture neutral real-time systems. An architecture-
neutral real-time system is a real-time system whose target architecture is unknown at
system design time. The term “architecture-neutral” includes the properties of both
“pervasive” (embedded but not mobile) and “ubiquitous” (embedded and mobile)
computing. Architecture-neutral real-time systems are at odds with traditional real-
time systems because traditional systems typically need:

Known (or Bounded) Processing Resource Demand
by definition the resources needed by an architecture-neutral system will depend on
the power of the site hosting its execution;

Efficient and Predictable Execution
Most architecture-neutral systems are interpreted where efficiency is often a secon-
dary concern; techniques such as Just-In-Time compilation lead to better average-case
executions but have less predictability and poorer worst-case behaviour;

Static Allocation
Predictability in a real-time multiprocessor or distributed environment is often
achieved by sacrificing flexibility; for example, statically allocating threads to proces-
sors; by definition static allocation is not possible in an architecture-neutral system.

The second driving force is the introduction of reconfigurable hardware that allows
more flexible co-design of real-time embedded system. This coupled with the need for
architecture-neutral system provides a challenging environment for real-time pro-
gramming language research.

 25.5 References 349

25.5 References

[Riv02] Aldea Rivas, M. and Gonzalez Harbour, M. (2002), “Application-Defined Sched-
uling in Ada”, IRTAW 11, Ada Letters, XXII(4), pp 77-84.

[Bac2003] Bacon, D.F, Cheng, P., and Rajan, V.T. (2003), “A Real-Time Garbage Collector
with Low Overhead and Consistent Utilization”, Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp
285-298.

[Bar99] Bar, M (1999), “Programming Embedded Systems in C and C++”, O’Riely.
[Bla02] Black, A.P. et al [2002], “Timber: A Programming Language for Real-Time Em-

bedded Systems”, PacSoft Technical Report, Department of Computer Science and
Engineering, Oregon Health and Science University,
http://www.cse.ogi.edu/PacSoft/publications/2002/Timber-2002-04.pdf

[Ber01] Bernat, G and Burns, A (2001), “Implementing a Flexible Scheduler in Ada”,
Proceedings of Reliable Software Technologies – Ada Europe, LNCS, vol 2043,
pp 179-190.

[Bla98] Back, G., Tullmann, P., Stoller, L., W.C. Hsieh, W.C., and Lepreau, J. (1998),
“Java Operating Systems: Design an Implementation”, Department of Computer
Science, University of Utah.

[Bol00] Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling, J., Hardin, D., and Turnbull,
M. (2000), “The Real-Time Specification for Java”, Addison Wesley.

[Bur01] Burns, A. and Wellings, A.J. (2001), “Real-Time Systems and Programming Lan-
guages”, 3rd Edition, Addison Wesley.

[Bur02] Burns, A. and Wellings, A.J. (2002), “Accessing Delay Queue”, Proceedings of
IRTAW11, Ada Letters, vol XXI(4), ppn 72-76.

[Bur03] Burns, A, Dobbing and Vardanega, T. (2003), “Guide for Using the Ravenscar
Profile in High Integrity Systems”, YCS-2003-348, University of York.

[Car99] Carnahan, L., and Ruark, M. (Eds) (1999), “Requirements for Real-time Exten-
sions for the Java Platform”, NIST Publication 5000-243, http://www.nist.gov/rt-
java, last accessed 20/8/2002.

[Det02] Deters, M. and Cytron, R.K. “Automated Discovery of Scoped Memory Regions
for RealTime Java”. ACM ISMM’02. Berlin, Germany, 2002.

[Dib04] Dibble, P. and Wellings, A.J. (2004), “The Real-Time Specification for Java:
Current Status and Future Directions”, Proceedings of the Seventh International
Symposium on Object-Oriented Real-time Distributed Computing, ISORC 2004.

[Egg02] Eggermont, L.D.J. (Ed) (2002), “Embedded Systems Roadmap 2002, Technology
Foundation (STW), STW-2002, ISBN: 90-73461-30-8.

[Fra00] Franz, M., Fröhlich, P.H., and Kistker, T. (2000), “Towards Language Support for
Component-Oriented Real-Time Programming”, 5th Workshop on Object-Oriented
Real-Time Dependable Systems, WORDS 00, pp 125-130.

[Hen98] Henriksson, R. (1998), “Scheduling Garbage Collection in Embedded Systems”,
PhD Thesis, Department of Computer Science, Lund University, Sweden.

[Hil98] Hilderink, G., (1998), “A New Java Thread Model for Concurrent Programming of
Real-Time Systems”, Real-Time Magazine

 [Hui02] Higuera, T. et al (2002). “Memory Management for Real-time Java: an Efficient
Solution using Hardware Support”. Real-Time Systems Journal. Kluwer Academic
Publishers.

[Jav00] Java Community Process, JSR50 (2000), “JSR 50: Distributed Real-Time Specifi-
cation”, http:// www.jcp.org/jsr/detail/50.jsp, last accessed 20/8/2002.

[Jav01] Java Community Process, JSR133 (2001), “JSR 133: Java Memory Model and
Thread Specification Revision”, http://www.jcp.org/jsr/detail/133.jsp, last accessed
20/8/2002.

350 25 Programming Languages for Real-Time Systems

[Jav02] Java Community Process, JSR166 (2002), “JSR 166: Concurrency Utililities”,
http:// www.jcp.org/jsr/detail/166.jsp, last accessed 20/8/2002.

[J-C00] J-Consortium (2000), “Realtime Core Extensions”, Revision 1.0.14, http://www.j-
consortium.org/rtjwg/index.html, last accessed 20/8/2002.

[Kim99] Kim, T. et al (1999), “Scheduling Garbage Collection for Embedded Real-Time
Systems”, ACM Workshop on Language, Compilers and Tools for Embedded Sys-
tems (LCTES 99), pp 55-64.

[Kli86] Kligerman, E. and Stoyenko, A. (1986), “Real-Time Euclid, A Language for Re-
laible Real-Time Systems”, IEEE Transactions on Software Engineering, SE-
12(9), 941-949.

[Kra99] Krause, K.H. and Hartmann, W (1999), “RT JAVA Proposal”, http://www.j-
consortium.org/rtjw

[Kwo02] Kwon, J., Wellings, A.J., and King, S. (2002), “Ravenscar-Java: A High-Integrity
Profile for Real-Time Java, Java Grande, pp 131-140.

[Lee85] Lee, I and Gehlot, V (1985), “Language Constructs for Distributed Real-Time
Programming”, Proceedings of the Real-Time Systems Symposium, IEEE Com-
puter Socitey, pp 57-66.

[McG98] McGhan, H. and O’Connor, M. (1998) “picoJava: a Direct Execution Engine for
Java Bytecode”, IEEE Computer.

[Miy97] Miyoshi, A., Tokuda, H and Kitayama T., (1997) “Implementation and Evaluation
of Real-Time Java Threads”, Real-Time Systems Symposium, IEEE Computer So-
ciety.

[Nil98] Nilsen,K. (1998) “Adding Real-Time Capabilities to Java”, Communications of the
ACM.

[Pag96] Page, I. (1996), “Constrcuting Hardware-Software Systems from a Single Decrip-
tion”, Journal of VLSI Signal Processing, 12(1), pp 87-107.

[Pal99], Palopoli, L, Buttazzo, B. and Ancilotti, P. (1999), “A C Language Extension for Pro-
gramming Real-Time Applications”, 6th International Conference on Real-Time
Computing Systems and Applications, IEEE, pp 103-110.

[Pol99] Poletto, M et al (1999), “ ‘C and tcc: A Language and Compiler for Dynamic Code
Generation”, ACM Transactions on Programming Languages and Systems, 21(2),
pp 324-369.

[Ran75] Randell, B. (1975), “System Structure for Software Fault Tolerance”, IEEE Trans-
actions on Software Engineering, SE-1(2), 65-75.

[Rit02] Ritzau, T. and Fritzon, P. (2002). “Decreasing memory over-head in hard real-time
garbage collection”. EMSOFT’02, LNCS 2491.

[Rom01] Romanovsky A, et al (Eds) (2001), “Advances in Exception Handling Tech-
niques”, LNCS 2022, Springer.

[Sal01] Salcianu, A. and M. C. Rinard, M.C. (2001). “Pointer and Escape Analysis for
Multithreaded Programs”. Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming.

[Shi78] Shrivastava, S. (1979), “Concurrent Pascal with Backward Error Recovery”, Soft-
ware-Practice and Experience, 9(12), pp 1001-1020.

[Sie99] Siebert, F. (1999), “Real-Time Garbage Collection in Multi-Threaded Systems on
a Single Microprocessor”, IEEE Real-Time Systems Symposium, pp 277-278.

 [Sie00] Siebert, F. (2000). “Hard Realtime Garbage Collection in Modern Object Oriented
Programming Languages”. AICAS, 2002. ISBN: 3-8311-3893-1.

[Var03] Vardanega, T. (Ed) (2003), Proceedings of the 12th International Real-Time Ada
Workshop, Ada letters, XXIII (4).

[War02] Ward, M. and Audsley (2202), N.C., “Hardware Implementation of Programming
Languages for Real-Time”, Proceedings of the 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp 276-285.

 25.5 References 351

[Wel02] Wellings, A.J., Clark, R., Jenson, D. and Wells, D. (2002), “A Framework for
Integrating the Real-Time Specification for Java and Java’s Remote Method Invo-
cation”, Proceedings of the Fifth International Symposium on Object-Oriented
Real-time Distributed Computing, ISORC 2002, pp 13-23.

[Wel04] Wellings, A.J., “Concurrent and Real-Time Programming in Java”, Wiley, 2004
(to appear).

[Wer85] Werun, W. and Windauer, H. (1985), “Intrdouction to PEARL: Process and Ex-
periment Realtime Language”, Friedr. Vieweg Sohn.

[Wir77] Wirth, N. (1977), “Modula: A Language for Modular Multiprogramming”, Soft-
ware-Practice and Experience, 7(1), pp 3-35.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 352 – 372, 2005.
© Springer-Verlag Berlin Heidelberg 2005

26 Other Issues

26.1 Power Awareness

Power management and power awareness are active research topics, which main
focus, in the context of this document, lies in the area of dynamic techniques (tech-
niques applied at run-time). The purpose is to control power consumption, while pro-
viding a reasonably good output or service. Power awareness is relevant to augment
battery life, reduce consumption in stationary systems and to limit temperature of
hardware devices. This is a fundamental topic for the increasing number of mobile
devices in the consumer-electronics market. In addition, the power consumption of
stationary devices augments continuously and techniques to reduce it will be very
much welcome.

Power-awareness is an area of intensive research. Power reduction can be done at
different levels and with different techniques. As a consequence, there are a large
number of approaches to this topic:

Low power electronics
Power conscious CAD tools.
Architecture-level power reduction.
Compilation techniques that generates low consuming code [Cheng98].
Power efficient data structures and energy efficient software [Naik01].
Power conscious OS/drivers [Zeng02].

In the context of this document, the relevant techniques are those that allow the real-
time system to adapt to the environment, which is characterized information such as
current workload, user settings, external events and quality characteristics of the run-
ning applications. DPM (Dynamic Power Management) is a set of techniques that
achieves energy-efficient computation by selectively turning off (or reducing the
performance of) system components when they are idle, partially unexploited or when
battery level or device temperature requires a reduction in the consumption. [Unsal03]
provides an excellent overview of power-aware techniques that can be applied at
different levels of abstraction in the development of real-time systems.

Currently, electronic systems are designed to be able to deliver peak performance
when requested. However, the workload applied to the system is usually variable and
peak performance is only required during some time intervals. Consequently, system
components are not always required to be in the active state.

Traditionally, systems have been designed to operate at fixed supply voltage and
frequency. However, the interest on power management has motivated the integration
of power management facilities in the hardware devices that can be controlled by
software. Two examples of these facilities are DVS (Dynamic Voltage Scaling) and
device power states. DVS refers to runtime change in the voltage levels supplied to
various components in a system so as to reduce the overall system power dissipation
while maintaining total computation time and/or throughput requirement. Implemen-
tation of DVS requires substantial software support such as development of schedul-

 26.1 Power Awareness 353

ing techniques with a dynamic recalculation of task priorities based on average energy
dissipation. DVS is becoming a mainstream technology in the industry. Several com-
mercial CPUs featuring DVS (Intel Xscale, Transmeta) are already on the market.

In addition, it is increasingly common to find hardware devices with different
power states, which are characterized by the functions that the device performs and
the associated power consumption. As an example, a communication device can be
turned off, fully operational, or suspended waiting to get a connection request. The
power state of the device can be managed taking into account how the running appli-
cations are using it. In this way, it is possible to save power.

In summary, the contents of this section are based on DPM (Dynamic Power Man-
agement) techniques that take into account system environment to drive the power
settings of the hardware. The final goal is to adapt system behaviour to the available
hardware devices, including power, and to the applications launched by the user. As
has been described above, the topic of power management can be dealt with from
different points of view and at different hardware and software levels. In order to
make an optimal power management it is necessary to exploit all of them. For this
reason, this topic is addressed in another part of this document, although with a dif-
ferent point of view.

Aspects of power-awareness are also covered in section 30.

Landscape

The Shift Towards Managing Power with Software
Power management previously was implemented in hardware FSM or firmware.
However, there is now a general trend to shift control from hardware to software
layers. A promising software layer where dynamic techniques can be implemented is
the operating system. OS-based power management has the advantage that the
power/performance dynamic control is performed by the software layer that manages
the computational, storage and I/O tasks of the system. The Advanced Configuration
and Power Interface [ACPI02] standard proposed by Compaq, Intel, Microsoft, To-
shiba and Phoenix is a recent example of this trend.

It is worth mentioning the ECOSystem [Zeng02] that is based on Linux and sup-
ports energy as a first-class operating system resource. They propose the Currency
Model that unifies energy accounting over diverse hardware devices and enables fair
allocation of available energy among applications. This work is integrated in the
Milly Watt project that investigates power management techniques [MillyWatt].

[PARTS] PARTS (Power-Aware Real-Time Systems) is another relevant project
which tries to minimize power consumption while still meeting deadlines. Its ap-
proach for achieving the power/deadlines objective is to develop new schemes for
power-aware real-time systems, including scheduling algorithms, power control of
memory resources, speed control of CPUs, and dynamic power monitoring and mode
changes, mainly at the operating system level.

The middleware layer is another level where power management can be efficiently
performed. The advantage of this approach is that it is possible to use additional in-
formation to decide on the policy to follow. In particular, it is possible to know which

354 26 Other Issues

the running applications are, their importance, domain knowledge, context informa-
tion, etc. This approach is compatible with a research project promoted by IBM and
MontaVista Software [DPM02] for the definition of a proposal for dynamic power
management in embedded systems, which attempts to standardize a dynamic power
management and policy framework that supports different power management strate-
gies. Although policies reside in the kernel, the policy manager could be outside it
and it can be integrated in an appropriate middleware layer.

In summary, the final goal is to try to optimize power consumption, while main-
taining the quality of service and functionality expected by the user. Generally speak-
ing, it is possible to group research on power management in adaptive real-time sys-
tems in three areas, although these approaches are not only targeted to this type of
applications:

Power consumption managed in a middleware layer. This is the best option for
using power management strategies that considers system level information in the
decision process.
Power consumption managed exploiting idleness periods. Hardware devices are
not always used at its maximum performance. Then it is possible to detect idle pe-
riods and reduce power consumption during their duration.
Power consumption managed via scheduling. In this case, scheduling information
is used to identify slack time where the device can be powered off or scaled, while
guaranteeing the fulfilment of the time requirements.

Power Management in Middleware
Power management is important for system behaviour because certain settings can
reduce the available resources. This is specially the case with systems based on re-
source reservation for letting applications provide an appropriate and satisfactory
quality output. In this type of systems, there is an special manager in the middleware
layer in charge of negotiating with the applications the trade-off between quality and
resources. Applications receive a set of resources reserves that are sufficient for ac-
complishing the requested functionality. If the CPU voltage is reduced, then the proc-
essing power is also reduced. As a consequence, the resource reserves need to be
renegotiated.

It seems reasonable to advocate the need for a system level power management ap-
proach. The global system state is considered to make the appropriate power settings.
Among the relevant information that is worth to consider are user preferences, re-
source requirements of the running applications, system workload, power status (bat-
tery level, current power source, device temperature, etc.), and context knowledge.
Then, it is possibly to decide power settings that are consistent with this information.
This is the approach followed in the power management activities in the Space4U
project [S4Uweb], where power management is integrated in the resource manage-
ment framework within a component-based environment. The operating system can
make additional power savings, for example taking advantage of idleness periods in
hardware devices, but in such a way that resource reserves committed during negotia-
tion are guaranteed.

[Yua01] describes a middleware framework for coordinating processor and power
management. Application admission control is based on a power-aware resource res-

 26.1 Power Awareness 355

ervation mechanism. The processor speed is adjusted according to external or internal
events. Reserves are updated to follow changes in the available processing capabili-
ties. This approach is suitable for adaptive real-time systems.

There are other examples of research works that use system global information for
power management in middleware. Context information taken by sensors is used for
managing power in [Dalton03].

Power Consumption Managed by Exploiting Idle Periods
Since DPM is based on idleness exploitation, it requires prediction, with a certain
degree of confidence, the fluctuations of the workload. Typically, a DPM implemen-
tation includes a control procedure (called policy) based on some observation and/or
assumptions of the workload. An example of a simple policy, which shuts down a
component after a fixed inactivity time, under the assumption that is highly likely that
a component remains idle if it has been idle for the timeout time. Other examples of
policies embrace stochastic, predictive, learning, task-based policies. This problem is
known as policy optimization and considered to be an open research topic.

Power Management via Scheduling
An alternative line of research is to consider the system as a number of real-time tasks
that must fulfil the time requirements. The power management is based on detecting
slack periods to reduce power consumption while keeping the guaranteed deadlines.
Although this line of work can be viewed as an special case of the previous one, its
relevance for the real-time community advises to treat it separately.

[Lu00] proposes ordering task execution to adjust the length of idle periods, when
it is possible to shut down the processor or other devices. [Pil01] presents extensive
simulation results of a number of RT-DVS mechanisms that show that the voltage and
frequency setting available and the task set CPU utilization profoundly affect their
performance. [Sin01] proposes the Slacked Earliest Deadline First algorithm and
shows that that it is optimal in minimizing processor energy consumption and maxi-
mum lateness. [Ayd01] proposed a solution based on three parts: a static off-line
solution to compute optimal speed, an on-line speed reduction mechanism to reclaim
energy by adapting to the actual workload, and an online adaptive and speculative
speed adjustment mechanism to anticipate early completions of future executions by
using the average-case workload information.

[Lee03] proposes a couple of algorithms for voltage-scaling. Voltages are set in
such a way that deadlines are met while reducing the total amount of energy con-
sumption. In [Lee03a] simple scheduling techniques are proposed with the goal of
reducing the leakage energy can be reduced by an order of magnitude. [Qadi03] presents
a dynamic voltage scaling algorithm that can be used with sporadic tasks in conjunc-
tion with pre-emptive EDF scheduling. The algorithm is proven to guarantee each
task meets its deadline while saving the maximum amount of energy possible with
processor frequency scaling.

Summary
Power is another system resource that has to be managed. This resource is taking
primary importance due to the market expectations of mobile devices. The best way
to really maximize system operation is to make an integrated resource management,

356 26 Other Issues

in such a way that when taking decisions on one resource, the effect on others is also
considered. The approaches described should be made compatible, as they are related
to decisions at different abstraction layers. Hence, solutions that combine them are
expected to be the way to explore in future research works.

Assessment

There is an increasing interest on power management techniques. The research efforts
have produced a large number of techniques at different abstraction levels. However,
in general the power management techniques are very recent and lacks of the neces-
sary testing in real-life systems. Although they certainly allows for power savings,
most of them are not mature enough for their extensive use in industrial products. In
addition, there have been few, if any, attempts to combine and use them in a system in
an integrated and compatible way.

This panorama is especially true in the case of real-time systems, where in addition
to the common requirements, it is necessary to develop techniques that save power
without precluding applications from meeting their time requirements. Finally, there
is a lack of standards for letting software and hardware power management facilities
interact with a certain portability level. ACPI is certainly a standard in this way, but it
adequacy for embedded and real-time systems is very much discussed.

Trends

The obvious interest on saving power in the future computer devices, and in particular
in real-time systems, will cause an increasing research on power management tech-
niques. In the context of the adaptive real-time systems, power management will also
be a primary research concern. Power is a part of the context information that will
require the execution algorithms for adapting system behaviour to the power status.
On the other hand, power is one of the mechanisms that can be used for adapting
system behaviour to the environment.

The trend for the near future is to continue research in the same areas as described
in this section. It is necessary to develop more mature scheduling policies that take
into account power in the task scheduling and setting power parameters of the proces-
sor, ensuring the fulfilment of the time requirements. CPU is not the only device to
consider when dealing with power. On the contrary, it has been demonstrated that
other hardware devices consume even more power. In consequence, it is required to
develop drivers that take into account device usage scheme for driving its power
states in such a way that power consumption is optimized and quality and time re-
quirements are met.

Global system power management seems to be the way to follow. Power manage-
ment will be at different levels, (application, middleware and operating system) based
on global information and in a way that the decisions of each level are compatible.
The leading power management policies should reside in the middleware layer, as at
this level is where information about the other levels, external context, and informa-
tion on the operating system can be gathered and handled.

 26.1 Power Awareness 357

References

[ACPI02] Compaq, Intel, Microsoft, Phoenix, Toshiba, “Advanced Configuration and Power
Interface Specification, Revision 2.0b, http://www.acpi.info/spec.htm, October 11,
2002

[Ayd01] Hakan Aydin, Rami Melhem, Daniel Mosse, Pedro-Mejia Alvarez, "Dynamic and
Aggressive Scheduling Techniques for Power-Aware Real-Time Systems", 22nd
IEEE Real-Time Systems Symposium, 2001

[Cheng98] S. Cheng, C. Chen, J. Hwang, “Low-Power Design for Real-Time Systems”, Journal
of Real-Time Systems, Vol. 15, Nu. 2, Kluwer Academic Publishers, September
1998

[Dalton03] Angela B. Dalton and Carla S. Ellis, “Sensing User Intention and Context for
Energy Management”, in HOTOS, January 2003

[DPM02] IBM and MontaVista Software, “Dynamic Power Management for Embedded
Systems”, Version 1.1, November 19, 2002.
http://www.research.ibm.com/arl/projects/dpm.html.

[Lee03] Y. Lee, C. Krishna, “Voltage-Clock Scaling for Low Energy Consumtion in Fixed-
Priority Real-Time Systems”, Journal of Real-Time Systems, Vol. 24, Nu. 3, Klu-
wer Academic Publishers, May 2003

[Lee03a] Yann-Hang Lee, Krishna P Reddy, C. M. Krishna, “Scheduling Techniques for
Reducing Leakage Power in Hard Real-Time Systems”, Proceedings of the 15th
Euromicro Conference on Real-Time Systems, 2003.

[Lu00] Yung-Hsiang Lu, Luca Benini, Giovanni De Micheli, “Low-Power Task Schedul-
ing for Multiple Devices”, 8th International Workshop on Hardware/Software
Codesign, 2000

[MillyWatt] Milly Watt Project, Duke University, http://www.cs.duke.edu/ari/millywatt.
[Naik01] K. Naik, D. Wei, “Software Implementation Strategies for Power-Conscious Sys-

tems”, Mobile Networks and Applications, vol. 6, pp. 291–305, Kluwer Academic
Publishers, 2001.

[PARTS] Power-Aware Real-Time Systems Project, University of Pittsburg,
http://www2.cs.pitt.edu/PARTS/.

[Pil01] Padmanabhan Pillai, Kang G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems”, pages 89-102, 18th ACM Symposium
on Operating System Principles, 2001.

[Qadi03] Ala Qadi, Steve Goddard, Shane Farritor, “A Dynamic Voltage Scaling Algorithm for
Sporadic Tasks”, Proceedings of the IEEE Real-Time Systems Symposium, 2003.

[Sin01] Amit Sinha, Anantha Chandrakasan, “Energy Efficient Real-Time Scheduling”,
Proceedings of the International Conference on Computer Aided Design (ICCAD),
San Jose, Nov. 2001.

[S4Uweb] Space4U web homepage http://www.extra.research.philips.com/euprojects/space4u
[Unsal03] O. S. Unsal, I. Koren, “System-Level Power-Aware Design Techniques in Real-

Time Systems”, Proceedings of the IEEE, Vol. 91, NO. 7, July 2003
[Yua01] Wanghong Yuan and Klara Nahrstedt, “A Middleware Framework Coordinating

Processor/Power Resource Management for Multimedia Applications”, in Proc. of
IEEE Globecom 2001, San Antonio, Texas, November, 2001

[Yua02] Wanghong Yuan and Klara Nahrstedt, “Integration of Dynamic Voltage Scaling
and Soft Real-Time Scheduling for Open Mobile Systems”, Proc. of 12th Interna-
tional Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV ‘02), pp. 105-114, Miami Beach, Florida, May, 2002.

[Zeng02] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, Amin Vahdat, “ECOSystem: manag-
ing energy as a first class operating system resource”, ACM SIGOPS Operating
Systems Review, Volume 36, Issue 5, December 2002

358 26 Other Issues

26.2 Media-Processing Applications

The transition from analogue to digital, and from hardware to software, in the wide
array of control, audio, and video processing, have been a lasting feature of the past
30 years. This is due to the increased speed and capacity of digital equipment. Cur-
rently, video is also moving from analogue to digital to software. In the areas of tele-
vision and stored video, the transition is currently taking place. The (writeable) DVD
is taking over the prominent role of the videocassette, and digital satellite television is
taking over from terrestrial analogue television. Even so, digital does not necessarily
mean software yet. The bulk of digital video processing is still performed in dedicated
hardware, because software decoding is still too expensive. With Moore’s law, this is
expected to change in the future. How near that future will be is still unclear, but that
it will happen is generally accepted.

At some point in the future, digital video processing in software will become the
state of the practice. Motion-sensitive video algorithms (MPEG (de)coding, but also
temporal scaling, and (de)interlacing) may have highly varying loads. These video
algorithms are generally embedded in video flow graphs with strict timing require-
ments: tight jitter requirements on input (broadcast) as well as output (screen), and
low latencies because of separate audio processing (home theatre), interactivity, and
memory constraints.

Decoding MPEG-2 video streams imposes hard real-time constraints for consumer
devices such as television. The freedom of encoding choices provided by the MPEG-2
standard results in a high degree of variability inside the streams, in particular with
respect to frame structures and their sizes. MPEG encoding has to meet diverse de-
mands, depending, for example, on the medium of distribution, such as overall size
for DVD, maximum bit rate for DVB, or encoding speed for live broadcasts. In the
case of DVD and DVB, sophisticated provisions to apply spatial and temporal com-
pression are applied, while a very simple, but quickly coded stream will be used for
the live broadcast. Consequently, video streams, and in particular their decoding de-
mands will vary greatly between different media.

A number of algorithms have been presented for efficient transmission and soft-
ware decoding of MPEG video streams, mostly using buffering and rate adjustment
based on average-case assumptions. These provide acceptable quality for applications
such as video transmissions over the Internet, when drops in quality, delays, uneven
motion or changes in speed are tolerable. However, in high quality consumer termi-
nals, such as home television, quality losses of such methods are not acceptable.

Another major difference between digital media processing and real-time control
processing arises from the throughput requirements. Megabytes of data need to be
pumped through the system at a very high rate. Computation is only one of the issues
– in some cases, communication may be even more important.

26.3 Integrating Real-Time and Control Theory

Current real-time design methods and associated analysis tools do not provide a
model flexible enough to fit well with control systems engineering requirements. In

 26.3 Integrating Real-Time and Control Theory 359

addition, classic control theory does not give advice on how to include resource con-
straints into the controller, both at the design and implementation stage.

Most feedback control systems are essentially periodic, where the inputs (reading
sensors) and the outputs (posting on actuators) of the controller are sampled/hold at a
fixed rate. While basic digital control theory deals with systems sampled at a single
rate, [Sim98] has shown that the control performance of a non-linear system like a
robot can be improved using a multi-rate controller. Some parts of the control algo-
rithm, such as updating parameters or controlling slow modes, can be executed at a
slower pace. In fact, a complex system involves sub-systems with different dynamics,
which must be further coordinated. Therefore the controller must run several control
laws in parallel with different sampling rates inside a hierarchy of more or less tightly
coordinated layers.

Digital control systems are often implemented as a set of tasks running on top of an
off-the-shelf real-time operating system (RTOS) using fixed-priority and pre-emption.
The performance of the control, e.g. measured by the tracking error, and even more
importantly its stability, strongly relies on the respect of the specified sampling rates
and computing delays (latencies) [Ast90]. As the value of the control gains depends
on these temporal attributes, it is essential that the implementation of the controller
respects the specified temporal behaviour at run-time.

Usually, real-time systems are modelled by a set of recurrent tasks assigned to one
or several processors. A worst case response time technique is used to analyze fixed-
priority real-time systems. The analysis provided in [Liu73] assumes that all the tasks
are periodic, run on a single processor, have a common first release instant, have a
deadline equal to their period and that there are no precedence constraints between the
tasks. These assumptions have been progressively released [Aud95] to compute re-
sults for more general systems, e.g. with precedence constraints, aperiodic tasks or
release jitter.

Indeed the timing requirements of a control system deserve to be accurately cap-
tured. In particular it appears that closed-loop systems have a “stability margin”
which make them robust with respect to parameters deviations, including timing pa-
rameters like jitter and sample-induces delays [Cer03]. The timing constraints thus
can be relaxed, e.g. as “weakly hard” constraints to specify a range of allowed devia-
tions around nominal values [Ber01] or through a quality model gathering perform-
ance, computing cost and robustness indexes [San00].

Such control systems thus can be implemented using flexible scheduling tech-
niques and a fault-tolerant QoS based management.

Landscape

Traditional discrete controller design uses as main paradigm the constant and equidis-
tant sampling period and usually assumes sufficient computing resources and negligi-
ble sampling to actuation computation time. Sampling period is constrained by the
Shannon Sampling Theorem, which essentially states that sampling frequency has to
be at least double than the highest significant frequency which the controlled system
can pass through [Ast90]. A common rule of thumb is to use a sampling frequency
between 4 and 20 times this highest significant frequency. Low sampling frequencies
(close to the 4x) give reasonable control objectives but at the low region of some

360 26 Other Issues

performance measurement. High sampling frequencies (in the vicinity of 20x or lar-
ger) allows better performance measurements but imposes higher computing resource
utilization. This flexibility in the selection of the sampling frequency can be modelled
and used as a way to share the common tasks resources in a multitask environment.

From the real-time side, it can be used the controller design flexibility in two dif-
ferent ways: first, to specify the more favourable sampling frequency for a given
multitask condition in a more or less static scheduling scenario; second, to dynami-
cally change the sampling condition and the real-time scheduling as the multitask
computing resources are in high load conditions.

Although the first case is almost a classical scenario, some care has to be taken as
the inter-sampling period can exhibit jitters, driving to potential instability of the
controlled system [Mar01]. Some work has been done to overcame this situation by
reducing the jitter through acting on the scheduler design [Bal02], [Bal04], or by
introducing such jitters into the controller [Mar02].

The second case is where the flexibility can take it’s most interesting view. As
there is some kind of performance measurement of the controlled system, it can be
searched an optimal condition [Yep03a], [Yep03], [Vel03a], by scheduling the most
beneficial task at each iteration. Such approaches require a careful analysis of the
closed loop system performance in front of such sampling frequency changes
[Vel03b]. If in addition to the control tasks the non control tasks have flexibility and
performance parameters, a global cost function can be designed where to find the
optimal scheduling solution.

Assessment

Design Process
In the traditional approach to the analysis and design of computer control systems,
controller design and implementation are two separate stages. In the design stage,
sampling and actuation are generally assumed synchronous and periodic, and a highly
deterministic timing of an implementation is assumed. However, when a control algo-
rithm is executed by a task (or by a set of subtasks) in a multitasking real-time system,
those assumptions may not be met, causing control performance degradation and even
instability. These problems can be addressed using a combination of control theoretic
and scheduling principles so that control systems can exploit new (and more flexible)
scheduling approaches and scheduling approaches can take advantage of control sys-
tems properties [Mar01].

WCET Estimation and Computing Load
Design and off-line schedulability analyses rely on a accurate estimation of the tasks’
worst case execution time. Even in embedded systems the processors use caches and
pipelines to improve the average computing speed while decreasing the timing pre-
dictability. Another source of uncertainty may come from the control algorithm. For
example, the duration of a vision process highly depends on incoming data from a
dynamic scene. Also some algorithms are iterative with a badly known convergence
rate, so that the time needed to reach a predefined threshold is unknown (and must be
bounded by a timeout). Finally, in a dynamic environment, some control activities can
be suspended or resumed and control algorithms with different costs can be scheduled

 26.3 Integrating Real-Time and Control Theory 361

according to various control modes leading to large variations in the computing load.
Thus, real-time control design based on worst case execution and strict deadlines
inevitably leads to a low average usage of the computing resource.

Timing Assignment and Support from Control Theory
Once a control algorithm has been designed, the first job consists of partitioning it
into tasks, then assigning timing parameters, in the form of periods and latencies to
real-time tasks so that the controller’s implementation satisfies the control objective.
Control theory for linear systems sampled at fixed rates, including fixed delays, has
long been established. More recent results, e.g. [Lee02] or [Mar01], deal with varying
delays and sampling rates in control loops, still in the framework of linear systems.
Unfortunately real-life systems are non-linear. The extrapolation of timing assignment
through linearizing often gives rough estimations of allowable periods and latencies
and can even be meaningless. Thus slicing the control algorithm and setting adequate
values for the timing parameters rapidly falls into case studies based on simulation
and experimentation.

Priority Assignment and Scheduling Policy
Well known scheduling policies, such as Rate Monotonic for fixed priorities and EDF
for dynamic priorities, assign priorities according to timing parameters such as dead-
lines or sampling periods. These methods tend to maximize the computing resource
usage or the number of tasks which meet their deadline. They hardly take into account
precedence and synchronization constraints, which naturally appear in a control algo-
rithm. Finally the relative urgency or criticality of the control tasks can be unrelated
with the timing parameters. [Eke99] has shown that blind use of scheduling policy
based purely on computing parameters can lead to an inefficient controller implemen-
tation while a scheduling policy based on application requirements gives better re-
sults. Another example of unsuitability between computing and control requirements
arise when using priority inheritance or priority ceiling protocols to bypass priority
inversion due to synchronization and mutual exclusion. Such protocols jeopardize the
initial run-time schedule which was carefully designed to meet control requirements,
e.g. minimizing sensor to actuator latencies along some control paths and assigning
priorities according to the task’s criticality with respect to the control performance
and stability.

Robustness of the Control Scheme
Control systems are often cited as examples of “hard real-time systems” where dead-
line-missed violations are forbidden. In fact, experiments show that this assumption is
false for closed-loop control. Any practical feedback system must have some stability
margin to have insensitivity and robustness with respect to the plant parameters un-
certainty. As observed by control practitioners, this stability margin also provides
robustness with respect to timing uncertainties: the controllers are able to tolerate
some variations in sampling period, computing delays, output jitter and occasional
data loss with no loss of stability or integrity, but only disturbances. The hard real-
time assumption should be changed for a “weakly hard” one, where absolute dead-
lines are replaced by statistical one, e.g. the allowable output jitter compliant with the
desired control performance. Even if computing such statistics is out of the scope of

362 26 Other Issues

current control theory, this intrinsic robustness of closed-loop controllers gives an
additional degree of freedom which can serve QoS computation and flexible schedul-
ing design.

Trends

Off-line Control/Scheduling Co-design
Taking into account the unsuitability of current real-time design techniques to capture
feedback control system requirements naturally leads to the use of control/scheduling
co-design. While basic implementations use a periodic sequential loop to handle the
control algorithm components, the control performance can be improved by slicing
the controller according to the relative criticality and timing requirements of its com-
ponents. A rather general scheme for control systems consists in splitting the control-
ler into a high priority “CalculateOutput” thread and a less critical “UpdateState”
thread [Arz99]. Thus, these threads can be scheduled separately with the advantage of
a lower sensitivity of critical tasks, with respect to pre-emption from concurrent proc-
esses. More specialized structures of control tasks can be found for specific applica-
tion domains, such as robot control [Sim02]. A second step consists in finding ade-
quate values for the scheduling parameters. This can be done off-line for a particular
application as described in [Ryu97], where cost functions relating the timing parame-
ters to the control performance are first experimentally identified. In a second step,
these cost functions are used in iterative heuristics to set the scheduling parameters
under constraint of available computing power. However, while these off-line and
application-based methods can handle control requirements, they cannot easily handle
timing uncertainties and dynamic reconfigurations. For dynamics systems, [Foh95]
and [But98] presented scheduling algorithms that can be used to schedule control
tasks that need to be dynamically accommodated according to different application
requirements.

Feedback Scheduling
Timing uncertainties due to varying computing loads call for on-line adaptation of the
tasks scheduling parameters according to measures of the computing resource activ-
ity. This new approach has been initiated from both the real-time computing side
[But00], [LuS00] and from the control side [Cer00]. The idea consists of adding to the
scheduler an outer sampled feedback loop (“scheduling regulator”) to control the
scheduling parameters as a function of a QoC (Quality of Control) measure. The QoC
criterion captures the control performance requirements and the problem can be stated
as QoC optimization under constraint of available computing resources, which usage
can be measured e.g. through laxities or deadlines violations. The output of this
scheduling controller triggers the scheduling parameters such as task periods or priori-
ties. Preliminary studies [Eke00] suggest that a direct synthesis of the scheduling
regulator as an optimal control problem will lead, when tractable, to a solution that is
too costly to be implemented in real-time. Practical solutions will be found in the
available control toolbox or in enhancements and adaptations of current control the-
ory. Note that this approach is not limited to the design of plant control systems but
can be used to manage real-time systems with varying and unpredictable loads such as

 26.3 Integrating Real-Time and Control Theory 363

multimedia servers: in such a case the QoC criterion will be computed only from
computing activity measurements.

To accommodate with a dynamic environment leading to system reconfigurations
this feedback loop must be supervised by a decisional process: the “scheduling man-
ager” will be in charge of admission/rejection of incoming tasks, anticipation of the
computing load variations and exception handling due to deviations from the speci-
fied QoS. In particular it will be able to use different variants of the control algo-
rithms (with different computing costs and QoS) as an additional degree of freedom to
accommodate the computing load at run-time. Obviously, to cope with control re-
quirements the decisions made by the scheduling manager must rely on knowledge
about control, real-time computing and on the controlled process itself.

Quality-of-Control Scheduling
When the responsibility of maximizing the performance of closed-loop systems relies
on both the controller design and the scheduler, a new scheduling problem appears.
As it has been shown in [Mar02], dynamic optimization of the quality of the con-
trolled system response calls for

flexible control task timing constraints that deliver effective control performance;
flexible constraints allow us to achieve faster reaction by adaptively choosing the
controller sampling rate and completion time upon transient perturbations;
a Quality-of-Control (QoC) metric; it associates with each control task timing a
quantitative value expressing control performance (in terms of the closed-loop
system error), and
new scheduling approaches; their goal is to quickly react to perturbations by dy-
namically scheduling tasks based on the chosen control task execution parameters
to maximize the QoC.

This combination offers the possibility of taking scheduling decisions based on the
control information for each control task invocation, rather than using fixed timing
constraints with constant periods and deadlines.

References

[Arz99] K.E. Arzen and B. Bernhardsson and J. Eker and A. Cervin and P. Persson and K.
Nilsson and L. Sha, “Integrated Control and Scheduling”, Department of Auto-
matic Control, Lund Institute of Technology, ISRN LUFTD2/TFRT--7686--SE,
August 1999.

[Arz00] K.-E. Årzén and A. Cervin and J. Eker and L. Sha, “An Introduction to Control
and Scheduling Co-Design”,39th IEEE Conference on Decision and Control, Syd-
ney, Australia, December 2000.

[Ast90] K.J. Äström and B. Wittenmark, Computer-Controlled Systems – Theory and
Design, Prentice Hall, Englewood Cliffs, NJ, 1990.

[Aud95] N.C. Audsley and A. Burns and R.I Davis and K.W Tindell and A.J. Wellings,
“Fixed Priority Preemptive Scheduling: An Historical Perspective”, Real-Time
Systems, Vol. 8, pp. 173-198, 1995.

[Bal02] P. Balbastre, I. Ripoll, A. Crespo, “Schedulability analysis of window-constrained
execution time tasks for real-time control”, Euromicro Conference on Real-Time
Systems 2002

364 26 Other Issues

[Bal04] P. Balbastre, I. Ripoll, J. Vidal, A. Crespo, “A Task Model to Reduce Control
Delays”, Real-Time Systems Journal, 2004

[Ber01] G. Bernat. A. Burns and A. Llamos, “Weakly Hard Real-Time Systems”, IEEE
Transactions on Computers, Vol. 50, No. 4, pp.308-321, 2001.

[But98] G. Buttazzo, G. Lipari and L. Abeni, “Elastic Task Model for Adaptive Rate Con-
trol”, IEEE Real-Time Systems Symposium, Madrid, Spain, December, 1998

[But00] G. Buttazzo and L. Abeni, “Adaptive Rate Control through Elastic Scheduling”,
39th Conference on Decision and Control, Sydney, Australia, December 2000.

[Cer00] A. Cervin and J. Eker, “Feedback Scheduling of Control Tasks”, 39th IEEE Con-
ference on Decision and Control, Sydney, Australia, December, 2000.

[Cer03] Anton Cervin, “Integrated Control and Real-Time Scheduling”, Department of
Automatic Control, Lund Institute of Technology, Sweden, ISRN LUTFD2/TFRT-
1065-SE, April 2003.

[Eke99] J. Eker and A. Cervin, “A Matlab Toolbox for Real-Time and Control Systems Co-
Design”, 6th Int. Conf. on Real-time Computing Systems and Applications, Hong
Kong, pp. 320-327, December, 1999.

[Eke00] J. Eker and P. Hagander and K-E. Årzén, “A feedback scheduler for real-time
controller tasks”, Control Engineering Practice, Vol. 8, No. 12, pp. 1369--1378,
2000.

[Foh95] G. Fohler, “Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic
Tasks in Statically Scheduled Systems”, in IEEE Real-Time Systems Symposium,
December, 1995.

[Foh97] G. Fohler, “Dynamic Timing Constraints -Relaxing Over-constraining Specifica-
tions of Real-Time Systems”, in Proceedings of Work-in-Progress Session, 18th
IEEE Real-Time Systems Symposium, December, 1997

[Lee02] Y.S. Lee and W.H. Kwon, “Delay-dependent robust stabilization of uncertain
discrete discrete-time state-delayed systems”, IFAC 15th World Congress, Barce-
lone, Spain, 2002.

[Liu73] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in
Hard Real-Time Environment”, Journal of the ACM, No. 1, Vol. 20, pp. 40-61,
1973.

[LuS00] C. Lu and J. Stankovic and T. Abdelzaher and G. Tao and S. Son and M. Marley,
“Performance Specifications and Metrics for Adaptive Real-Time Systems”, Proc.
of IEEE Real-Time Systems Symposium, December, 2000.

[Mar01] P. Marti, J.M. Fuertes, G. Fohler and K. Ramamritham, “Jitter Compensation for
Real-Time Control Systems”, 22nd IEEE Real-Time Systems Symposium, Lon-
don, UK, 2001.

[Mar02] P. Marti, G. Fohler, K. Ramamritham, J.M. Fuertes, “Improving Quality-of-
Control using Flexible Timing Constraints: Metric and Scheduling Issues”, 23rd
IEEE Real-time System Symposium, Austin, TX, USA , December 2002.

[Ryu97] M. Ryu and S. Hong and M. Saksena, “Streamlining Real-Time Controller Design
– From Performance Specifications to End-to-End Timing Constraints”, Proc. of
IEEE Real-Time Technology and Applications Symposium, Montreal, June 1997,

[San00] Martin Sanfridson, “Problem Formulations for QoS Management in Automatic
Control”, TRITA-MMK 2000:3, ISSN 1400-1179, ISRN KTH/MMK-00/3-SE,
KTH, Stockholm, 2000.

[Sim98] D. Simon and E. Castillo and P. Freedman, “Design and Analysis of Synchroniza-
tion for Real-time Closed-loop Control in Robotics”, IEEE Trans. on Control Sys-
tems Technology, No. 4, Vol. 6, pp. 445-461, July 1998,

[Sim02] D. Simon and F. Benattar, “Design of real-time periodic control systems through
synchronisation and fixed priorities”, INRIA, RR4677, December 2002.

 26.4 Probabilistic Time Analysis 365

[Vel03a] M. Velasco, P. Marti, J.M. Fuertes “Modelling Self-triggered Tasks for Real-Time
Control Systems”, in workshop on Co-design in Embedded Real-time Systems
(CERTS03), satellite Euromicro Conference on Real-Time Systems, Porto, Portu-
gal, July 2003

[Vel03b] M. Velasco, P. Marti, J.M. Fuertes “The Self Triggered Task Model for Real-Time
Control Systems”, in WiP IEEE Real-Time Systems Symposium (RTSS03), Can-
cun, Mexico, December 2003.

[Yep03a] J. Yépez, P. Martí and J.M. Fuertes “A Control Loop Scheduling Paradigm in
Distributed Control Systems”, in Proc. IEEE Conf. Industrial Electronics Society
IECON03, Virginia, November 2003

[Yep03b] J. Yépez, P. Martí and J.M. Fuertes “The Large Error First (LEF) Scheduling
Policy for Real-Time Control Systems”, in WiP IEEE Real-Time Systems Sympo-
sium (RTSS03), Cancun, Mexico, December 2003.

26.4 Probabilistic Time Analysis

Scheduling work in real-time systems is traditionally dominated by the notion of
absolute guarantee. The load on a system is assumed to be bounded and known,
worst-case conditions are presumed to be encountered, and static analysis is used to
determine that all timing constraints (deadlines) are met in all circumstances. This
deterministic framework has been very successful in providing a solid engineering
foundation to the development of real-time systems in a wide range of applications,
from avionics to consumer electronics. The limitations of this approach are, however,
now beginning to pose serious research challenges.

Flexible scheduling has addressed some of this rigidity in the model by providing
more powerful mechanisms for designing and analysing systems. However, the notion
of absolute guarantee is still hardwired into the basic assumptions. With increased
complexity and less predictable systems a move from a more deterministic to a more
probabilistic framework is required in future real-time systems. The sources of the
need for probabilistic analysis are threefold [BBB03]:

1. Fault tolerant systems are inherently stochastic and cannot be subject to abso-
lute guarantees.

2. Application needs are becoming more flexible and/or adaptive – work-flow
does not follow pre-determined patterns, and algorithms with a wide variance
in computation times are becoming more commonplace.

3. Modern super-scalar processor architectures with features such as cache, pipe-
lines, branch-prediction, out-of-order execution etc. result in computation
times for even straight-line code that exhibits significant variability. Also, exe-
cution time analysis techniques are pessimistic and can only provide upper
bounds on the execution time of programs.

These characteristics are not isolated to so called ‘adaptive (also called soft) real-time
systems’ but are equally relevant to the most stringent hard real-time application.
Contributions on these three areas are fundamental to the advance of real-time sys-
tems in the future.

Current and future research on probabilistic timing analysis can be structured in
these three categories [BBB03].

366 26 Other Issues

Transient faults are more frequent than permanent faults, a probabilistic argument
is the right tool to reason about these systems. The issues to address are random arri-
vals of faults and overheads of recovery procedures. The problems are then to derive
minimum fault arrival rates that guarantee schedulability [BPSW99].

In the real-time literature, stochastic analysis of real-time systems has been ad-
dressed from different perspectives. The Probabilistic Time Demand Analysis (PTDA)
[Tia95] and the Stochastic Time Demand Analysis (STDA) [Gar99a][Gar99b] are
targeted for fixed-priority systems with tasks having arbitrary execution time distribu-
tions. The PTDA is a stochastic extension of the Time Demand Analysis [Leh89] and
can only handle tasks with relative deadlines smaller than or equal to the periods. On
the other hand, the STDA, which is a stochastic extension of the General Time De-
mand Analysis [Leh90], can handle tasks with relative deadlines greater than the
periods. Both methods are based on the critical instant assumption, i.e. the task being
analyzed and all the higher priority tasks are released at the same time. This pessimis-
tic assumption simplifies the analysis, but results in only an upper bound on the dead-
line miss probability.

Another relevant work is [Man01], which proposes an approach which covers gen-
eral priority-driven systems including both fixed-priority and dynamic-priority sys-
tems. To simplify the analysis, it assumes that all the tasks are non-pre-emptable.
Moreover, to limit the analysis scope, it assumes that the relative deadlines of tasks
are smaller than or equal to their periods and that all the jobs that miss the deadlines
are dropped.

An interesting approach is the Real-Time Queuing Theory [Leh96, Leh97]. This
analysis method is flexible, as it is not limited to a particular scheduling algorithm and
can be extended to real-time queuing networks. Such a method is applicable to sys-
tems where the heavy traffic assumption (i.e., the utilization is close to 1.0) holds.

Other relevant stochastic analysis methods include the one by Abeni and Buttazzo
[Abe01], the Transform-Task Method (TTM) [Tia95] and the Statistical Rate Mono-
tonic Scheduling (SRMS) [Atl98]. All of them assume reservation-based scheduling
algorithms so that the analysis can be performed as if each task had a dedicated (vir-
tual) processor. That is, for each task, a guaranteed budget of processor time is pro-
vided in every period [Abe01][Tia95] or super-period (an integer multiple of the tasks
period in SRMS) [Atl98]. So, the deadline miss probability of a task can be analyzed
independently of other tasks assuming the guaranteed budget.

The paper [Dia02] proposes a stochastic analysis method that does not put any pes-
simistic or restrictive assumptions into the analysis. The method is general and uni-
formly covers general priority-driven systems including both fixed-priority systems
such as RM [Liu73] and DM [Leu82] and dynamic-priority systems such as EDF
[Liu73]. The analysis method can handle any task set consisting of tasks with arbi-
trary relative deadlines (including relative deadlines greater than the periods) and
arbitrary execution time distributions. Probabilistic schedulability analysis was also
addressed to deal with scheduling in the presence of overload [Kim02].

In multiprocessor environments, the work [Nis03] deals with a probabilistic analy-
sis of dynamic multi-processor scheduling. The paper focuses on the scheduling of
individual tasks. Finally, in [MPP02] an approach based on Generalised Stochastic
Petri Nets (GSPN) to deal with schedulability analysis of multiprocessor real-time
applications with stochastic task execution times is presented.

 26.4 Probabilistic Time Analysis 367

Any analysis technique relies on the execution time of programs. Current WCET
estimates are too pessimistic and provide a single value. The previous techniques use
probability distributions of the execution times but they do not describe how these
probability distributions are obtained. One simple approach is to use measurement
values, however, end-to-end measurements are not adequate for the estimation of the
WCET of real-time programs. The work on probabilistic WCET analysis (pWCET)
[BCP02, CP03] addresses this issue in detail. PWCET allows engineers the determi-
nation of probability distributions of the execution time of the longest path in a pro-
gram. Initial results indicate that there is in general a large difference between the
execution time observed in average and the estimated WCET and that the WCET
happens with very low probability. PWCET allows the determination of probability
distributions of arbitrary code.

A very important issue that needs to be addressed by any probabilistic analysis
technique applied to real-time systems is that the hypothesis of independence usually
made in the analysis does not correspond with the behaviour observed in real systems
[BCP02]. Initial work by Bernat et.al [BCP03] on the application of the theory of
copulas [Nel98] to real-time systems shows how this theory is suitable to address this
problem and how can it be incorporated in the analysis. Initial work has only been
applied to the computation of the WCET, however the same results could be extended
to other types of analysis, including schedulability analysis.

A different approach is the use of the theory of extreme value statistics to model
the tail of the distribution of execution times [BuEd00, EdBu01].

Summary

In order to analyse the next generation of real-time systems, real-time analysis tech-
niques have to be extended to include a probabilistic aspect. This new view can take
the form of manipulation of probability distributions or the association for each result
of the analysis its probability. Some important initial steps have been taken on this
direction however a more general approach for a probabilistic centric view of the
analysis of real-time systems needs to be developed to be able to analyse future real-
time systems.

References

[Abe01] L. Abeni and G. Buttazzo. “Stochastic Analysis of a Reservation Based System”,
In Proc. of the 9th International Workshop on Parallel and Distributed Real-Time
Systems, Apr. 2001.

[Atl98] A. K. Atlas and A. Bestavros. “Statistical Rate Monotonic Scheduling”, In Proc. of
the 19th IEEE Real-Time Systems Symposium, Dec. 1998, pp. 123–132.

[BBB03] Burns, A, G. Bernat, I. Broster, “A Probabilistic Framework for Schedulability
Analysis”. EMSOFT, Philadelphia, 2003.

[BBR02] I. Broster, A. Burns, and G. Rodriguez-Navas. “Probabilistic analysis of CAN with
faults”. In Proceedings of the 23rd Real-time Systems Symposium (RTSS), 2002.
Austin, Texas, USA..

[BCP02] Bernat,G., A. Colin, S. Petters, “WCET Analysis of Probabilistic Hard Real-Time
Systems”. In Proceedings of the 23rd Real-Time Systems Symposium (RTSS)
2002. Austin, Texas, USA.

368 26 Other Issues

[BCP03] Bernat,G. A. Colin, S. Petters “pWCET: a Tool for Probabilistic Worst-Case Exe-
cution Time Analysis of Real-Time Systems” Department of computer Science.
University of York. Technical Report YCS-2003-353. January 2003.

[BPSW99] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. “Probabilistic scheduling
guarantees for fault-tolerant real-time systems”. In Proceedings of the 7th Interna-
tional Working Conference on Dependable Computing for Critical Applications.
San Jose, California, pages 339–356, 1999.

[BuEd00] A. Burns and S. Edgar. “Predicting computation time for advanced processor
architectures”. In Proceedings 12th EUROMICRO conference on Real-time Sys-
tems, 2000.

[CP03] Colin, A, S. Petters “Experimental Evaluation of Code Properties for WCET
Analysis” In Proceedings of the 24th Real-Time Systems Symposium (RTSS) 2003.
Cancun, Mexico.

[Dia02] J. L. Diaz, D. F. Garcia, K. Kim, C. Lee, L. Lo Bello, J. M. Lopez, S. L. Min, O.
Mirabella, “Stochastic Analysis of Periodic Real-Time Systems”, In Proceedings
of the 23rd Real-Time Systems Symposium (RTSS) 2002. Austin, Texas, USA.

[EdBu01] S. Edgar and A. Burns. “Statistical Analysis of WCET for Scheduling”. In Pro-
ceedings of the 22nd Real-Time Systems Symposium (RTSS) 2001. London, Eng-
land,

[Gar99a] M. K. Gardner and J. W.S. Liu. “Analyzing Stochastic Fixed-Priority Real-Time
Systems”, in Proc. of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Mar. 1999.

[Gar99b] M. K. Gardner. “Probabilistic Analysis and Scheduling of Critical Soft Real-Time
Systems”, Ph.D. Thesis, Univ. of Illinois Urbana-Champaign, 1999.

[Kim02] K.H. Kim, L. Lo Bello, S. L. Min, O. Mirabella, “On Relaxing Task Isolation in
Overrun Handling to Provide Probabilistic Guarantees to Soft Real-Time Tasks
with Varying Execution Times”, In Proceedings of 14th Euromicro Conference on
Real- Time Systems, June 19-21, 2002, Vienna, Austria.

[Leh89] J. P. Lehoczky, L. Sha, and Y. Ding. “The Rate-Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behaviour”, In Proc. of the 10th IEEE
Real-Time Systems Symposium, Dec. 1989.

[Leh90] J. P. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines”, In Proc. of the 11th IEEE Real-Time Systems Symposium, Dec. 1990.

[Leh96] J. P. Lehoczky. “Real-Time Queueing Theory”, In Proc. of the 17th IEEE Real-
Time Systems Symposium, Dec. 1996, pp. 186-195.

[Leh97] J. P. Lehoczky. “Real-Time Queueing Network Theory,” In Proc. of the 18th IEEE
Real-Time Systems Symposium, Dec. 1997, pp. 58-67.

[LeNi03] A. Leulseged, N. Nissanke. “Probabilistic Analysis of Multi-processor Scheduling
of Tasks with Uncertain Parameters”. In Proceedings of the 9th International Con-
ference on Real-Time and Embedded Computing Systems and Applications, Feb-
ruary 2003.

[Leu82] J. Leung and J.M. Whitehead. “On the Complexity of Fixed Priority Scheduling of
Periodic Real-Time Tasks”, Performance Evaluation, Vol. 2, No. 4, 1982, pp. 237-
250.

[Liu73] L. Liu and J. Layland. “Scheduling algorithms for Multiprogramming in a Hard
Real-Time Environment”, Journal of ACM, Vol. 20, No. 1, 1973, pp. 46-61.

[Man01] S. Manolache, P. Eles, and Z. Peng. “Memory and Time-Efficient Schedulability
Analysis of Task Sets with Stochastic Execution Times”, In Proc. of the 13th Eu-
romicro Conference on Real-Time Systems, Jun. 2001, pp. 19-26.

 26.5 Hardware Trends 369

[MPP02] S. Manolache, P. Eles, Z. Peng, “Schedulability Analysis of Multiprocessor Real-
Time Applications with Stochastic Task Execution Times”, 20th International
Conference on Computer Aided Design (ICCAD 2002), pp. 699-706, November
2002, San Jose, California

[Nel98] R.B. Nelsen. An introduction to Copulas. Springer, 1998.
[Tia95] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.S. Liu.

“Probabilistic Performance Guarantee for Real-Time Tasks with Varying Compu-
tation Times”, in Proc. of the Real-Time Technology and Applications Symposium,
May 1995, pp. 164–173.

26.5 Hardware Trends

Real-time embedded systems strongly depend on the target hardware, in order to
achieve the required functional, and as importantly, the required extra-functional
properties of the system. For example, analysis of the timing properties of a system is
dependent upon the hardware upon which the functionality is implemented, often a
complex CPU that is difficult to model for execution-time analysis.

Given that real-time embedded systems implementations are highly dependent
upon the target hardware, it is useful to examine the trends in the hardware available
for embedded system implementations.

Adaptive real-time embedded systems dynamically self modify in response to
changes in the environment. This could be handled purely at the software level, al-
though there are performance advantages if at least some adaptability is handled at the
hardware level.

The following sections examine specific trends, namely System-on-a-Chip, con-
ventional processor technologies, dedicated hardware and integrated communications.

System-on-Chip

An important development over the last few years has been that of System-on-a-Chip
(SoC), a term that is now explained. Ever decreasing minimum feature sizes in inte-
grated circuit technology (already below the 100nm realm) now allow a single device
to be allocated to multiple functions, e.g. processor, memory and communications
functions can be placed within a single chip (usually a bus-based architecture is used
within the chip for connectivity). This has the result of reducing the component count
and hence unit cost of the system.

Initially, the mix of functionality on SoC devices was defined by the silicon ven-
dor. More recently, customers have been able (to a limited extent) to define the
functionality mix by selecting from a number of available IP cores. IP Core or Intel-
lectual Property Core, is an expression (usually in a high level hardware develop-
ment language such as VHDL) of a component device such as a communications
interface or CPU.

Although more complex to design, SoCs can be more suitable to certain applica-
tions due to the possibility to include analogue subsystems such as A/D, D/A convert-
ers and drivers. For real-time systems these dedicated circuits will promote the inte-
gration in a single package of specialized devices such as intelligent sensors, actuators
and network nodes (including communication controllers, drivers, bus-guardians).

370 26 Other Issues

Microprocessors / Microcontrollers

The performance of microprocessors and microcontrollers, is becoming less important
[Bas02] due to the current availability of low cost devices with enough processing
power for most practical embedded applications. This implies that current microproc-
essors and microcontrollers will remain usable much longer than initially anticipated.
However, there is greater need for such devices to have other properties such as reli-
ability and predictability. For example, some performance-oriented architectural tech-
niques, such as caches and pipelines, will see their relative importance decreased
while the possibility of in-circuit testing is becoming essential.

The micro-controller concept, in which the required peripherals and subsystems are
integrated with the microprocessor, is increasingly important (see SoC discussion
above). However, the growth in the number of different versions, already enormous,
will probably stop. Then, the customization will not be done by picking a different
version but by integrating a microprocessor core (i.e. IP – core) with the required
interfaces and subsystems.

Dedicated Hardware

With the advent of Field Programmable Logic Devices (FPLDs) it has become possi-
ble to implement software systems directly as hardware circuits, without the need for
a CPU (although one could be used) and without the development cost of an applica-
tion specific circuit [Com02]. Time-to-market can be very short with the design proc-
esses supported by industrial CAD tools. It is possible to integrate IP-cores and in-
crease reusability. Some techniques such as dynamic reconfiguration can help in
enlarging the application domain of such circuits.

Initially FPLDs were used for implementing unique, and usually relatively simple,
digital circuits and for prototyping. Such devices were adequate for prototypes, small
series and projects without stringent cost restrictions, as well as products expected to
benefit from hardware upgrades during their lifetime. The effectiveness of FPLDs has
generated enormous research efforts in this area.

New and more powerful generations of FPLDs are becoming widely available. In
addition, the price per CLB has been reduced substantially. Field Programmable Gate
Arrays (FPGAs) are a direct development of early PLDs such as PAL and GAL ar-
rays. Unlike the program once, logic-term architecture of these devices, FPGAs pro-
vide reprogrammability and logic functions to the system designer. This allows
FPGAs to provide more complex functionality than an equivalently sized program-
mable logic device. For example the Virtex 812E FPGA (Field Programmable Gate
Array) contains an array of 56*84: 4704 CLBs, 1Mbit of block RAM, 300Kbit of
distributed RAM, more than 500 user I/Os and can operate with clock frequencies up
to 240 MHz.

The key property of an FPGA is that it is inherently parallel. Thus, it is relatively
easy to map a concurrent program in Ada to a truly concurrent implementation on an
FPGA such that each task is executed in parallel [War02]. If required, soft processor
cores can be implemented on FPGAs that are instruction level equivalent to a conven-
tional processor [URL1]. Further technology developments combine one or more
conventional processors together with a large area of reconfigurable logic on a single

 26.5 Hardware Trends 371

chip. For example, recent chips by Xilinx combine up to four PowerPC cores with
reconfigurable logic [URL2]; other manufacturers are combining smaller microproc-
essors with different on chip devices (e.g. communications) together with repro-
grammable logic.

Another key property of an FPGA is dynamic reconfigurability, which can occur in
a matter of milliseconds. The entire configuration, or part of a configuration, of the
device can be changed in little more than the usual context switch time of a CPU. This
makes an FPGA an ideal candidate for use in adaptive systems where the functional-
ity of the system needs to change as the environment changes.

Technologies such as FPGAs enable different implementation strategies to be
evaluated. For example, a single FPGA could be a combination of one or more soft
cores executing conventional compiled code, together with areas of circuit directly
implementing application functionality – perhaps for functionality with extremely
tight timing requirements.

Integrated Communications

Finally, a particular issue that deserves mentioning, because of its deep consequences,
is the hardware advances that allowed a generalized availability of low-cost hardware
components with integrated processing and communications capabilities. This fact
has been fostering the large-scale use of distributed architectures in embedded sys-
tems, with positive impact on systems scalability, composability and dependability.
Particularly, the trend is towards highly distributed architectures with high number of
nodes, most of which will be relatively simple, dedicated to specific functions, e.g.
intelligent sensors. On its turn, this trend also influences the hardware design itself,
simplifying it at the node level, and transferring a substantial part of the overall com-
plexity to the network.

On the other hand, the deployment of distributed architectures in embedded sys-
tems introduces new challenges (e.g., coordination of activities, provision of timeli-
ness guarantees) that must be addressed also taking into account the available hard-
ware infrastructures. The availability of simple hardware components to perform
essential functionalities, possibly in a distributed way, such as failure detection or
timely execution of recovery procedures, will be extremely helpful to address these
new challenges and improve the overall system dependability.

Summary

Hardware trends for future real-time embedded systems are largely structural, in
terms of the increased use of SoC style technologies, where greater functionality is
placed onto a single device. The precise functionality mix of a device is often defined
by the vendor, but is increasingly being defined by the customer selecting the func-
tions required for a particular target system.

Conventional implementations have, until recently, used one or more processors as
the main part of their target architecture. This is essentially an implementation strat-
egy. The key requirement is to map the functional and extra-functional characteristics
of the design (represented in some concurrent programming language) onto the target

372 26 Other Issues

hardware. The advent of reprogrammable FPLDs enables a more flexible mapping of
the design to target hardware.

The design can be implemented as a mixture of dedicated hardware circuits, that
may or may not include a conventional processor. The benefits for real-time embed-
ded systems are many, including target hardware designed for predictability and to
support the specialized needs of real-time systems.

References

[Bas02] Bass, M., Christensen, C., “The Future of the Microprocessor Business”, IEEE
Spectrum, April 2002.

[Com02] Compton, K., Hauck, S., “Reconfigurable Computing: A Survey of Systems and
Software” ACM Computing Surveys (vol. 34, no. 2, June 2002).

[War02] Ward, M., Audsley, N.C., “Hardware Implementation of Programming Languages
for Real-Time” Proceedings of the 8th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium

[URL1] www.opencores.org
[URL2] www.xilinx.com

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 373 – 376, 2005.
© Springer-Verlag Berlin Heidelberg 2005

27 Executive Overview on Execution Platforms

Professor Hugo De Man of the IMEC research centre in Leuven, Belgium, calls the
rise of embedded systems the ‘third innovation wave’ in ICT. First there was the pe-
riod of the main frames, where many users shared one computer. Then we have seen
the period of the personal computers, with each user having one computer, and now
we enter the period with many computers for each ‘user’. These networked computers
form new, sophisticated architectures, consisting of large numbers of interconnected
programmable devices and ASICs.

Heterogeneity is an important characteristic of modern, complex, embedded sys-
tems. Such systems are heterogeneous in at least two respects. They contain different
types of processors, such as microcontrollers, general-purpose processors (CPUs),
reconfigurable processors (FPGAs), and dedicated hardware components (ASICs),
and they contain unusual means of input/output, such as sensors, actuators, antennas,
and cameras. The second respect in which they are heterogeneous is in their means of
communication, both on-chip and off-chip. Many different modes of communication
are employed, including multi-hop strategies, which should be taken into account in
the performance modelling.

A second important characteristic is the need for low power. This need occurs over
the whole range of embedded systems, from large, cubic meter-size systems to small
cubic millimetre-size (or even smaller) ones. It is obvious that the current, spectacular
growth of the number of processors per person can only continue if we succeed in
dramatically lowering the power consumption per processor. Many applications, such
as in-clothing or in-body devices, can only be successful if they are energy-
autonomous, meaning that they can scavenge their own energy. It is clear that this
requires extreme energy-efficiency.

In this document we survey the use of (heterogeneous) execution platforms and
low-power techniques in two different industrial sectors: the automotive industry and
the mechatronics industry. These sectors have been chosen because they provide
rather challenging and trying environments for the application of embedded systems.
Automobiles require an extreme level of reliability, but as consumer goods they also
have to be cost-effective. This makes traditional reliability engineering less applica-
ble. Mechatronic systems are extremely heterogeneous in that they span a very wide
technology spectrum, ranging from motion control and robotics to administrative
transactions with stock-control and resource-planning systems. Both automotive and
mechatronics are industrial sectors in which innovative companies (such as Daimler-
Chrysler, BMW, and ASML) have extensive experience with complex embedded
systems. Other companies in these and other sectors will be able to learn from these
experiences.

27.1 Motivation and Objectives

Embedded systems are executed on increasingly complex platforms. They are hetero-
geneous both in modes of processing and in modes of communication. They also inter-

374 27 Executive Overview on Execution Platforms

act with physical phenomena by means of sensors, actuators and other devices. It is
mandatory that future research in embedded systems takes this complexity into account.

Embedded systems enter many industrial sectors. The automotive sector is exten-
sively discussed in this chapter, but it is only an example of a sector that was earlier
confronted with these systems than others. If the complexity of modern embedded is
underestimated and if tools or methods are used that are not tailored to this complex-
ity, then we are faced with the risk that these systems will increasingly become unre-
liable. It is of utmost importance for industry that this problem is realized and that
adequate research actions are undertaken.

27.2 Essential Characteristics

The overall characteristic of modern computing platforms for embedded systems is
complexity. It is because of the complexity of advanced, heterogeneous systems that
well-trusted methods and tools are not suited for their tasks anymore. Complexity is a
many-faceted phenomenon. There are many views on complex, embedded systems,
and each of such views has its own merits. We need to become these different view-
points, and integration of this multi-view landscape is the only way out of the com-
plexity trap.

A second characteristic has to do with energy-efficiency. Whereas traditional soft-
ware design was aimed at optimizing memory usage and processing time, we have
now entered an era in which (for many applications) low power and energy-efficiency
are the discriminating factors. It will take a while before (embedded) software design-
ers will realize the importance of low-power engineering.

27.3 Role in Future Embedded Systems

The era of embedded systems is the era of embedded software. Of course, embedded
systems contain software components (compilers, graphical user interfaces, feedback
algorithms, etc.) just like they contain mechanical, optical, and electronic compo-
nents. But the software is also used to integrate components and subsystems into
complete systems. Therefore, the real distinction between, for example, mechatronic
systems and embedded systems is in the integrating software. The field of embedded
systems is about integration and software.

This section of the roadmap contains quite adequate analyses of the landscape in
the automotive sector. Automotive is an industrial sector in which Europe is the
global leader. There is no automotive company in the world that is, in embedded
systems, as far developed as some European players. These globally advanced com-
panies face serious problems, problems that others in the world are not yet aware of. It
is the strength of this roadmap that these global leaders are willing to share with oth-
ers the problems they expect on their own roadmaps.

27.4 Overall Challenges and Work Directions

In the challenges and work directions two areas of attention are distinguished: hetero-
geneous platforms and low power.

 27.5 Document Structure 375

We see four important directions that relate to execution platforms:

Models. Models are extremely important, but different models that correspond to
various viewpoints must be integrated.
Design Space Exploration. Methods for design space exploration must be ex-
tended to complex, heterogeneous systems.
Programmable Hardware. The challenge is to arrive at an effective set of (hetero-
geneous) programmable hardware components.
System Integration. Modern, complex embedded systems will not reach the re-
quired level of reliability if we are not able to effectively solve the integration-
and-test issue.

In the realm of low-power engineering we distinguish the following challenges and
work directions:

Middleware. We must investigate how the middleware can exploit the flexibility
in voltage levels, clock frequencies and various sleep modes.
Instruction Memory. We have to look for effective ways to compress the code size
of embedded software.
Data Memory. We have to find ways to transform the software code in such a way
that it obeys energy/efficient access patterns.

27.5 Document Structure

Section 28 presents the current design practice and needs in two industrial sectors, the
automotive industry and the mechatronics industry. In automotive the trend is towards
integrating more functions into one node (or processor), while simultaneously redis-
tributing the functionality over several nodes. To accommodate this, new open archi-
tectures and standards will be developed. Both in automotive and mechatronics re-
search will focus on reliability improvement. Typical for the mechatronics sector is
that the integration-and-test issue will have to be understood better, and that new
control strategies that are better at recovering from exceptions have to be developed.

Section 29 discusses four different computing platforms. Section 29.1 addresses the
modelling of multiprocessor systems. Such systems can be tightly or loosely coupled,
and the levels of the models can vary from the specification to the physical level.
There are many types of models (event or time-triggered, synchronous or asynchro-
nous, continuous or discrete, etc.) that all have their merits and application areas. The
modelling of complex systems usually , requires the simultaneous use of different
models. Reconciling these models is an important research topic.

Section 29.2 addresses the analysis of distributed real-time systems, as they occur,
for example, in automotive electronics. The redistribution of the functionality over the
network nodes calls for an extensive schedulability analysis. For more complex sys-
tems, however, new techniques for Design Space Exploration will have to be devel-
oped.

Section 29.3 addresses reconfigurable hardware platforms. They are classified by
means of the parameters logic block granularity and host coupling. Field-
Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices

376 27 Executive Overview on Execution Platforms

(CPLDs) are among the fastest growing segments in the semiconductor industry.
Reconfigurable hardware platforms become more heterogeneous with different types
of logic blocks and special function blocks. A completely new line is molecular elec-
tronic nanotechnology, a potential candidate for the post-silicon era.

Section 29.4 addresses system integration. It is again approached from the perspec-
tive of the automotive industry. System integration is a top design issue for embedded
systems. But, unfortunately, it is also an ill-understood problem area, in particular
now that the integration is mostly done in software. There are presently no methods
and tools that can adequately predict the behaviour of complex systems with respect
to power consumption and performance. There is no clear direction to solve the inte-
gration problem. Formal performance analysis for heterogeneous architectures may be
a way out.

Section 30 discusses low-power engineering. Section 30.1 addresses this issue at the
level of middleware. From the technology viewpoint multiple dynamically adjustable
voltages and clock frequencies will increasingly become available to the middleware.
From the application-level viewpoint distributed techniques for power awareness
appear extremely promising. In wireless communication selective shutdowns of inter-
faces look promising.

Section 30.2 addresses memory aspects in the context of low power. Code compres-
sion and access patterns that reflect the memory organization are effective means to
reduce power.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 377 – 387, 2005.
© Springer-Verlag Berlin Heidelberg 2005

28 Current Design Practice and Needs in Selected
Sectors

28.1 Automotive Industry

Automotive Electronics

From the point of view of automotive manufacturers, there is a constant market de-
mand for increased vehicle performance, more functionality, less fuel consumption
and less exhausts, all of these at lower costs. Also, there is a need for shorter time-to-
market and reduced development and manufacturing costs. These, combined with the
advancements of semiconductor technology, which is delivering ever increasing per-
formance at lower and lower costs, has led to the rapid increase in the number of
electronically controlled functions onboard a vehicle [4].

The amount of electronic content in an average car in 1977 had a cost of $110.
Currently, that cost is $1341, and it is expected that this figure will reach $1476 by the
year 2005, continuing to increase because of the introduction of sophisticated electron-
ics found until now only in high-end cars (see Figure 31.1) [1], [2]. It is estimated that
in 2006 the electronics inside a car will amount to 25% of the total cost of the vehicle
(35% for the high end models), a quarter of which will be due to semiconductors [3],
[1]. High-end vehicles currently have up to 100 microprocessors implementing and
controlling various parts of their functionality. The total market for semiconductors in
vehicles is predicted to grow from $8.9 billions in 1998 to $21 billion in 2005,
amounting to 10% of the total worldwide semiconductors market [1], [4].

8.9 10.5 13.1 14.1 15.8 17.4 19.3 21.0

$
pe

r v
eh

ic
le

Semiconductors
market size
($ billions)

Year

8.9 10.5 13.1 14.1 15.8 17.4 19.3 21.0

$
pe

r v
eh

ic
le

Semiconductors
market size
($ billions)

Year
Figure 31.1. Worldwide Automotive Electronics Trends [1]

378 28 Current Design Practice and Needs in Selected Sectors

Applications

At the same time with the increased complexity, the type of functions implemented
by embedded automotive electronics systems has also evolved. Thanks to the semi-
conductors revolution, in the late 50s, electronic devices became small enough to be
installed on board of vehicles. In the 60s the first analogue fuel injection system
appeared, and in the 70s analogue devices for controlling transmission, carburettor,
and spark advance timing were developed. The oil crisis of the 70s led to the de-
mand of engine control devices that improved the efficiency of the engine, thus
reducing fuel consumption. In this context, the first microprocessor based injection
control system appeared in 1976 in the USA. During the 80s, more sophisticated
systems began to appear, like electronically controlled braking systems, dashboards,
information and navigation systems, air conditioning systems, etc. In the 90s, de-
velopment and improvement have concentrated in the areas like safety and conven-
ience. Today, computer controlled solutions for highly critical functions like steer-
ing or braking that use electrical or electro-hydraulic actuators without any me-
chanical backup, like is the case in drive-by-wire and brake-by-wire systems [5], [6]
have been developed and are considered for future mass production. Brake-by-wire
is most developed and already used in-high end cars of DaimlerChrysler where it
replaces critical mechanical parts and can provide better brake performance.

The typical automotive electronics application implements a control loop, as de-
picted in Figure 31.2. An example of such an automotive application is a vehicle
cruise controller, which typically delivers the following functionality:

It maintains a constant speed for speeds over 35 km/h and under 200 km/h.
It offers an interface (buttons) to increase or decrease the reference speed.
It is able to resume its operation at the previous reference speed.
The cruise controller operation is suspended when the driver presses the brake
pedal.

The controller box in Figure 31.2 represents the application that has to be imple-
mented. The controller interacts with the physical environment (in our case, the vehicle)
through sensors and actuators. Some controllers can also interact with the user of the
vehicle (the driver). For example, the driver can change the modes of the controller
using switches, and is informed about its operation via the instruments on the
dashboard.
A large class of systems have tight performance and reliability constraints. A good
example is the engine control unit, whose main task is to reduce the level of exhausts
and the fuel consumption by controlling the air and fuel mixture in each cylinder. For
this, the engine controller is usually designed as a closed-loop control system which
has as feedback the level of exhausts. The engine speed is the most important factor to
consider with respect to the timing requirements of the engine controller. A typical 4
cylinder engine has an optimal speed of 6,000 revolutions per minute (RPM). At
6,000 RPM the air to fuel ratio for each cylinder must be recomputed every 20 milli-
seconds (ms). This means that in a 4 cylinder engine a single such controller must
complete the entire loop in 5 ms! For such an engine controller, not meeting the timing

 28.1 Automotive Industry 379

Driver

InstrumentsSwitches

Actuators Sensors

Reference

Modes

Controller

Physical environment
(vehicle)

Driver

InstrumentsSwitches

Actuators Sensors

Reference

Modes

Controller

Physical environment
(vehicle)

Figure 31.2. Typical Automotive Application

constraint leads to a less efficient fuel consumption and more exhausts [5]. However,
for other types of systems, like drive-by-wire or brake-by-wire, not fulfilling the tim-
ing requirements can have catastrophic consequences.

In the automotive electronics area, the functionality is typically divided in two
classes, depending on the level of criticalness:

Body electronics refers to the functionality that controls simple devices such as the
lights, the mirrors, the windows, the dashboard. The constraints of the body elec-
tronic functions are determined by the reaction time of the human operator that is
in the range of 100 ms to 200 ms.
System Electronics are concerned with the control of vehicle functions that are
related to the movement of the vehicle. Examples of system electronics applica-
tions are engine control, braking, suspension, vehicle dynamics control. The tim-
ing constraints of system electronic functions are in the range of a couple of ms to
20 ms.

Hardware Architecture

Initially, the electronic functionality in vehicles has been implemented using analogue
components wired directly to the relevant sensors and actuators. With the introduction
of semiconductors and the increased reliance on more and more complex electronics,
the number of micro-controllers in a high-end vehicle can today reach 100. In such a
situation, if a point-to-point wiring approach is used for networking, the total length
of the wires can be as much as 5 km, with a total weight of 50 kg, and a cost compa-
rable with the cost of the engine [5], [4].

380 28 Current Design Practice and Needs in Selected Sectors

This has led to the introduction of simple in-vehicle multiplexing networks, rather
than a point-to-point wiring harness. Thus, the architectures typically consist of sev-
eral nodes interconnected by a broadcast communication channel. For example, in
Figure 31.3 we have two networks interconnected by a gateway node. The network on
the left, for example, can be dedicated to system electronics, while the network on the
right can be for simple body electronics functionality.

Figure 31.3. Automotive Systems Architecture

Every node (also called electronic control unit, ECU) in such a network is typically
composed of a micro-controller with its own memory, I/O interface, and communica-
tion controller. The microcontrollers used in a node and the type of network protocol
employed are influenced by the nature of the functionality and the imposed real-time,
fault-tolerance and power constraints:

A typical body electronics system within a vehicle consists of a network of ten to
twenty nodes that are interconnected by a low bandwidth communication network like
the Local Interconnection Network (LIN) [8]. A node is usually implemented using a
single-chip 8 bit micro-controller (e.g., Motorola 68HC05 or Motorola 68HC11) with
some hundred bytes of RAM and Kilobytes of ROM, I/O points to connect sensors
and to control actuators, and a simple network interface. Moreover, the memory size
is growing by more than 25% each year [4], [5].

System electronics typically require 16-bit or 32-bit microcontrollers (e.g., Mo-
torola 68332) with about 16 Kilobytes of RAM and 256 Kilobytes of ROM. These
microcontrollers have built-in communication controllers (e.g., the 68HC11 and
68HC12 automotive family of microcontrollers have an on-chip Controller Area Net-
work (CAN) [9] controller), I/O to sensors and actuators, and are interconnected by
high bandwidth networks [4], [5].

Software Architecture

The software architecture is typically produced in an ad-hoc fashion, with limited
layering and reuse. Standards can be used in order to increase the reuse and portability
of software. OSEK/VDX is a standard for embedded real-time operating systems that
has been proposed in the automotive area [13]. If suppliers will use operating systems
implementations that are compliant with OSEK/VDX the distribution and movement
of functionality across nodes will be possible and the integration task will be simpler.

 28.1 Automotive Industry 381

However, in order to facilitate the communication of functionality provided by differ-
ent suppliers, standard communication models are also needed. OSEK/VDX proposes
two communication models:

OSEK/VDX Communication Specification (OSEK COM) [10] provides a stan-
dardized software communication interface through a communication API, allow-
ing the software written using OSEK COM to be used on different bus platforms.
OSEK COM distinguishes between queued and unqueued messages. The former
have to be serviced as soon as possible in order to prevent a buffer overflow, while
the later can be overwritten by a fresher value.
OSEK/VDX Fault-Tolerant Communication (OSEK FTCOM) [11] provides fault-
tolerant services at the communication level, similar to the Time-Triggered Proto-
col (TTP) [12]. Each node can transmit only during a predetermined time interval,
called slot. In such a slot, a node can send several messages packed in a frame.

Trends

Currently, in automotive applications, each function is running on a dedicated hard-
ware node, allowing the system integrators to purchase nodes implementing required
functions from different vendors, and to integrate them into their system. There are
several problems related to this restricted mapping of functionality:

The number of such nodes in the architecture has exploded, reaching more than
100 in a high-end car, incurring heavy cost and performance penalties.
The resulting solutions are sub-optimal in many aspects, and do not use the avail-
able resources efficiently in order to reduce costs. For example, it is not possible
to move a function from one node to another node where there are enough avail-
able resources (e.g., memory, computation power).
Emerging functionality, such as brake-by-wire, is inherently distributed, and
achieving an efficient fault-tolerant implementation is very difficult in the current
setting.

This has created a huge pressure to reduce the number of nodes by integrating several
functions in one node and, at the same time, certain functionality to be distributed
over several nodes.

To be possible to integrate several functions in one node as well as distribute the
functionality over several nodes, standards compliant operating systems, coupled with
middleware software that abstracts away the hardware differences of the nodes in the
heterogeneous architecture have to be available [13].

The open software architecture, which in the concept of the EAST-EEA [13] Euro-
pean project has to enable hardware/software independence and the efficient man-
agement of electronic functionality, is composed of a middleware and communication
layer. The communication among the components of the software architecture them-
selves and with the applications is performed via clearly defined interfaces. For effi-
ciency reasons, the middleware and communication layer are tightly integrated with
the operating system. Also, the middleware is static, meaning that the entire configu-
ration is done off-line. Using such a middleware architecture, the software functions
become independent of the particular hardware details of a node, and thus they can be

382 28 Current Design Practice and Needs in Selected Sectors

distributed on the hardware architecture. The project has influenced the new industrial
AUTOSAR standardization effort [16].

In particular on the supplier side, the huge number and combinations of required fea-
tures has lead to the problem of product and software variants. Modularity is seen as
the solution to this problem but modularity that is oriented to variants and not only to
the function is no common practice in automotive development. An example is a
common controller architecture for diesel and gasoline engines that has many func-
tions in common but with many differences in detail. The product line approach as
e.g. used in the Bosch Cartronic project, is seen as a possible methodology to reach
that modularity goal [15]. Such methodologies will have an impact on middleware
and real-time analysis as well as safety issues.

References

[1] P. Hansen, The Hansen Report on Automotive Electronics, http://www.hansenre-
port.com/, July–August, 2002.

[2] G. Leen, D. Hefffernan, “Expanding Automotive Electronic Systems,” in IEEE
Computer, pages 88–93, January 2002.

[3] K. Jost, “From Fly-by-Wire to Drive-by-Wire,” Automotive Engineering Interna-
tional, 2001.

[4] H. Kopetz, “Automotive Electronics,” in Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems, pages 132–140, 1999.

[5] M. Chiodo, “Automotive Electronics: A Major Application Field for Hardware-
Software Co-Design,” in Hardware/Software Co-Design, Kluwer Academic Pub-
lishers, pages 295–310, 1996.

[6] X-by-Wire Consortium, X-By-Wire: Safety Related Fault Tolerant Systems in Ve-
hicles, http://www.vmars.tuwien.ac.at/projects/xbywire/, 1998.

[7] M. Chiodo, “Automotive Electronics: A Major Application Field for Hardware-
Software Co-Design,” in Hardware/Software Co-Design, Kluwer Academic Pub-
lishers, pages 295–310, 1996.

[8] Local Interconnect Network Protocol Specification, http://www.lin-subbus.org,
2003.

[9] R. Bosch GmbH, CAN Specification Version 2.0, 1991.
[10] OSEK/VDX Communication Specification, Version 2.2.2, http://www.osek-

vdx.org
[11] OSEK/VDX Fault-Tolerant Communication Specification, Version 1.0, http://

www.osek-vdx.org
[12] H. Kopetz, Real-Time Systems-Design Principles for Distributed Embedded Appli-

cations, Kluwer Academic Publishers, 1997.
[13] EAST-EEA project, ITEA Full Project Proposal, http://www.itea-office.org, 2002.
[14] OSEK/VDX Operating System Specification, Version 2.2, http://www.osek-vdx.org
[15] S. Thiel, A. Hein. Modeling and Using Product Line Variability in Auto-motive

Systems. IEEE Software, pages 66–72, July/August 2002.
[16] Automotive Open System Architecture www.autosar.org.

 28.2 Mechatronics Industry 383

28.2 Mechatronics Industry

Industrial Landscape

Until around 1970 machinery and other industrial equipment was were mainly con-
structed by means of mechanical solutions. Gradually, however, several forms of
electronic control started to replace these mechanical means. With the advent of pro-
grammable logic controllers (PLC) and other electronic components, the field of
mechatronics emerged. Mechatronic systems are systems that are composed of me-
chanical and electronic components, which together determine the functioning of the
system. Mechatronic systems typically communicate with their environment by
means of sensors (input) and actuators (output).

Gradually the components in mechatronic systems have become more programma-
ble. The PLCs are – to a certain degree -- programmable, and over the years many
new programmable components have been added. Examples of these are field-
programmable gate arrays (FPGA), digital signal processors (DSP), microcontrollers,
and, of course, microprocessors. The use of programmable components causes the
functionality of the machine to be captured more in software code than in mechanical
and electronic components. Such software is called embedded software. An embedded
system is distinct from a mechatronic system in that the functionality is mainly ex-
pressed in software. In a sense, embedded systems are the modern successors of
mechatronic systems.

As a result the mechatronics industry is in the midst of the transition to the embed-
ded systems industry, or, in order words, it is increasingly becoming a software indus-
try. How dramatic such a change can be, may be illustrated by an example. We con-
sider the industrial company ASML, which is the global market leader in lithographic
systems for the IC (integrated circuits) industry. Until recently ASML was a simple
machine construction firm with a solid know-how of the mechanical engineering
involved. Now the ASML machines contain embedded software, and of the 1500
R&D employees of ASML 600 people are working in software. The remainder is: 500
in mechanics and measurement, 220 in electronics, and 180 in optics. In a short period
the number of software engineers has increased from 20 to 600, and there are no signs
that that development will halt. Of course, it must halt, since there are simply not
enough software engineers available, and because there is an upper limit to the num-
ber of people that can work on the same product.

ASML is an example of a company that manufactures complex machines, but it is
not unique. We witness the same trend in, for example, the medical imaging (MR,
CT, X-ray, PET) industry or in the high-end digital printing industry. These compa-
nies are the ones that are currently designing complex embedded systems. For such
systems the design cost of the software can account for up to half of the overall design
cost, in spite of the fact that we simply design machines and that the software remains
hidden (embedded) in these machines. There are many companies in the mechatronics
industry that will have to face the same transition in the very near future. They work
in factory automation, precision instruments, material handling systems, etc. These
companies probably already have departments for embedded software, and they are at
the verge of seeing these departments expand. There are many more companies, often
small and medium-sized enterprises (SME) who will have to establish a software

384 28 Current Design Practice and Needs in Selected Sectors

expertise now and who will witness the embedded explosion of ASML in 5 to 10
years from now. Such companies have to make up their minds whether they want to
start an in-house software department or an alliance with a software subcontractor.

Mechatronics Development Context

Mechatronic systems communicate with their environment by means of sensors and
actuators, and they are controlled by means of networks of processors, FPGAs, and
microcontrollers. An ASML wafer stepper, for example, contains 50 processors and
500 FPGAs. The FPGAs are chosen in instances when processors would be too slow
and microcontrollers too primitive. The latter plays, for instance, a role when there is
a lot of data handling, something that microcontrollers are not too good at. The distri-
bution over a large number of processors has to do with optimization for both speed
and reliability. Often tasks are executed at separate processors to assure that their
timings will not interfere.

The mechatronics industry is somewhat conservative and typically uses proven
technology, such as MIPS processors, coded in C. The step to object-oriented tech-
niques is now being made. The software, actually, fulfils two or three roles. There is
software inside components, for example the components that control the user inter-
faces. There is also software, often called integrating software, that acts as the glue for
the different subsystems and components. This software controls the subsystems and
it also takes care of all the data traffic and conversions among the different subsys-
tems

In the control of mechatronic systems there is a clear trend towards distributed con-
trol. Increasingly, intelligence is added to the sensors and actuators, so that as often as
possible decisions are taken locally. Also a lot of data handling and processing is done
locally at the input and output nodes.

Another trend is that mechatronic systems become networked: they communicate
with other players in their environment and they start to delegate tasks to the envi-
ronment. In one sense that has always been the case with machines: they are part of a
factory layout and get their raw materials from other machines and deliver their fin-
ished products to yet other machines. But now these mechatronic systems become
part of other networks. They can, for example, be remotely monitored via internet,
GSM, or other communication means. Such machines can also be serviced and main-
tained (and changed, if necessary) via internet since a large fraction of their function-
ality is expressed as software code. Another application of networking is that ma-
chines can interact with the corporate information systems. Mechatronic systems can,
for example, inspect and update the enterprise resource planning (ERP) systems.

State of the Practice

The design of mechatronic systems is typically steered from a mechanical viewpoint.
First the ‘iron’ is designed and the control comes later. The combination of iron and
control is often modelled in the mathematical package MATLAB and simulated with
the corresponding tool SIMULINK. If the control turns out to be rather awkward,
changes to the iron parts are still possible in this phase of the design process. Never-
theless, the iron parts of the mechatronic system are usually fixed in an early stage

 28.2 Mechatronics Industry 385

and are considered given from then onwards. The fact that the iron hardware is domi-
nant in the design of mechatronic systems can lead to systems that are not well-
balanced between hardware and software. It can, for example, lead to systems in
which the mechanical parts are needlessly firm and heavy, because the designers were
unaware how a good combination of measuring and software compensation can yield
systems that are lighter, more flexible and less costly. Modern developments of
mechatronic systems, such as at ASML, have shown that many imperfections of ma-
terials and constructions can be compensated (if measured correctly) within the inte-
grating software. In a sense, embedded software can be used to compensate the imper-
fections of nature. In order to be able to make such trade-offs between mechanical
hardware and embedded software one has to treat hardware and software at an equal
footing. Probably, the software designers should be slightly given the lead, because
they represent the field where the new developments come from, and they can make a
change in this rather conservative field of mechatronics.

If we consider the state of practice in the mechatronics industry, we can distinguish
three steps a company can make towards really coming to grips with embedded sys-
tems. They are:

The company starts an embedded software department.
The company realizes that, although it builds machines, it should treat its soft-
ware, electronic, and mechanical departments at an equal footing.
The company starts a systems engineering department, which is a multi-
technology department that is in charge of the overall systems requirements.

It is especially the third step that determines whether a company in the mechatronics
industry has realized that it has become a, software-dominated, multi-technology
enterprise.

There are companies that, already for a number of years, have had systems engi-
neering departments. They are situated in the aerospace industry, the industry that
builds airplanes, rockets, and satellites. Although this is a business sector that can
share its experiences with the modern mechatronics/embedded industrial sector, it is
also a sector that it is just now at the verge of experiencing the software explosion
described above.

Skills and Education for the Future

As described above, the field of mechatronic design is developing into one that is
increasingly affected by the potentials of embedded software. It is important that
future designers of mechatronic systems realize that the important design decisions
are taken at the systems level. The system level is the level at which different tech-
nologies, such as software, mechanics, electronics, and optics, come together, and
jointly realize system-wide requirements about cost, performance, and reliability.

It is important that future education caters to the needs of embedded systems. We
need systems architects who understand this multidisciplinary field. In order to be
successful in a multidisciplinary field one first has to become an expert in one of the
underlying mono-disciplines. Therefore, the education for systems architects will
have to build on an undergraduate education in computer science, electrical engineer-
ing, or mechanical engineering. The recent establishment in Europe of Bache-

386 28 Current Design Practice and Needs in Selected Sectors

lor/Master (BaMa) educational programs can be very helpful in this respect. Master’s
programs in Embedded Systems Engineering should be established that are aligned to
Bachelor’s programs in other engineering disciplines.

Many educational programs in embedded systems have the tendency to concentrate
on the interface between electronics and software only. Often these programs have
their origin in IC-related programs and follow the development that ICs increasingly
require software to determine their functioning. It is of utmost importance that em-
bedded systems designers also understand the realm of motion control. Without this
aspect the vast world of mechatronics will be lost for the embedded systems com-
munity.

Mathematical modelling is extremely important for any engineering discipline. The
problem in mechatronic systems and in embedded systems is that very many different
models are required. Of course, mechanical designers use different models than soft-
ware designers: differential equations versus logical assertions, for example. These
models have to be reconciled with each other, so that trade-offs that run across differ-
ent technologies can be addressed. But there are more types of models in systems
design: models that have to do with energy dissipation, cost models, timing models,
models for speed and jitter, etc. The art in systems education is to find effective ways
of combining the outcomes of these models without having to resort to one overall,
and therefore expressionless, model.

Challenges and Work Directions

The challenges for the mechatronics industry have been clearly outlined above. The
internal challenge of this field of attention is to address multi-technology trade-offs.
This is really the core of modern, mechatronic design. More important, probably, are
the external challenges. There are two of them. The first one is reliability. The lack of
reliability is the foremost handicap against the introduction of embedded systems in
the mechatronic industry. We must succeed in constructing machines that have at
least the same level of reliability as the traditional machines, while in the meantime
adding the additional functionality that the advent of embedded software allows. The
second external challenge is interoperability. As mentioned earlier, the fact that sys-
tems become more open to their environment poses great problems on the way in
which such systems should involve. Ultimately, mechatronic systems become part of
what is sometimes called a smart environment.

The challenge of reliability, mentioned above, leads to clear work directions. We
mention four of them.

Decoupling. It is important that failures that occur in mechatronic systems do not
affect the basic functioning of the system. An error in the entertainment system of
a car should not be able to interfere with the anti-lock braking system (ABS) or
the cruise control.
Integration and Test. A good test strategy during the integration phase of mecha-
tronic systems can prevent many errors. Unfortunately, this is the least well-
understood phase of the whole design process. This is caused by two problems: we
don’t know how to do multi-technology testing, and we don’t know how the test
the integrating software in embedded systems.

 28.2 Mechatronics Industry 387

Aspect-oriented Design. Object-oriented programming is not well-suited for many
system-wide aspects, such as exception handling, tracing, and test facilities. The
software code can become much clearer and compacter by dealing with these
crosscutting concerns in an aspect-oriented fashion.
Recovery-oriented Control. Often exceptions occur in mechatronic systems: the
raw materials have not arrived, or they are not up to specification, or there is a
power-down in part of the system. Rather than coding all these possibilities into
the software, we want the system to understand what it was doing, what the pur-
pose of the current computation is, so that it can independently find a way of re-
covering from the current situation.

References

[1] De-Jiu Chen, Martin Törngren: Towards A Framework for Architecting Mecha-
tronics Software Systems. ICECCS 2001: 170-179.

[2] Dragan Kostic, Ron Hensen, Bram de Jager, Maarten Steinbuch: Closed-Form
Kinematic and Dynamic Models of an Industrial-Like RRR Robot. ICRA 2002:
1309-1314.

[3] M.W. Maier: System Architecture – An Emergent Discipline? IEEE Aerospace
Conf. 1996: 231-245.

[4] Gerrit Muller: Experiences in Teaching Systems Architecting. INCOSE 2004
[5] Jan Peirs, Dominiek Reynaerts, Hendrik Van Brussel, Gudrun De Gersem, Hsiao-

Wei Tang: Design of an advanced tool guiding system for robotic surgery. ICRA
2003: 2651-2656.

[6] Martin Prins: Testing Industrial Embedded Systems – An overview. INCOSE 2004.
[7] D.A. van Beek, Victor Bos, J.E. Rooda: Declarations of unknowns in DAE-based

hybrid system specification. ACM Trans. Model. Comput. Simul. 2003: 39-61.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 388 – 449, 2005.
© Springer-Verlag Berlin Heidelberg 2005

29 Computing Platforms

29.1 Multiprocessor Systems – Modelling and Simulation

Motivation

Modelling plays a central role in systems engineering. The use of models can profita-
bly replace experimentation on actual systems with incomparable advantages such as:

Enhanced modifiability of the model and its parameters.
Ease of construction by integration of models of heterogeneous components.
Generality by using genericity, abstraction, and behavioural non-determinism
Enhanced observability and controllability, especially, avoidance of the probe
effect and of disturbances due to experimentation.
Possibility of analysis and predictability by the application of formal methods.

Building models which faithfully represent complex systems is a non-trivial problem
and a pre-requisite to the application of formal analysis techniques. Usually, model-
ling techniques are applied at early phases of system development and a higher level
of abstraction. Nevertheless, the need of a unified view of the various lifecycle activi-
ties and of their interdependencies have motivated the so-called model-based ap-
proaches which rely heavily on the use of modelling methods and tools to provide
support and guidance for system development and validation.

Landscape

A major dividing line inevitably exists between the discrete embedded computing
platforms and the essentially continuous physical environments in which they are
embedded. The discrete embedded computing platforms (comprising both the hard-
ware and the software), in turn, contribute to a number of additional dichotomies at
the stage of their mathematical modelling.

The early embedded computing platforms were essentially sequential computing
platforms but as they are extended and become more complex, a need for the concepts
of hierarchy and information sharing between their sub-systems arises (as in concur-
rent systems). To mathematically characterize these concepts, a global notion of a
computation step is considered. Thus the dichotomy between the synchronous and the
asynchronous computation models appears. Moreover, to model the behaviour of an
embedded computing platform in response to changes in inputs (as in reactive sys-
tems) can be described in either an event-triggered or a time-triggered fashion. In
addition, timeliness can be a central issue apart from the correct functioning (as in
real-time systems) requiring the explicit inclusion of time in the computation model.

Furthermore, the application domains contribute additional modelling preferences
to the discrete embedded computing platforms. A major such division is between the
control-oriented applications, leading to state-based computation model (where the
complexity arises due to the massive numbers of control locations in a computation),

 29.1 Multiprocessor Systems – Modelling and Simulation 389

and data-oriented applications, leading to data-flow computation model (where there
is much structure in the data on which a large number of operations can be performed
in a few control locations).

Most of the discrete embedded computing platforms are essentially heterogeneous
systems composed of sub-systems that can be formalized using different models of
computation. Therefore, some or all of the above-mentioned model dichotomies have
to be reconciled in the same discrete embedded computation platform using appropri-
ate meta-models. That is, the embedded computing platforms composed of continu-
ous/discrete, synchronous/asynchronous, state-based/data-flow, event-triggered/time-
triggered components have to be developed methodically based on well-defined un-
derlying semantics to properly understand the interaction of different models of com-
putation and to establish a solid foundation for analysis, formal verification, synthesis,
and simulation.

In addition, no matter how the individual sub-systems are modelled and analyzed
on their own, eventually, the composed system has to be subject to analysis to ascer-
tain that the system exhibits the desired behaviours only in a physical environment.
Thus, a very natural way to model an embedded computing platform is by including
the elements of the continuous state and the discrete state in the same hybrid compu-
tation model.

As discussed above, another major challenge is to combine the existing analysis
techniques from the various modelling paradigms and to devise a coherent verifica-
tion methodology for multi-paradigm systems. In particular, to ascertain which as-
pects of the analysis benefit from the existing capabilities of each paradigm.

Classification of Computation Models
There are several levels at which a model of computation may exist:

Specification Level: At the specification level, the model of computation provides
an unambiguous description of a computational problem without any notions of its
execution or implementation. Typical examples are:
o State Transition Models (Finite State Machines, CFSM’s, Petri Nets, Process

Algebras, Duration Calculus, Pi Calculus, etc.)
o Data Flow Models ({Kahn} Process Networks, Data Flow Graphs, Synchro-

nous Data Flow Graphs, etc.)
o Discrete Event Models (HDL Simulators)
Performance Level: At the performance level, the model provides a basis for the
evaluation and comparison of efficient methods for the solution of a computa-
tional problem. Thus, it forms the basis for the design, discussion, and prediction
of the performance of algorithms. Common examples are: Turing Machines,
RAM, PRAM, BSP, LogP, etc.
Programming Level: At the programming level, the model provides a precise,
high-level description of correct and efficient methods for the solution of the par-
ticular computational problem, e.g., Imperative Programming, Declarative Pro-
gramming (Applicative Programming – Functional Programming, Predicate-based
Programming – Logic Programming), etc.
o Communication Sub Model: Communication is, probably, the most important

aspect of a computation model. So, in any model of computation, communica-

390 29 Computing Platforms

tion needs to be accurately accounted for. Common communication abstrac-
tions are: MPI/PVM, Open MP, IPC, RPC, TCP/IP, OSI, etc.

Architecture Level: At the architecture level, the model describes the characteris-
tics of a real machine on which the computational problems will be implemented
and solved, e.g., SISD (Von Neumann), SIMD (Vector, Array), MISD (Systolic),
MIMD (Parallel/Distributed), Dataflow, Reduction, Neural Net, etc.
o Network Sub Model: The two basic measures of network models are latency

and bandwidth. The most commonly modelled network topologies are: Butter-
fly, Torus, Mesh, etc.

Classification of Computing Platforms
Computing platforms may be classified into transformational, interactive, and reactive
systems.

Transformational Computing Platforms: compute results with the input data
available right from the start of the application without any timing constraints. The
computed results are usable as and when required at any given instance.
Interactive Computing Platforms: operate on the environment-produced data
without any timing constraints which are expected by already executing tasks. The
results computed by those tasks are input to other tasks.
Reactive Computing Platforms: are characterized by the fact that the results pro-
duced by the already executing tasks must be delivered at times determined by the
controlled process dynamics.

Computing platforms are structured in layers. They all contain operating systems for
the basic management of the processor, virtual memory, interrupt handling, and
communication [1].

Most of the future embedded applications are likely to be real-time applications
that will run on multiprocessor SoCs which are, essentially, distributed computing
platforms. In a multiprocessor or a distributed computing platform, the processing
elements can be connected through shared memory, dedicated communication links or
a communication network [2].

Models of Concurrent Systems (Parallel & Distributed Computing Platforms)
A multiprocessor or a parallel computing platform is tightly coupled so that the
global status and workload information on all processors can be kept current at a low
cost. The system may use a centralized scheduler. When each processor has its own
scheduler, the decisions and actions of the schedulers of all the processors are coher-
ent. In contrast, a distributed computing platform is loosely coupled. In such a system,
it is costly to keep the global status and workload information current. The schedulers
on different processors may make scheduling and resource access control decisions
independently. As a consequence, their decisions may be incoherent as a whole. In
modelling distributed computation platforms, the operating systems have a major role.

Moreover, in a distributed computing platform, if the processors can be used inter-
changeably, they are identical and if a message from a source processor to a destina-
tion processor can be sent on any of the links connecting them, then the links are
identical as well. In contrast, processors of different types cannot be used inter-

 29.1 Multiprocessor Systems – Modelling and Simulation 391

changeably. Different types of processors may either be functionally different or they
may be of different types for many other reasons. A computing platform comprising
such processors, which are loosely coupled, is called a distributed heterogeneous
computing platform [2].

Models of parallel computation are required to act as a map between disparate pro-
gramming languages and disparate architectures. Hence, an application developed
according to the model is executable on the various architectures and its performance
is predictable.

A model is said to be architecture-independent if it is general enough to model a
range of architecture types. So, the application source code is portable to various
parallel architecture classes without modification.

Despite an apparent trend towards parallel computing platforms being composed of
nodes of independent processor-memory pairs connected by some interconnection
network, it is by no means certain that there is a definite progression towards a single
class of parallel architectures. Instead, there are numerous classes of parallel architec-
tures. Similarly, there are numerous models of parallel computation, some specifically
suited to particular architecture classes, while others are suitable across a range of
parallel architecture classes.

Models of Reactive Systems
Reactive computing systems continuously interact with their environment. These
systems are, in general, composed of concurrent, interacting sub-systems or processes
which may cooperate, synchronize, and share resources. It is the role of a scheduler to
coordinate the execution of system activities in order to guarantee a correct function-
ing of the system.

State-based vs. Data-flow Approaches: The family of formal languages known as
synchronous modelling languages have shown that they are simple enough to ap-
peal to the engineering community and expressive enough to model non-trivial
applications in embedded control. Lustre and Signal have a data-flow (declarative)
style whereas Esterel and StateCharts are considered as state-based (imperative)
modelling languages. Each modelling language comes with a bunch of analysis
techniques and well-developed toolboxes. One of the major benefits of Signal,
Lustre, and Esterel is the clearly-documented formal semantics which acts as a de-
scription of a meta-model. The clock calculus in Lustre and Signal and the con-
structive semantics of Esterel, for example, can be used for the static checking of
the desired properties of an instance (an application model) based on the formal
semantics of the languages the defined correctness criteria. Major such properties
are the determinism in a controller and the causal consistency at every macro
(computation) step. The Statemate tool based on StateCharts checks the type-
coherence of the variables in a model and performs some simple consistency
checks.

These tools are finding their ways into modelling the digital components of
several embedded applications such as power and digital signal processing sys-
tems (Signal), electronic design automation and aerospace systems (Esterel), and
railway and aerospace systems (Lustre). These tools also provide efficient auto-
matic code generation mechanisms. Thus, after the compilation stage, the design

392 29 Computing Platforms

can be subjected to further formal verification and code optimization, eventually
leading to automatically-generated controller code (C, Ada, or VHDL).

StateCharts has had its original popularity in the aerospace sector but it is gain-
ing popularity for the embedded system design due to inclusion into the UML
family of modelling languages. The tool, Rhapsody, though no longer in the
framework of synchronous modelling languages, is a valuable tool for modelling
object-oriented distributed embedded systems.

All of the above-mentioned tools, however, have so far been applied on an in-
dividual basis in the respective applications. Considering the growing needs of
multi-paradigm modelling, two European projects have been exploring the combi-
nation potentials of these tools – SACRES for combining Signal and StateCharts,
and SYRF for the combination of Signal, Lustre, and Esterel. The work in
SACRES has resulted in relating synchrony with asynchrony and the conditions
under which these paradigms can be combined. The work in SYRF has resulted in
the development of cross-compilation tools for Lustre, Signal, and Esterel (loose
integration), an environment for the multi-paradigm modelling (tight integration),
and code distribution for embedded systems.
Event-triggered vs. Time-Triggered Approaches: As described above, each mem-
ber of the synchronous modelling language family has been extensively used for
the design of embedded systems. A recent activity has been to combine the analy-
sis of continuous systems (as modelled in Matlab) with the meta-model verifica-
tion and efficient code generation capabilities of the Signal environment. This is
one of the approaches in a series of attempts at the problem of analysis of hybrid
systems.

In recent years, Matlab has been extended with a modelling facility for describ-
ing a discrete controller (Stateflow – with syntax reminiscent of StateCharts).
However, the underlying computation model for the simulation of the discrete part
of a model is the same as the continuous part of the model. That is, all signals are
defined over continuous time and the simulation is time-triggered based on the
lowest sample period.
Synchronous vs. Asynchronous Approaches: As discussed above, not all applica-
tions can naturally be modelled as globally synchronous systems. A recent devel-
opment has been to relate the notions of synchrony and asynchrony in the context
of data-flow modelling languages (in particular, Signal). This work introduces the
theoretical notions that can be used to characterize an asynchronous network of
locally synchronous nodes and the compositionality properties (as a meta-model
property in this context). Similar ideas are developed in the context of imperative
modelling languages where it is shown how constructively-checked Esterel can be
used as an input modelling language to the Polis modelling environment, compil-
ing into co-design finite state machines communicating over one-place buffers.
Continuous vs. Discrete Approaches: Recent years have seen the extension of the
application of formal methods to the models with both the continuous and the dis-
crete elements. A typical goal of verification is to show that an invariance holds
over a model. In particular, a bad property does not hold in any reachable state of
a system. Since digital controllers are increasingly complex with mode changes
and multiple inputs and outputs, and the goal of the controller is, typically, to
avoid a bad state in the physical environment, the traditional methods for proving

 29.1 Multiprocessor Systems – Modelling and Simulation 393

the invariance are not applicable (neither the computer science methods for prov-
ing the properties of discrete systems, nor control theory methods for the analysis
of continuous systems). Several techniques for dealing with this inherently diffi-
cult problem have been proposed.

Models of Real-Time Systems
Real-time computing platforms are the systems whose correctness depends on the
respect of timing constraints. Although real-time systems have become ubiquitous,
their design still poses challenging problems and is a very active domain of research.
Real-time systems have to reconcile functional, physical, and timing requirements
that are often opposite to each other.

Currently, the validation of real-time systems is done by experimentation and
measurement on specific platforms in order to adjust design parameters and, hope-
fully, achieve conformity to QoS requirements. The existence of modelling tech-
niques for real-time systems is a basis for rigorous design and should drastically ease
their validation. Modelling a real-time system should allow to validate its design be-
fore implementing the system, and to prove its correctness using formal methods. For
reactive real-time systems, it is important to build models that faithfully represent
their behaviour. In such models, the application has to be modelled together with the
behaviour of its environment and dynamics [7].

A modelling framework accompanying the design process of real-time systems and
providing a methodology, can guide and accelerate the design process, replace ad hoc
solutions by standard constructions, and improve the quality of the model. For a mod-
elling framework to be useful, it should meet the following requirements:

It should be sufficiently general to allow, in a natural and comprehensive way, the
specification of resource contention, synchronization, priority selection, urgency,
preemption, periodic, aperiodic, and sporadic processes, and various scheduling
disciplines on uni- or multiprocessor systems.
It should be based, despite their expressiveness, on an analyzable and executable
model. That is, it should be operational rather than descriptive, so as to reduce
risks of errors caused by passing from one formalism to another.
It should be founded on theoretical results ensuring well-defined semantics, sup-
porting a modular specification, compositionality, and allowing, to some extent,
correctness by construction.
It should be practical and applicable. That is, it should provide an intuitive, high-
level modelling formalism, together with a design methodology, and guidelines or
standard constructions for common problems. Moreover, it should allow feasible
algorithms for automatic analysis, supporting the design process, and be supported
by tools.
It should help detecting design errors by providing diagnostics at an early stage
allowing debugging of the design or gain confidence in its correctness and support
a predictable model, in the sense that unexpected interaction between separately
modelled behavioural requirements is ruled out as far as possible.

Existing formalisms and tools are designed to meet different subsets of the require-
ments mentioned above. However, as some of the items seem difficult to reconcile –

394 29 Computing Platforms

for example, the generality of the model and the support for an early detection of
design errors – they are not equally addressed by one framework [8].

Component-based engineering is of paramount importance for rigorous system de-
sign methodologies. It is founded on a paradigm which is common to all engineering
disciplines: complex systems can be obtained by assembling components (building
blocks). Components are usually characterized by abstractions that ignore implemen-
tation details and describe properties relevant to their composition e.g. transfer func-
tions, interfaces. Composition is used to build complex components from simpler
ones. It can be formalized as an operation that takes in components and their integra-
tion constraints. From these, it provides the description of a new, more complex com-
ponent.

Component-based engineering is widely used in VLSI circuit design methodolo-
gies, supported by a large number of tools. Software and system component-based
techniques have known significant development, especially due to the use of object
technologies supported by languages such as C++, Java, and standards such as UML
and CORBA. However, these techniques have not yet achieved the same level of
maturity as has been the case for hardware.

Scheduling Theory-based Approaches: Well established scheduling theory and
scheduling algorithms have been successfully applied to real-time systems devel-
opment. Schedulability analysis essentially consists in checking that the system
meets the schedulability criteria prescribed by the theory, which allows efficient
schedulability analysis tools. It does not require the use of a model representing
the dynamic behaviour of the system to be scheduled. Current engineering practice
essentially adopts this approach.

Existing scheduling theory requires the application to be set into the mathe-
matical framework of the schedulability criterion. Studies to relax such hypotheses
have been carried out. However, most of these schedulability results apply only
for particular process models or do not allow complex interaction between the
components such as shared resources apart from the processor, atomicity, or
communication. Generally, functional and timing properties are specified and
verified separately, and no unified approach for general scheduling problems has
been proposed so far.
Model-based Approaches: To overcome these limitations, an alternative approach
consists in building explicitly a timed computation model of the real-time applica-
tion, that is, the application processes together with their possible interaction, and
verifying schedulability [13] or extracting a scheduler [14], without considering
particular scheduling policies. Modelling methodologies and tools for real-time
systems have shifted into the focus of research in the recent years.

The controller synthesis paradigm for discrete-event systems [15] and timed
systems [16, 17, 18, 19] provides a general framework for scheduling. This is the
most general approach, but the algorithmic method for synthesizing a controller is
of prohibitive complexity. For this reason, sometimes, the existence of an invari-
ant implying satisfaction of the timing constraints is explored, using real-time
verification techniques [20, 21, 22, 23, 24, 25] and tools such as Kronos [26, 27],
Uppaal [28, 29], Verus [30], Cospan [31], or HyTech [32]. A non-empty invariant
satisfying the timing constraints is a sufficient condition for schedulability, requir-

 29.1 Multiprocessor Systems – Modelling and Simulation 395

ing techniques of lower complexity than synthesis which do not distinguish be-
tween controllable and uncontrollable actions.

There are several other approaches to tackle the complexity of verifying real-
time systems, or synthesizing schedulers. For example, [33] discusses incremental
verification of communicating Time Petri Nets, based on assume-guarantee rea-
soning. [34] presents a scheduler synthesis tool based on constraint satisfaction for
a simple process model that nevertheless allows shared resources, and a timing
specification in Real-Time Logic. [35] discusses the analysis of non-deterministic
real-time systems using the (max; +) algebra, which does not require exploring the
state space like traditional model-checking techniques. [36] provides an algorithm
synthesizing a programmable logic controller from a specification described by a
fragment of the duration calculus.

[37] describes a formal low-level framework for real- time system models,
where processes are described by sets of possible behaviours. This framework is
intended as a unifying meta-model rather than to directly model real- time applica-
tions. [38] discusses modelling and verification of preemptive real-time systems
with hybrid automata. Similarly, [39] describes a methodology for modelling a
general class of real-time systems with resource constraints, synchronization and
context switching overhead, and atomicity of code segments, as hybrid systems.
The method is applied to the timing analysis of Ada programs. Adopting the same
framework, [40] discusses the timing analysis of partially implemented systems,
where lacking pieces of code are specified in Graphical Interval Logic. [41, 42]
discuss a formal model of the Ravenscar [43] subset of Ada 95, allowing to verify
applications using the model-checker Uppaal.
Meta-Model-based Approaches: Among the modelling and design tools, we shall
mention the Ptolemy [44] project and toolset aiming at heterogeneous modelling,
simulation, and design of embedded systems by integrating different models of
computation. Another tool for the integration of heterogeneous models is the SPI
Workbench [45], which uses graphs of communicating processes annotated with
timing intervals, as a unifying abstract representation serving as a basis for verifi-
cation and hardware/software co- design. Giotto [46] is a tool-supported design
methodology for distributed embedded systems based on the time-triggered para-
digm. It consists of a programming language, and a platform-dependent part in-
cluding a compiler and a runtime library. Taxys [47, 48] is a tool for the develop-
ment and verification of embedded systems in the telecommunication domain. The
system and its environment are specified in the synchronous language Esterel [49]
annotated with timing constraints. The model can be verified by the model-
checker Kronos, and compiled to C code by the Esterel compiler Saxo-RT [50].
Process Algebra-based Approaches: There is some work aiming at integrating
model-based analysis of real-time systems, and scheduling theory. The interest of
considering particular scheduling policies in a model-based approach is twofold.
First, it allows to verify both the functional correctness, and the timeliness, of a
scheduled real-time system, whereas the same system without a scheduler, gener-
ally does not meet its timing constraints. Second, restricting the set of possible be-
haviours helps to manage the state explosion problem. Most of this work is based
on process algebras extended with a notion of priority.

396 29 Computing Platforms

[51] defines a process algebra based on CCS [52] with real-time semantics and
dynamic priorities. In the process algebra RTSL (Real-Time Specification Lan-
guage) [53], scheduling policies such as RMS and EDF can be modelled by a
function associating, with any system state, a subset of processes that remain en-
abled after priority choice.

The process algebra ACSR (Algebra of Communicating Shared Resources) [54,
55] provides a framework with discrete and dense-time semantics for modelling
coordination between processes including shared resources, synchronization, pre-
emption, static priorities, and exception handling. A prioritized strong bisimula-
tion ensures compositionality. The Paragon toolset [56] for the specification and
verification of real-time systems is based on ACSR. The system can be modelled
in a graphical specification language. Verification is done by state-space explora-
tion, or checking for bisimulation with a process specifying a high-level behav-
iour. [57] discusses the modelling of real-time schedulers in ACSR-VP, an exten-
sion of ACSR with value passing communication. Schedulability analysis amounts
to symbolically checking the possibly parameterized model for bisimulation with a
non-blocking process, and synthesizes the parameter values for which the system
is schedulable. In [58], models of basic process specifications are given, and
schedulers for EDF and the priority inheritance protocol [59] are modelled under
ACSR-VP.

[60] presents a modelling methodology for fault-tolerant distributed real-time
systems. Processes and fault models are specified in a process algebra based on
Timed CCS; liveness properties and deadlines are expressed in logic based on
modal timed-calculus. The authors give examples of a best-effort EDF scheduler,
and a planning-based scheduler where processes are only scheduled if their dead-
lines are guaranteed to be met.

[61] model real-time processes scheduled under EDF as timed automata, and
model-check the obtained representation using Uppaal. However, their modelling
method is not compositional. [62] introduces I/O timed components, essentially
timed automata with an interface declaration, as a modelling formalism guarantee-
ing non-zeno and non-blocking synchronization by construction. Information
about the interface of I/O timed components is used by a relevance calculus to
make abstraction from components that are irrelevant for proving a given property
specified as an observer process.

Meta-H [63] is a development tool initially designed for avionics applications.
It accompanies the development process of real-time systems from the specifica-
tion down to code generation, and implements schedulability analysis based on the
results of [64, 65] extending rate-monotonic analysis. It is also possible to specify
error models, and carry out reliability analysis.

Sometimes a deductive approach is used to verify correctness of a scheduler
[66, 67, 68] using theorem provers. In [69] and [70], real-time programs with tim-
ing constraints, fault models, and scheduling policies are modelled in the logic
TLA [71]. Proving that scheduling the real-time system under a certain discipline,
both specified in TLA, is feasible, amounts to verifying a schedulability condition
similar to the results from scheduling theory.

 29.1 Multiprocessor Systems – Modelling and Simulation 397

Emerging Application Domains of Models of Multiprocessor Systems
Networks-on-Chip: In the modern silicon technologies, with minimum device
geometries in the nanometer range (<100nm), the on-chip interconnection fabric is
a major source of delay and power consumption which is challenging the on-chip
communication infrastructure and forcing a change from device-centric to inter-
connect-centric design methodologies.

A Network-on-Chip (NoC) is a disciplined approach to replace the current ad
hoc wiring of the IP blocks that pairs scalable communication performance and
minimal interconnect cost. It separates the computation from communication by
allowing the computational blocks to communicate with one another via a uniform
interface. A NoC can be based on packet switching communication to flexibly
share link capacity between either homogeneous or heterogeneous network clients
and to provide multiple communication services over a uniform infrastructure with
fixed topology.

An efficient combination of the best-effort and the guaranteed services in a
NoC is a challenge [80]. The other key challenges for designing NoC’s include
automated synthesis [71, 72], low-power [73, 74], verification and testing [75, 76],
and fault-tolerance [77].

In order to address these challenges, accurate modelling of the systems and all
the interrelationships among the diverse processors, software processes and physi-
cal interfaces and interconnections, is needed. One of the primary goals of the sys-
tem-level modelling for networks-on-chip is to formulate a modelling framework
within which a broad class of designs can be developed and explored.

In addition, to support the designers of single-chip based embedded systems,
which includes multiprocessor platforms running dedicated real-time operating
systems (RTOS’s) as well as the effects of on-chip interconnect network, a sys-
tem-level modelling/simulation environment is required to support an analysis of
the:
o consequences of different mappings of tasks to processors (software or hard-

ware),
o network performance under different traffic and load conditions,
o effects of different RTOS selections, including various scheduling, synchroni-

zation and resource allocation policies.
The traditional network models like OPNET [81] are not suited for NoC’s, since
they model only the abstract communication structure without any support for
chip-level architecture modelling. In [78] and [79], the concept of on-chip, packet-
switched micro-networks has been introduced that borrows ideas from the layered
design methodology for data networks. The work on the system-level exploration
of the communication architecture can be subdivided into static analysis models
[82, 83] and simulation-based models [84, 85]. Lahiri et al. [86] have proposed a
hybrid model combining simulation with analytical post-processing to achieve
higher accuracy of the performance estimation. The SystemC Open Core Protocol
(SOCP) communication channel in the StepNP simulation model [87] addresses
the exploration of the communication infrastructure based on the OCP semantics.
Serge Goosens et al. [88] further abstract from architecture-specific communica-
tion primitives to establish a unified modelling framework for the investigation of
heterogeneous on-chip networks. The NoC modelling framework proposed in [9]

398 29 Computing Platforms

deals with generalized abstract tasks, processing elements, and communication in-
frastructures instead of dealing with each specific application and system architec-
ture. This not only broadens the applicability of the modelling framework, but also
leads to a better understanding of the problem at hand.

The current NoC modelling approaches do not cope with the requirements in-
troduced by the system-level design of full-fledged on-chip networks. In order to
apply analytical models, enhanced algorithms are necessary to model the perform-
ance of complex network topologies with sophisticated arbitration mechanisms.
Equally, current NoC simulation models fall short to provide efficient support for
the exploration of on-chip networks.
Sensor Networks: The recent advances in low-power embedded processors, radios,
and micro-electromechanical systems (MEMS) have made possible the develop-
ment of networks of wirelessly interconnected sensors. The new computing para-
digm enabled by the ad hoc wireless sensor networks will be a key in making
computation more proactive. The silicon-based wireless sensors and the ad hoc
sensor networks represent exciting new technologies with broad societal impacts
and a wide range of new commercial opportunities. As the wireless sensor tech-
nology continues to advance, one day, it will be possible to have these compact,
low-cost wireless sensors embedded throughout the environment, in homes, of-
fices, and ultimately inside people. With the continued advances in power man-
agement, these systems should find more numerous and more impressive applica-
tions. Until that day, there is a rich set of research problems associated with the
distributed wireless sensors that require very different solutions than the tradi-
tional sensors and multimedia devices [70].

With their focus on the applications requiring a tight coupling with the physical
world, as opposed to the personal communication focus of conventional wireless
networks, the wireless sensor networks pose significantly different design, imple-
mentation, and deployment challenges. Their application-specific nature, severe
resource limitations, long network life requirements, and the presence of sensors
lead to an interesting interplay between sensing, communication, power consump-
tion, and topology that the designers need to consider. Energy dissipation, scal-
ability, and latency must all be considered in designing network protocols for col-
laboration and information sharing, system partitioning, and low-power electron-
ics design [10].

The existing tools for modelling wireless networks focus only on the communi-
cation problem and do not support the modelling of power and sensing aspects
that are essential to the design of wireless sensor networks. A model of computa-
tion is of prime importance as a clean starting point for the synthesis of modern
computing platforms. The wireless sensor networks will not only require new
models of computation, but also new models of the physical world.

In the design automation domain, synthesis of the nodes for the wireless sensor
networks will pose a number of new problems. Moreover, debugging and verifica-
tion are the most expensive and time-consuming components in the modern design
flow. Due to the heterogeneous nature and the complex interaction between the
components, it is expected that the same will be true for the nodes of the wireless
sensor networks. In particular, the techniques for error and fault detection and test-
ing collaboration will be of prime importance.

 29.1 Multiprocessor Systems – Modelling and Simulation 399

Middleware will be in strong demand to enable the development of new appli-
cations. Tasks such as sensor data filtering, data compression, data fusion, data
searching and profiling, exposure coverage, and tracking will be ubiquitous. It is
expected that new tasks will be defined and accomplished, for example, sensor al-
location and selection, sensor positioning, sensor assignment and efficient tech-
niques for the sensor data storage [11].

In the software domain, main emphasis will be on the RTOS’s (Real-Time Op-
erating Systems). There is a need for an ultra-aggressive, low-power management
due to the energy constraints and a need for comprehensive resource accounting
due to the demands for privacy and security and, in a number of cases, the support
for mobility-related functions as well. There is also a need for the overall energy
consumption balanced architectures. Another issue is the wireless sensor organiza-
tion and the development of interfaces between the components. Finally, due to
the privacy, security, and authentication concerns, techniques like unique ID’s for
the CPU and other components can be of high importance.

Assessment

In order for a high-level modelling environment to be effective for design exploration,
it must be abstract, or high enough to enable rapid design trade-offs, but detailed
enough to include a time basis for performance modelling.

The development of a general theoretical modelling framework for component-
based engineering is one of the few grand challenges in information sciences and
technologies. The lack of such a framework is the main obstacle to mastering the
complexity of heterogeneous systems. It seriously limits the current state of the prac-
tice, as attested by the lack of development platforms consistently integrating design
activities and the often prohibitive cost of validation.

A major factor limiting the use of parallel computing platforms in the mainstream
computing is the lack of general-purpose parallel computation models. Moreover,
some specialists who believe that finding a unifying computation model is just not
possible have gone in another direction, developing parallel software that lacks port-
ability.

On the software side, the architecture differences in the parallel computing plat-
forms correspond to a large set of different parallel models and languages often archi-
tecture-dependent and that offer only partial solutions to programming portable paral-
lel applications in sequential computing using standard languages like C, Pascal, and
Fortran. Many parallel programming languages used today are of the low-level vari-
ety that require of the programmer to face the architectural issues of the parallel com-
puting platform on which the application executes.

On the other hand, high-level parallel languages abstract from architectural issues
but deliver unpredictable performance on different architectures. Thus porting the
same program to different parallel computation platforms from, say, a message-
passing multi-computer to a shared-memory multi-processor can dramatically alter
the platform’s performance.

Existing component technologies encompass a restricted number of interaction
types and execution models, for instance, interaction by method calls under asynchro-
nous execution. We lack concepts and tools allowing integration of synchronous and

400 29 Computing Platforms

asynchronous components, as well as different interaction mechanisms, such as com-
munication via shared variables, signals, rendezvous. This is essential for modern
systems engineering, where applications are initially developed as systems of interact-
ing components, from which implementations are derived as the result of a co-design
analysis.

The application of component-based design techniques raises two strongly related
and hard problems. First, the development of a theory for building complex heteroge-
neous systems. Heterogeneity exists in the different types of component interaction,
such as strict (blocking) or non strict, data driven or event driven, atomic or non
atomic and in the different execution models, such as synchronous or asynchronous.
Second, the development of theory for building systems which are correct by con-
struction, especially with respect to essential and generic properties such as deadlock-
freedom or progress. In practical terms, this means that the theory supplies rules for
reasoning on the structure of a system and for ensuring that such properties hold glob-
ally under some assumptions about its constituents e.g. components, connectors. Trac-
table correctness by construction results can provide significant guidance in the de-
sign process. Their lack leaves a posteriori verification of the designed system as the
only means to ensure its correctness (with the well-known limitations).

Co-design for system-level modelling has been limited by the view that all compu-
tation should be restricted to the reactive system models – mathematical models of
computation unified by the event or token-based foundations. The resulting executa-
ble specifications are designed to respond to testbench-style inputs that model the
external environment in which the system is intended to operate. The presumptions
are that the computer system being designed is passive and it should be isolated from
its operating environment.

Trends

Finding solutions to the problems and limitations in parallel computation requires two
actions:

Make the design and implementation of general-purpose parallel computing plat-
forms capable of supporting a wide range of programming models and providing
predictable performance.
Make the definition of programming models architecture-independent, allowing
abstraction and portability across different parallel computing platforms. At the
same time, make these models simple and expressive.

An important step to success is the definition of high-level, architecture-independent
languages to demonstrate that parallel programming is no more difficult than sequen-
tial programming.

Low-level approaches, such as Parallel Virtual Machine (PVM) and Message Pass-
ing Interface (MPI), are driven by heterogeneous parallel computing, which tries to
offer, on different computers, library primitives for parallelism and communication.
These approaches partly meet the portability goal but are based on tedious low-level
library functions and do not free the programmer from the issues of concurrency,
communication, and synchronization. In fact, even though the PVM and the MPI are

 29.1 Multiprocessor Systems – Modelling and Simulation 401

the de facto standards in parallel programming, their related programming style looks
in many respects like the assembler-level programming in sequential computing.

However, several proposed high-level approaches – the Bulk Synchronous Parallel
(BSP), the LogP, and the Bird-Meertens Formalism – may represent good candidates
for architecture-independent programming models on general-purpose computers.

Other promising models are the skeleton-based and the actor-based languages. Al-
though these models suffer from low performance, they represent an interesting start-
ing point toward architecture-independence because they abstract from architectural
issues and allow predictable performance. If the parallel programming community
convinces itself that it needs a clear strategy based on high-level languages to find a
unifying model for parallel computation, these models can be used to drive this proc-
ess. Adopting this strategy would unite high-level programming, generality, and high-
performance, leading parallel computation to the computing mainstream [12].

Increasingly, the operating environment of a computer system is another computer
system. Accordingly, next generation computer system modelling must be based not
only on the reaction of a passive computer system to its operating environment, but
upon the active cooperation and coordination – sharing – across model boundaries
such as resources. Computer system designers must be able to capture the sharing
effects or the anticipated interactions of concurrent software executing on multiple
hardware resources over a range of design variations. More than understanding the
response of the system, this is about understanding the response of the design.

Searching a complex design space for designs that satisfy performance criteria can
be thought of as isolating and analyzing the prevalent performance models that arise
between the corner cases in a design space. To fully analyze a computer system, the
designers must isolate these prevalent performance models and the ranges over which
they are valid. A designer can then understand the effects of software loading, re-
source variations, and resource sharing [5].

A grand unified approach to modelling computing platforms systems would seek a
modelling framework that serves all purposes. One approach is to create the union of
all the frameworks, which have been proposed so far, providing all of their services in
one bundle. But the resulting framework would be extremely complex and difficult to
use, and designing and synthesis and validation tools would be difficult. A more fea-
sible alternative is to choose one concurrent framework and show that all the others
are the special cases of that. This is relatively easy to do – in theory. Most of these
frameworks are sufficiently expressive to subsume most of the others. The disadvan-
tage is that this approach does not acknowledge each model’s strengths and weak-
nesses.

A final alternative is to mix frameworks either heterogeneously but instead of
forming the union of their services, preserve their distinct identity, or hierarchically
where a component in one framework is actually an aggregate of components in an-
other [6].

These are but a few of the interesting research problems for modelling computation
platforms for embedded systems. There are many more. Modelling configurable com-
putation platforms offers interesting opportunities and challenges and potentially
relates strongly to the problem of selecting appropriate computational models.

As mentioned above, there are also interesting and challenging problems in the
modelling of networks, particularly providing quality-of-service guarantees in the

402 29 Computing Platforms

face of unreliable resources. Finally, models are required to develop appropriate
hardware and software design techniques that minimize power consumption which
are critical for portable devices and wireless microsensor networks.

References

[1] Francis Cottet, Joëlle Delacroix, Claude Kaiser, and Zoubir Mammeri, Scheduling
in Real-Time Systems. John Wiley & Sons Ltd., 2002.

[2] Jane W. S. Liu, Real-Time Systems, Prentice-Hall Inc., 2000.
[3] Duncan K. G. Campbell, A Survey of Models of Parallel Computation, University

of York Report, Page 1-37, March 19, 1997.
[4] David B. Skillicorn and Domenico Talia, Models and Languages for Parallel Com-

putation, ACM Computing Surveys, Vol. 30, No. 2, Page 124-169, June 1998.
[5] Neal K. Tibrewala, JoAnn M. Paul, and Donald E. Thomas, Modeling and Evalua-

tion of Hardware/Software Designs, Proceedings of the Ninth International Sym-
posium on Hardware/Software Codesign, 2001, Pages 11-16, 2001.

[6] Edward A. Lee, What’s Ahead for Embedded Software?, IEEE Computer, Pages
18-26, September 2000.

[7] Joseph Sifakis, Modeling Real-Time Systems, EMSOFT01, Tahoe City, October
2001. Lecture Notes in Computer Science 2211.

[8] Gregor Gossler, Compositional Modeling of Real-Time Systems – Theory and
Practice, Ph.D. Thesis, Université Joseph Fourier, Grenoble, Pages 1-141, Septem-
ber 2001.

[9] Jan Madsen, Shankar Mahadevan, and Kashif Virk, Network-on-Chip Modeling
for System-level Multiprocessor Simulation, The 24th IEEE Real-Time Systems
Symposium, December 3-5 2003.

[10] Alice Wang, Rex Min, Masayuki Miyazaki, Amit Sinha, and Anantha Chanraka-
san, Low-Power Sensor Networks, Book Chapter in The Applications of Pro-
grammable DSP’s in Mobile Communications, John Wiley & Sons, 2002.

[11] Jessica Feng, Farinaz Koushanfar, and Miodrag Potkonjak, System-Architectures
for Sensor Networks – Issues, Alternatives, and Directions, International Confer-
ence on Computer Design (ICCD 2002), September 2002.

[12] Domenico Talia, Parallel Computation Still not Ready for the Mainstream, ACM,
July 1997, vol 40, no. 7, p 98(2).

[13] V. Bertin, M. Poize, and J. Sifakis. Towards Validated Real-Time Software. In
Proc. 12th EuroMicro Conference on Real Time Systems, pages 157-164, 2000.

[14] P. Niebert and S. Yovine. Computing Optimal Operation Schemes for Chemical
Plants in Multi-Batch Mode. In Proceedings of Hybrid Systems, Computation and
Control, volume 1790 of LNCS. Springer-Verlag, 2000.

[15] P. J. Ramadge and W. M. Wonham. Supervisory Control of a Class of Discrete-
Event Processes. SIAM J. Control and Optimization, 25(1), 1987.

[16] E. Asarin, O. Maler, and A. Pnueli. Symbolic Controller Synthesis for Discrete and
Timed Systems. In Proc. Hybrid Systems II, volume 999 of LNCS. Springer-
Verlag, 1995.

[17] O. Maler, A. Pnueli, and J. Sifakis. On the Synthesis of Discrete Controllers for
Timed Systems. In E.W. Mayr and C. Puech, Editors, STACS’95, volume 900 of
LNCS, pages 229-242. Springer-Verlag, 1995.

[18] K. Altisen. Génération automatique d’ordonnancements des systèmes temporisés.
Master’s Thesis, ENSIMAG, INPG, Grenoble, France, 1998. In French.

[19] S. Tripakis and K. Altisen. On the Controller Synthesis for Discrete and Dense-
Time Systems. In J. M. Wing, J. Woodcock, and J. Davies, Editors, Proc. Formal
Methods ‘99, volume 1708 of LNCS, pages 233-252. Springer-Verlag, 1999.

 29.1 Multiprocessor Systems – Modelling and Simulation 403

[20] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model-Checking
for Real-Time Systems. In Proc. 7th Symposium on Logics in Computer Science
(LICS’92) and Information and Computation, volume 111, pages 193-244, 1994.

[21] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A.
Olivero, J. Sifakis, , and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3-34, 1995.

[22] A. Bouajjani, S.Tripakis, and S.Yovine. On-the-fly Symbolic Model-Checking for
Real-Time Systems. In Proc. IEEE Real-Time Systems Symposium, RTSS’97.
IEEE Computer Society Press, 1997.

[23] H.-H. Kwak, I. Lee, A. Philippou, J.-Y. Choi, and O. Sokolsky. Symbolic Sched-
ulability Analysis of Real-Time Systems. In Proc. RTSS 1998, pages 409-418.
IEEE Computer Society Press, 1998.

[24] S. Tripakis. L’Analyse Formelle des Systemes Temporises en Pratique. PhD The-
sis, Universite Joseph Fourier, Grenoble, France, 1998.

[25] P. Pettersson. Modeling and Verification of Real-Time Systems Using Timed
Automata: Theory and Practice. PhD thesis, Uppsala University, 1999.

[26] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The Tool Kronos. In Hybrid Sys-
tems III, Verification and Control, volume 1066 of LNCS, pages 208-219. Sprin-
ger-Verlag, 1996.

[27] S. Yovine. KRONOS: A Verification Tool for Real-Time Systems. Software Tools
for Technology Transfer, 1(1+2):123-133, 1997.

[28] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134-152, 1997.

[29] H. Jensen, K.G. Larsen, and A. Skou. Scaling up Uppaal: Automatic Verification
of Real-Time Systems Using Compositionality and Abstraction. In Proc. FTRTFT
2000, LNCS. Springer-Verlag, 2000.

[30] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus: a Tool for Quantitative
Analysis of Finite-State Real-Time Systems. In Proc. Workshop on Languages,
Compilers and Tools for Real-Time Systems, 1995.

[31] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. In R. Alur and T. A.
Henzinger, Editors, Proc. CAV’96, volume 1102 of LNCS, pages 423-427.
Springer-Verlag, 1996.

[32] T.A. Henzinger, P.H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hy-
brid Systems. In Software Tools for Technology Transfer, pages 110-122, 1997.

[33] G. Bucci and E. Vicario. Compositional Validation of Time-Critical Systems Us-
ing Communicating Time Petri Nets. IEEE Transactions on Software Engineering,
21(12), 1995.

[34] A. K. Mok, D.-C. Tsou, and R. C. M. de Rooij. The MSP.RTL Real-Time Sched-
uler Synthesis Tool. IEEE, pages 118-128, 1996.

[35] G. P. Brat and V. K. Garg. Analyzing Non-Deterministic Real-Time Systems with
(max,+) Algebra. In Proc. RTSS’98, pages 210-219, 1998.

[36] H. Dierks. Synthesizing Controllers from Real-Time Specifications. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 18(1):33-43,
1999.

[37] E. A. Lee. Modeling Concurrent Real-Time Processes using Discrete Events. An-
nals of Software Engineering, Special Volume on Real-Time Software Engineer-
ing, 1998.

[38] S. Vestal. Modeling and Verification of Real-Time Software using Extended Lin-
ear Hybrid Automata. Technical Report, Honeywell Technology Center, 1999.

[39] J. C. Corbett. Timing Analysis of Ada Tasking Programs. IEEE Transactions on
Software Engineering, 22(7), 1996.

404 29 Computing Platforms

[40] G. S. Avrunin, J. C. Corbett, and L. K. Dillon. Analyzing Partially-Implemented
Real-Time Systems. IEEE Transactions on Software Engineering, 24(8), 1998.

[41] K. Lundqvist and L. Asplund. A Formal Model of a Run-Time Kernel for Raven-
scar. In Proc. 6th International Conference on Real-Time Computing Systems and
Applications – RTCSA’99, pages 504-507, 1999.

[42] K. Lundqvist, L. Asplund, and S. Michell. A Formal Model of the Ada Ravenscar
Tasking Profile; Protected Objects. In Proc. Ada-Europe ‘99, LNCS. Springer-
Verlag, 1999.

[43] B. Dobbing and A. Burns. The Ravenscar Tasking Profile for High-Integrity Real-
Time Programs. In Proc. ACM SigAda Annual Conference, pages 1-6. ACM Press,
1998.

[44] E. A. Lee et al. Overview of the Ptolemy Project. Technical Report UCB/ERL
M01/11, University of California at Berkeley, 2001.

[45] R. Ernst, D. Ziegenbein, K. Richter, L. Thiele, and J. Teich. Hardware/Software
Co-Design of Embedded Systems – The SPI Workbench. In Proc. Int. Workshop
on VLSI, Orlando, Florida, 1999.

[46] T. A. Henzinger, B. Horowitz, and C. Meyer Kirsch. Embedded Control Systems
Development with Giotto. In Proc. LCTES 2001, 2001.

[47] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine.
TAXYS = ESTEREL + KRONOS. A Tool for the Development and Verification
of Real-Time Embedded Systems. In Proc. CAV’01, volume 2102 of LNCS, pages
391-395. Springer-Verlag, 2001.

[48] G. Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 19(2):87-
152, 1992.

[49] D. Weil, V. Bertin, E. Closse, M. Poize, P. Vernier, and J. Pulou. Efficient Compi-
lation of Esterel for Real-Time Embedded Systems. In Proc. CASES’2000, 2000.

[50] G. Bhat, R. Cleaveland, and G. L�uttgen. A Practical Approach to Implementing
Real-Time Semantics. ASE, 7:127-155, 1999.

[51] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[52] A. N. Fredette and R. Cleaveland. RTSL: A Language for Real-Time Schedulabil-

ity Analysis. In Proc. RTSS’93, pages 274-283. Computer Society Press, 1993.
[53] I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process Algebraic Approach to the

Specification and Analysis of Resource-bound Real-Time Systems. Proceedings of
the IEEE, Special Issue on Real-Time Systems, 1 1994.

[54] P. Brémond-Grégoire and I. Lee. A Process Algebra of Communicating Shared
Resources with Dense Time and Priorities. Theoretical Computer Science, 189,
1997.

[55] H. Ben-Abdallah, I. Lee, and O. Sokolsky. Specification and Analysis of Real-
Time Systems with Paragon. In Annals of Software Engineering, 1999.

[56] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. Si Kim, I. Lee, and H.-L. Xie. A Proc-
ess Algebraic Approach to the Schedulability Analysis of Real-Time Systems.
Real-Time Systems, 15(3):189-219, 1998.

[57] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization. IEEE Transactions on Computers,
39(9):1175-1185, 1990.

[58] T. Janowski and M. Joseph. Dynamic Scheduling and Fault-Tolerance: Specifica-
tion and Verification. Int. Journal of Time-Critical Computing Systems, 20:51-81,
2001.

[59] C. Ericsson, A. Wall, and W. Yi. Timed Automata as Task Models for Event-
Driven Systems. In Proc. RTCSA’99. IEEE Computer Society Press, 1999.

 29.1 Multiprocessor Systems – Modelling and Simulation 405

[60] V. A. Braberman. Modeling and Checking Real-Time System Designs. PhD The-
sis, Departamento de Computación, Universidad de Buenos Aires, Buenos Aires,
Argentina, 2000.

[61] S. Vestal. Meta-H Support for Real-Time Multi-Processor Avionics. In Proc. IEEE
Workshop on Parallel and Distributed Real-Time Systems, pages 11-21, 1997.

[62] S. Vestal. Fixed-Priority Sensitivity Analysis for Linear Compute-Time Models.
IEEE Transactions on Software Engineering, 20(4):308-317, 1994.

[63] P. Binns. Incremental Rate Monotonic Scheduling for Improved Control System
Performance. In Proc. RTSS’97, pages 80-90, 1997.

[64] C. Fidge, O. Kearney, and M. Utting. Interactively Verifying a Simple Real-Time
Scheduler. In P. Wolper, Editor, Proc. CAV’95, volume 939 of LNCS. Springer-
Verlag, 1995.

[65] B. Dutertre. Formal Analysis of the Priority Ceiling Protocol. In IEEE Real-Time
Systems Symposium (RTSS’00), pages 151-160, 2000.

[66] B. Dutertre and V. Stavridou. Formal Analysis for Real-Time Scheduling. In 19th
AIAA/IEEE Digital Avionics Systems Conference, 2000.

[67] Z. Liu and M. Joseph. Specification and Verification of Fault-Tolerance, Timing,
and Scheduling. ACM Transactions on Programming Languages and Systems,
21(1):46-89, 1999.

[68] Z. Liu and M. Joseph. Verification, Refinement and Scheduling of Real-Time Pro-
grams. TCS, 253:119-152, 2001.

[69] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

[70] Andreas Savvides, Sung Park, and Mani B. Srivastava, On Modeling Networks of
Wireless Microsensors, ACM, 2001.

[71] Communication Architecture Synthesis of Packet-Switched Network-on-Chip
[72] Praveen Bhojwani and Rabi Mahapatra, Interfacing Cores with On-Chip Packet-

Switched Networks, IEEE, 2003.
[73] Luca Benini and Giovanni De Micheli, Powering Networks on Chips, ISSS 2001,

October 1-3, 2001, Pages 33-38.
[74] Jingcao Hu and Radu Marculescu, Energy-Aware Mapping for Tile-based NoC

Architectures under Performance Constraints.
[75] Bart Vermeulen, John Dielissen, Kees Goosens, and Calin Ciordas, Bringing

Communication Networks on Chip: Test and Verification Implications.
[76] Mohsen Nahvi and Andre Ivanov, A Packet Switching Communication-based Test

Access Mechanism for System Chips, Pages 1-6.
[77] Tudor Dumitras, Sam Kerner, Radu Marculescu, Towards On-Chip Fault-Tolerant

Communication.
[78] Luca Benini and Giovanni De Micheli, Networks on Chips: A New SoC Paradigm,

IEEE Computer 2002, Pages 70-78.
[79] William J. Dally and Brian Towles, Route Packets, Not Wires: On-Chip Intercon-

nection Networks, DAC 2001.
[80] Paul Wielage and Kees Goosens, Networks on Silicon: Blessing or Nightmare?
[81] OPNET. http://www.opnet.com
[82] M. Gasteiner and M. Glessner, Bus-based Communication Synthesis on System-

level, AM Trans. Design Automation Electronic Systems, pages 1-11, January
1999.

[83] Peter Voigt Knudsen and Jan Madsen, Integrating Communication Protocol Selec-
tion with Partitioning in Hardware/Software Codesign, In Proc. Int. Symp. On Sys-
tem Synthesis, 1998.

[84] K. Hines and G. Borriello, Dynamic Communication Models in Embedded System
Cosimulation, In Proceedings of the Design Automation Conference (DAC), 1997.

406 29 Computing Platforms

[85] A. Baghdadi, D. Lyonnard, N.-E. Zergainoh, and A. Jerraya, An Efficient Archi-
tecture Model for Systematic Design of Application-Specific Multiprocessor SoCs.
In Proc. Int. Conference on Design Automation and Test in Europe (DATE), 2001.

[86] K. Lahiri, A. Raghunathan, and S. Dey, Performance Analysis of Systems with
Multi-Channel Communication Architectures, In Proc. Int. Conf. VLSI Design,
pages 530-537, 2000.

[87] Pierre G. Paulin, Chuck Pilkington, and Essaid Bensoudane, StepNP: A System-
level Exploration Platform for Network Processors, IEEE Design & Test of Com-
puters, 19(6):17-26, Dec 2002.

[88] Serge Goosens, Tim Kogel, Malte Doerper, Andreas Wieferink, Rainer Laupers,
Gerd Ascheid, and Heinrich Meyr, A Modular Simulation Framework for Archi-
tectural Exploration of On-Chip Interconnection Networks.

29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration

This section addresses the analysis and design of distributed hard real-time systems
that implement safety-critical applications where timing constraints are of utmost
importance to the correct behaviour of the application.

Aspects of hard real-time systems are also covered in Part I.

Hard real-time systems: Real-time systems have been classified as hard real-time
and adaptive real-time systems. Basically, hard real-time systems are systems where
failing to meet a timing constraint can potentially have catastrophic consequences.
For example, a brake-by-wire system in a car failing to react within a given time in-
terval can result in a fatal accident. On the other hand, a multimedia system, which is
an adaptive real-time system, can, under certain circumstances, tolerate a certain
amount of delays resulting maybe in a patchier picture, without serious consequences
besides some possible inconvenience to the user.

Distributed architecture: Many real-time applications, following physical, modular-
ity or safety constraints, are implemented using distributed architectures. Such sys-
tems are composed of several different types of hardware components (called nodes),
interconnected in a network. For such systems, the communication between the func-
tions implemented on different nodes has an important impact on the overall system
properties such as performance, cost, maintainability, etc.

The complexity of distributed embedded real-time systems is growing at a very
high pace, and the constraints—in terms of functionality, performance, reliability,
cost and time-to-market—are getting tighter. Therefore, the task of designing such
systems is becoming increasingly important and difficult at the same time. New de-
sign techniques are needed, which are able to:

successfully manage the complexity of embedded systems,
meet the constraints imposed by the application domain,
shorten the time-to-market, and
reduce development and manufacturing costs.

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 407

Landscape

Designing and developing an electronic system like, for example, an automotive ap-
plication, is not the sole responsibility of the system integrator. Suppliers provide
many of the components (electronic control unit, ECU), and the task of the manufac-
turer is to integrate the different components. The design of real-time embedded com-
ponents is mainly done independently by the suppliers, which concentrate on develop-
ing components that perform as efficiently as possible their dedicated functions.

System Architecture
Hardware architecture: Currently, distributed real-time systems are imple-
mented using architectures where each node is dedicated to the implementation of
a single function or class of functions. The complete system can be, in general,
composed of several networks, interconnected with each other (see Figure 32.1).
Each network has its own communication protocol, and inter-network communica-
tion is via a gateway which is a node connected to both networks. The architecture
can contain several such networks, having different types of topologies.
A network is composed of several different types of hardware components, called
nodes. Typically, every node (ECU) has a communication controller, CPU, RAM,
ROM and an I/O interface to sensors and actuators. Nodes can also have ASICs in
order to accelerate parts of their functionality. The microcontrollers used in a node
and the type of network protocol employed are influenced by the nature of the
functionality and the imposed real-time, fault-tolerant and power constraints

...

...

...
I/O Interface

Comm. Controller

CPU

RAM

ROM

ASIC

...

Sensors/Actuators

Node

Figure 32.1. Distributed Hard Real-Time Systems

Real-time communication protocols: As the communications become a critical
component, new protocols are needed that can cope with the high bandwidth and
predictability required.

There are several communication protocols for real-time networks. Among the
protocols that have been proposed for vehicle multiplexing only the Controller
Area Network (CAN) [11], the Local Interconnection Network (LIN) [33], and
SAE’s J1850 [57] are currently in use on a large scale. Moreover, only a few of
them are suitable for safety-critical applications where predictability is mandatory
[56]. A survey and comparison of communication protocols for safety-critical em-
bedded systems is available in [56]. Communication activities can be triggered ei-

408 29 Computing Platforms

ther dynamically, in response to an event, or statically, at predetermined moments
in time.

Therefore, on one hand, there are protocols that schedule the messages statically
based on the progression of time, for example, the SAFEbus [21] and SPIDER
[39] protocols for the avionics industry, and the TT-CAN [22] and Time-
Triggered Protocol (TTP) [28] intended for the automotive industry.
On the other hand, there are several communication protocols where message
scheduling is performed dynamically, such as Controller Area Network (CAN)
used in a large number of application areas including automotive electronics,
LonWorks [13] and Profibus [49] for real-time systems in general, etc. Out of
these, CAN is the most well known and widespread event-driven communication
protocol in the area of distributed embedded real-time systems.
However, there is also a hybrid type of communication protocols, such as Byte-
flight [10] introduced by BMW for automotive applications and the FlexRay pro-
tocol [17], that allows the sharing of the bus by event-driven and time-driven mes-
sages.

The time-triggered protocols have the advantage of simplicity and predictability,
while event-triggered protocols are flexible and have low cost. Moreover, protocols
like TTP offer fault-tolerant services necessary in implementing safety-critical ap-
plications. However, recent research [66] has shown that event-driven protocols like
CAN are also predictable, and fault-tolerant services can also be offered on top of
protocols like the TT-CAN. A hybrid communication protocol like FlexRay offers
some of the advantages of both worlds.

Main Design Tasks
There are several methodologies for real-time embedded systems design. The aim of a
design methodology is to coordinate the design tasks such that the time-to-market is
minimized, the design constraints are satisfied, and various parameters are optimized.

Functional analysis and design: The functionality of the host system, into which
the electronic system is embedded, is normally described using a formalism from
that particular domain of application. For example, if the host system is a vehicle,
then its functionality is described in terms of control algorithms using differential
equations, which are modelling the behaviour of the vehicle and its environment.
At the level of the embedded real-time system which controls the host system, the
functionality is typically described as a set of functions, accepting certain inputs
and producing some output values.

The typical automotive application is a control application. The controller reads
inputs from sensors, and uses the actuators to control the physical environment
(the vehicle). A controller can have several modes of operation, and can interact
with other electronic functions, or with the driver through switches and instru-
ments.

During the functional analysis and design stage, the desired functionality is
specified, analyzed and decomposed into sub-functions based on the experience of
the designer. Several suppliers and manufacturers have started to use tools like
Statemate [59], Matlab/Simulink [37], ASCET/SD [3] and SystemBuild/MatrixX

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 409

[61] for describing the functionality, in order to eliminate the ambiguities and to
avoid producing incomplete or incoherent specifications.

At the level of functional analysis the exploration is currently limited to evalu-
ating several alternative control algorithms for solving the control problem. Once
the functionality has been captured using tools like Matlab/Simulink, useful
explorations can involve simulations of executable specifications in order to
determine the correctness of the behaviour, and to assess certain properties of
chosen solutions.
Architecture selection: The architecture selection task decides what components
to include in the hardware architecture and how these components are connected.

There is virtually no exploration involved, as, according to current practice, ar-
chitecture selection is an ad-hoc process, based on the experience of the designer
and previous product versions.
Mapping: The mapping task has to decide what part of the functionality should be
implemented on which of the selected components.

The manufacturers integrate components from suppliers, and thus the design
space is severely restricted by the fact that the mapping of functionality to an ECU
is fixed.
Software design and implementation: This is the phase in which the software is
designed and the code is written. The code for the functions is developed manually
for efficiency reasons, and thus the exploration that would be allowed by auto-
matic code generation is limited.

At this stage the correctness of the software is analysed through simulations,
but there is no analysis of timing constraints, which is left for the scheduling and
schedulability analysis stage.
Scheduling and schedulability analysis: Once the functions have been defined
and the code has been written, the scheduling task is responsible for determining
the execution order of the functions inside an ECU, such that the timing con-
straints are satisfied.

The analysis and exploration techniques employed depend on the scheduling
paradigm and the model of the functionality used. The scheduling and mapping
design tasks take as input a model of the functionality consisting of sets of inter-
acting processes. A process is a sequence of computations (corresponding to sev-
eral building blocks in a programming language) which starts when all its inputs
are available. When it finishes executing, the process produces its output values.
Processes can be pre-emptable or non pre-emptable. Non pre-emptable processes
are processes that cannot be interrupted during their execution. Pre-emptable
processes can be can be interrupted during their execution. For example, a higher
priority process has to be activated to service an event, in this case, the lower pri-
ority process will be temporary pre-empted until the higher priority process fin-
ishes its execution.

The aim of a schedulability analysis is to determine sufficient and necessary
conditions under which an application is schedulable. An application is schedul-
able if there exists at least one scheduling algorithm that is able to produce a fea-
sible schedule. A schedule is feasible if all processes can be completed within the
specified constraints.

410 29 Computing Platforms

However, before such analysis techniques can be used the worst-case execution
times of functions have to be determined. The designer can provide manually such
worst-case times, or tools can be used in order to determine the worst-case execu-
tion time of a piece of code on a given processor [36]. For example, one such tool
is the aiT analyzer [1].

There are several approaches to scheduling:
o Static cyclic scheduling algorithms are used to build, off-line, a schedule table

with activation times for each process, such that the timing constraints of proc-
esses are satisfied.

o Fixed priority scheduling (FPS). In this scheduling approach each process has
a fixed (static) priority which is computed off-line. The decision on which
ready process to activate is taken on-line according to their priority.

o Earliest deadline first (EDF). In this case, that process will be activated which
has the nearest deadline.

For static cyclic scheduling, if building the schedule table fulfills the timing con-
straints, the application is schedulable. In the context of on-line scheduling meth-
ods there are basically two approaches to the schedulability analysis: utilization-
based tests, and response-time analysis.
o The utilization tests use the utilization of a process (its worst-case execution

time relative to its period) in order to determine if the process set is schedul-
able.

o A response time analysis has two steps. In the first step, the analysis derives
the worst-case response time of each process (the time it takes from the mo-
ment is ready for execution, until it has finished executing). The second step
compares the worst case response time of each process to its deadline and, if
the response times are smaller or equal to the deadlines, the system is schedul-
able.

Another important distinction is between two basic design approaches for real-time
systems, the event-triggered and time-triggered approaches.
o Time-Triggered: In the time-triggered approach activities are initiated at prede-

termined points in time. In a distributed time-triggered system it is assumed
that the clocks of all nodes are synchronized to provide a global notion of time.
Time-triggered systems are typically implemented using non-preemptive static
cyclic scheduling, where the process activation or message communication is
done based on a schedule table built off-line.

o Event-Triggered: In the event-triggered approach activities happen when a
significant change of state occurs. Event-triggered systems are typically im-
plemented using preemptive priority-based scheduling, or earliest deadline
first, where, as response to an event, the appropriate process is invoked to ser-
vice it.

There has been a long debate in the real-time and embedded systems communities
concerning the advantages of each approach [4], [28], [71]. Several aspects have
been considered in favour of one or the other approach, such as flexibility, pre-
dictability, jitter control, processor utilization, and testability. An interesting com-
parison of the ET and TT approaches, from a more industrial, in particular auto-
motive, perspective, can be found in [35]. The conclusion there is that one has to

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 411

choose the right approach, depending on the particularities of the application.
Thus, the automotive supplier will select, based on its own requirements, the
scheduling policy to be used in their ECU.

Simulation is extensively used to determine if the timing constraints are satis-
fied. However, simulations are very time consuming and provide no guarantees
that the timing constraints are met.

There is a large quantity of research [5], [7], [28] related to scheduling and sched-
ulability analysis, with results having been incorporated in analysis tools such as
TimeWiz [67], RapidRMA [51], RTA-OSEK Planner [55], and Aires [1]. The
tools determine if the timing constraints of the functionality are met, and support
the designer in exploring several design scenarios, and help to design optimized
implementations.

In the context of static cyclic scheduling, deriving a schedule table is a complex
design exploration problem. Static cyclic scheduling of a set of data dependent
software processes on a multiprocessor architecture has been intensively re-
searched [28], [71]. Such research has been used in commercial tools like TTP-
Plan [42] which derives the static schedules for processes and messages in a time-
triggered system using the time-triggered protocol for communication.

If fixed priority preemptive scheduling is used, exploration is used to determine
how to allocate priorities to a set of distributed processes [20]. Their priority as-
signment heuristic is based on the schedulability analysis from [64]. For earliest
deadline first the issue of distributing the global deadlines to local deadlines has to
be addressed [23].
Integration: In this phase the manufacturer has to integrate the ECUs from differ-
ent suppliers. There is a lack of tools that can analyze the performance of the in-
teracting functionality, and thus the manufacturer has to rely on simulation runs
using the realistic environment of a prototype car. Detecting potential problems at
such a late stage requires time-consuming extensive simulations. Moreover, once a
problem is identified it takes a very long time to go through all the previous stages
in order to fix it. This leads to large delays on the time-to-market.

In order to reduce the large simulation times, and to guarantee that potential
violations of timing constraints are detected, manufacturers have started to use in-
house analysis tools and commercially available tools such as Volcano Network
Architect (for the CAN and LIN buses) [69].

Volcano makes inter-ECU communication transparent for the programmer. The
programmer only deals with signals that have to be sent and received, and the de-
tails of the network are hidden. Volcano provides basic API calls for manipulating
signals. To achieve interoperability between ECUs from different suppliers, Volcano
uses a publish/subscribe model for defining the signal requirements. Published
signals are made available to the system integrator by the suppliers, while subscribed
signals are required as inputs to the ECU. The system integrator makes the pub-
lish/subscribe connections by creating a set of CAN frames, and creating a mapping
between the data in frames and signals [50]. Volcano uses the analysis in [66] for
bounding the communication delay of messages transmitted using the CAN bus.
Calibration, Testing, Verification: These are the final stages of the design proc-
ess. Because not enough analysis, testing and verification has been done in earlier
stages of the design, these stages tend to be very time consuming, and problems
identified here lead to large delays.

412 29 Computing Platforms

Assessment

Hard real-time applications are implemented using distributed architectures where,
currently, each node of the architecture is responsible to implement one function. As
functionality becomes more complex, in order to reduce costs and use the resources
available efficiently, functions will have to be distributed over several nodes, and
several functions will have to share on node.

Once a function is distributed over several nodes, communication has an important
impact on the timing properties. Hence, it is imperative to use predictable, high
bandwidth, communication protocols. Utilizing fully the available resources is only
possible in the context of hardware/software independence, where a software function
can be moved from one node to another. Such portability is achieved through the use
of standards compliant operating systems and middleware.

In such a context, traditional design methodologies lead to sub-optimal implemen-
tations and large delays on the time-to-market. The limited analysis and exploration
employed in the early design stages cannot handle the increasing complexity, the
competing requirements in terms of cost, performance, reliability, maintainability,
low power, etc., and thus severely restricts design space exploration leading to ineffi-
cient solutions. New methodologies are needed which address the design process at
higher abstraction levels and encourage reuse.

In the case of mass market products cost reduction and short time-to-market is im-
possible without substantial reuse. The hardware architecture has to be reused, with
some modifications, over several product cycles. Software functions have to be reused
across product lines and over product cycles as well. Hence, new techniques are nec-
essary which can help configure optimized hardware architectures, deal with the
mapping of the distributed functionality to the hardware nodes, and handle the modi-
fication of legacy systems to support new functionality.

The success of such new design methods depends on the available analysis tech-
niques. In order to (automatically) take informed design decisions, new, higher level,
accurate analysis techniques are needed. Currently, the timing analysis at process
level considers independent processes running on single processors. However, very
often functionality consists of distributed processes that have data and control de-
pendencies, exclusion constraints, etc. New schedulability analysis techniques are
needed which can handle distributed applications, data and control dependencies, and
accurately take into account the details of the communication protocols that have an
important influence on the timing properties. Moreover, highly complex and safety
critical applications can in the future be distributed across several networks, and can
use different, heterogeneous, scheduling policies.

Current design practice does not take into account the impact of the communica-
tion infrastructure during the analysis and exploration. In order to improve the accu-
racy of the analysis and thoroughness of the exploration methods, the exact details of
the communication protocols have to be considered. New, automatic analysis tools are
required for the integration phase in order to handle the inter-node communication
aspects.

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 413

Trends

Distributed functionality: As presented in section 28.1, currently, in automotive
electronics, there is a huge pressure to reduce the number of nodes by integrating
several functions in one node and, at the same time, distribute certain functionality
over several nodes (see Figure 32.2).

Although an application is typically distributed over one single network, we
begin to see applications that are distributed across several networks. For example,
in Figure 32.2, the third application, represented as black dots, is distributed over
two networks. This trend is driven by the need to further reduce costs, improve re-
source usage, but also by application constraints like having to be physically close
to particular sensors and actuators. Moreover, not only are these applications dis-
tributed across networks, but their functions can exchange critical information
through the gateway nodes.

Such safety-critical hard real-time distributed applications running on hetero-
geneous distributed architectures are inherently difficult to analyze and design.
Due to their distributed nature, the communication has to be carefully considered
during the analysis and design in order to guarantee that the timing constraints are
satisfied under the competing objective of reducing the cost of the implementation.

...

...

Gateway

Functions of the first application
Functions of the second application

......

......

GatewayGateway

Functions of the first application
Functions of the second application
Functions of the first application
Functions of the second application

Figure 32.2. Distributed Safety-Critical Applications

Schedulability Analysis
Schedulability analysis for data dependent processes: Current analysis tools
consider a simple model of periodic independent processes, and use utilization
based tests for FPS or EDF [34], depending on the type of scheduling employed.
However, processes can be sporadic or aperiodic, are seldom independent, and
normally they exhibit precedence and exclusion constraints. Knowledge regarding

414 29 Computing Platforms

these dependencies can be used in order to improve the accuracy of schedulability
analyses and the quality of the produced schedules [12].

It has been claimed [71] that static cyclic scheduling is the only approach that
can provide efficient solutions to applications that exhibit data dependencies.
However, advances in the area of fixed priority preemptive scheduling show that
such applications can also be handled with other scheduling strategies [65].

One way of dealing with data dependencies between processes in the context of
static priority based scheduling has been indirectly addressed by the extensions
proposed for the schedulability analysis of distributed systems through the use of
the release jitter [64]. Release jitter is the worst case delay between the arrival of a
process and its release (when it is placed in the ready-queue for the processor) and
can include the communication delay due to the transmission of a message on the
communication channel.

In [65] and [73] time offset relationships and phases, respectively, are used in
order to model data dependencies. Offset and phase are similar concepts that ex-
press the existence of a fixed interval in time between the arrivals of sets of proc-
esses. The authors show that by introducing such concepts into the computational
model, the pessimism of the analysis is significantly reduced when bounding the
time behaviour of the system. The concept of dynamic offsets has been later intro-
duced and used to model data dependencies [41].
Schedulability analysis for distributed systems: Tindell et al. [64] integrate
processor and communication scheduling and provide a “holistic” schedulability
analysis in the context of distributed real-time systems. The validity of the analy-
sis has been later confirmed in [40].

In the case of a distributed system the response time of a process also depends
on the communication delay due to messages. In [64] the analysis for messages is
done is a similar way as for processes: a message is seen as an non pre-emptable
process that is “running” on a bus. The response time analyses for processes and
messages are combined by realizing that the jitter (the delay between the arrival
of a process—the time when becomes ready for execution—and the start of its
execution) of a destination process depends on the communication delay (the time
it takes for a message to reach the destination process, from the moment it has
been produced by the sender process) between sending and receiving a message.
Several researchers have provided analyses that bound the communication delay
for a given communication protocol:
o Controller area network protocol [66];
o Time-division multiple access protocol [64];
o Asynchronous transfer mode protocol [16];
o Token ring protocol [60],
o Fiber distributed data interface protocol [2];
o Time-triggered protocol [43];
o FlexRay protocol [45].
Heterogeneous scheduling policies: Based on their own requirements, the suppli-
ers choose one particular scheduling policy to be used. However, for certain appli-
cations, several scheduling approaches can be used together. Efficient implemen-
tation of new, highly sophisticated automotive applications, entails the use of

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 415

time-triggered process sets together with event-triggered ones implemented on top
of complex distributed architectures.

One approach to the design of such systems, is to allow ET and TT processes to
share the same processor as well as static (TT) and dynamic (ET) communications
to share the same bus. Bus sharing of TT and ET messages is supported by proto-
cols which support both static and dynamic communication [17]. Researchers
have addressed the problem of timing analysis for such systems [45].

A fundamentally different architectural approach to heterogeneous TT/ET sys-
tems is that of heterogeneous multi-clusters, where each cluster can be either TT
or ET. In a time-triggered cluster processes and messages are scheduled according
to a static cyclic policy, with the bus implementing a TDMA protocol such as, for
example, the time-triggered protocol. On event-triggered clusters the processes
are scheduled according to a priority based preemptive approach, while messages
are transmitted using the priority-based CAN bus. In this context, researchers have
proposed an approach to schedulability analysis for multi-cluster distributed em-
bedded systems [46].

When several event-driven scheduling policies are used in a heterogeneous sys-
tem, another approach to the verification of timing properties is to use the tech-
nique presented in [54] which couples the analysis of local scheduling strategies
via an event interface model.

At the communication level, researchers have used simulation to evaluate the
interplay of different scheduling approaches with a given communication protocol.
The details of the communication protocol, including its arbitration policy, are de-
scribed with a hierarchical tree-based language [38].
Extending the process model: The current scheduling approaches capture the
inter-process dependencies only in terms of dataflow.

One drawback of dataflow process graphs is that they are not suitable to capture
the control aspects of an application. For example, it can happen that the execution
of some processes can also depend on conditions computed by previously exe-
cuted processes. By explicitly capturing the control flow in the model, a more
fine-tuned modelling and a tighter (less pessimistic) assignment of execution times
to processes is possible, compared to traditional data-flow based approaches. With
control dependencies, only a subset of the set of processes is executed during an
invocation of the system, depending on the actual vaules of conditions.

In the context of preemptive scheduling, modes have been used to model a cer-
tain class of control dependencies [18]. Such a model basically assumes that at the
starting of an execution cycle, a particular functionality is known in advance and
is fixed for one or several cycles until another mode change is performed. How-
ever, modes cannot handle fine grained control dependencies, or certain combina-
tions of data and control dependencies. Careful modelling using the periods of
processes (lower bound between subsequent re-arrivals of a process) can also be a
solution for some cases of control dependencies [19]. If, for example, we know
that a certain set of processes will only execute every second cycle of the system,
we can set their periods to the double of the period of the rest of the processes in
the system. However, using the worst case assumption on periods leads very often
to unnecessarily pessimistic schedulability evaluations.

416 29 Computing Platforms

More refined process models can produce much better schedulability results.
Recent works [9] aim at extending the existing models to handle control depend-
encies. Baruah [9] introduces the recurring real-time task model that is able to
capture lower level control dependencies, and presents an exponential-time analy-
sis for uniprocessor systems. Several researchers have proposed extensions to the
dataflow process graph model in order to capture these control dependencies [63],
[15], and show that when including control dependencies significant improve-
ments in the quality of the resulting schedules can be obtained [15], [32], [70].

Design Space Exploration
In previous sections we have outlined the current design practice in the industry. If the
presented design approach was appropriate when used for relatively small systems
produced in a well defined production chain, it performs poorly for more complex
systems, leading to an increase in the time-to-market. There are several reasons for
this. First of all, it is very difficult, just based on the specification, to accurately de-
termine what system architecture is appropriate and how the resources should be used.
Also, the fixed allocation of functionality to the hardware components limits the func-
tion/architecture trade-offs.

New design methodologies are needed, which can handle the increasing complex-
ity of such systems, and their competing requirements in terms of performance, reli-
ability, low power consumption, cost, time-to-market, etc. As the complexity of the
systems continues to increase, the development time lengthens dramatically, and the
manufacturing costs become prohibitively high. To cope with this complexity, it is
necessary to reuse as much as possible at all levels of the design process, and to work
at higher and higher abstraction levels.

Function-architecture codesign: Function/architecture co-design is a design
methodology proposed in [25], [62], which addresses the design process at higher
abstraction levels. Function/architecture co-design uses a top-down synthesis ap-
proach, where trade-offs are evaluated at a high level of abstraction. The main
characteristic of this methodology is the use, at the same time with the top-down
synthesis, of a bottom-up evaluation of design alternatives, without the need to
perform a full synthesis of the design. The approach to obtaining accurate evalua-
tions is to use an accurate modelling of the behaviour and architecture, and to de-
velop analysis techniques that are able to derive estimates and to formally verify
properties relative to a certain design alternative. The determined estimates and
properties, together with user-specified constraints, are then used to drive the syn-
thesis process.

Thus, several architectures are evaluated to determine if they are suited for the
specified system functionality. There are two extremes in the degrees of freedom
available for choosing an architecture. At one end, the architecture is already
given, and no modifications are possible. At the other end of the spectrum, no
constraints are imposed on the architecture selection, and the synthesis task has to
determine, from scratch, the best architecture for the required functionality. These
two situations are, however, not common in practice. Often, a hardware platform
is available, which can be parameterized (e.g., size of memory, speed of the buses,
etc.). In this case, the synthesis task is to derive the parameters of the architecture

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 417

such that the functionality of the system is successfully implemented. Once an ar-
chitecture is determined and/or parameterized, the function/architecture co-design
continues with the mapping of functionality onto the instantiated architecture.

This methodology has been used in research tools like Polis [6] and Metropolis
[8], and has also led to commercial tools such as the Virtual Component Co-
design (VCC) [68].
Platform-based design: In order to reduce costs, especially in the case of a mass
market product, the system architecture is usually reused, with some modifica-
tions, for several product lines. Such a common architecture is denoted by the
term platform, and consequently the design tasks related to such an approach are
grouped under the term platform-based design [26].

One of the most important components of any system design methodology is
the definition of a system platform. Such a platform consists of a hardware infra-
structure together with software components that will be used for several product
versions, and will be shared with other product lines, in the hope to reduce costs
and the time-to-market.

The authors in [26] have proposed techniques for deriving such a platform for a
given family of applications. Their approach can be used within any design meth-
odology for determining a system platform that later on can be parameterized and
instantiated to a desired system architecture.

Considering a given application or family of applications, the system platform
has to be instantiated, deciding on certain parameters, and lower level details, in
order to suit that particular application(s). The search for an architecture instance
starts from a certain platform, and a given application. The application is mapped
and compiled on an architecture instance, and the performance numbers are de-
rived, typically using simulation. If the designer is not satisfied with the perform-
ance of the instantiated architecture, the process is repeated.
Incremental design process: A characteristic of the majority of approaches to the
design of embedded systems is that it concentrates on the design, from scratch, of
a new system optimized for a particular application. For many application areas,
however, such a situation is extremely uncommon and only rarely appears in de-
sign practice. It is much more likely that one has to start from an already existing
system running a certain application and the design problem is to implement new
functionality (including also upgrades to the existing one) on this system. In such
a context it is very important to operate no, or as few as possible, modifications to
the already running application. The main reason for this is to avoid unnecessarily
large design and testing times. Performing modifications on the (potentially large)
existing application increases design time and, even more, testing time (instead of
only testing the newly implemented functionality, the old application, or at least a
part of it, has also to be retested) [44].

For example, if an application is remapped or rescheduled, it has to be validated
again. Such a validation phase is very time consuming. In the automotive industry,
for example, the time-to-market in the case of the powertrain unit is 24 months.
Out of these, 5 months, representing more than 20%, are dedicated to validation.
In the case of the telematic unit, the time to market is less than one year, while the
validation time is two months [58]. However, if an application is not modified
during implementation of new functionality, only a small part of the validation

418 29 Computing Platforms

tasks have to be re-performed (e.g., integration testing), thus reducing significantly
the time-to-market, at no additional hardware or development cost.

However, minimizing the modification cost is not the only aspect to be consid-
ered. Such an incremental design process, in which a design is periodically up-
graded with new features, is going through several iterations. Therefore, after new
functionality has been introduced, the resulting system has to be implemented
such that additional functionality, later to be mapped, can easily be accommodated
[44].
Communication synthesis: An important design task in the context of distributed
applications is the communication synthesis task, which decides the characteristics
of the communication infrastructure and the access constraints to the infrastruc-
ture, imposed on functions initiating an inter-node communication.

Current design practices ignore or simplify aspects concerning the communica-
tion infrastructure. One typical approach is to consider communication processes
as processes with a given execution time (depending on the amount of information
exchanged) and to schedule them as any other process, without considering issues
like communication protocol, bus arbitration, packing of messages, clock syn-
chronization, etc. These aspects are, however, essential in the context of safety-
critical distributed real-time applications and one of our objectives is to develop a
strategy which takes them into consideration for process scheduling.

Many efforts dedicated to communication synthesis have concentrated on the
synthesis support for the communication infrastructure. Lower level communica-
tion synthesis aspects under timing constraints have been addressed in [30].

In order to provide accurate analysis and exploration methods, the exact details
of the communication protocol have to be considered. Moreover, the parameters
of the communication protocol have to be carefully determined in order to obtain
an optimized implementation [15].

At the level of the integration phase, an important design space exploration as-
pect refers to packing of messages produced by functions involved in inter-ECU
communication, into frames as required by the communication protocol used.

This process is called frame packing, and is of utmost importance in cost-
sensitive embedded systems where resources, such as communication bandwidth,
have to be fully utilized [27]. Thus, messages are not sent independently, but sev-
eral messages having similar timing properties are usually packed into frames. In
automotive electronics, for example, messages range from one single bit (e.g., the
state of a device) to a couple of bytes (e.g., vehicle speed, etc.). Transmitting such
small messages one per frame would create a high communication overhead,
which can cause long delays leading to an unschedulable system. For example, 48
bits have to be transmitted on CAN for delivering one single bit of application
data. Moreover, a given frame configuration defines the exact behaviour of a node
on the network, which is very important when integrating nodes from different
suppliers.

Currently, frame packing is mostly a manual or in-house inefficient process, al-
lowing little exploration. However, tools like Volcano [69] determine the appro-
priate frame packing which will guarantee that the timing properties of messages
are satisfied.

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 419

When applications are distributed across several clusters, with different com-
munication protocols, the frame configurations have an important impact on the
schedulability of the application. In [47] the researchers show that by carefully
considering the frame packing problem in the context of several communication
protocols, the schedulability of the applications is improved, and the overall cost
of the architecture can be reduced.
Automatic design space exploration: Design space exploration problems are
generally characterized by conflicting constraints, and can be expressed as multi-
objective optimization problems, the majority of which are of NP-complete [14].
Tools are needed in order to support an efficient automatic exploration.

There are several approaches for solving such optimization problems:
o The optimal solution can be found using approaches such as integer linear

programming, branch and bound, constraint programming. However, such
approaches are impractical for large design spaces, due to their prohibitively
large computation times.

o General optimization heuristics, such as simulated annealing, tabu search [52]
and evolutionary approaches [74] can be used to determine good quality solu-
tions in reasonable time. The effectiveness of these general optimization ap-
proaches can be increased by carefully adapting them to the particular design
space exploration problem that has to be solved.

o Polynomial-complexity heuristics, especially crafted for the particular optimi-
zation problem, can also be used to determine reasonable quality solutions.

References

[1] Aires, http://kabru.eecs.umich.edu/aires/aiT, http://www.absint.com/ait/
[2] G. Agrawal, B. Chen, W. Zhao, S. Davari, “Guaranteeing Synchronous Message

Deadlines with the Token Medium Access Control Protocol,” in IEEE Transac-
tions on Computers, volume 43, issue 3, pages 327–339, March 1994.

[3] Ascet/SD, http://en.etasgroup.com/products/ascet_sd/
[4] N. C. Audsley, K. Tindell, A. Burns, “The End Of The Line For Static Cyclic

Scheduling?,” in Proceedings of the 5th Euromicro Workshop on Real-Time Sys-
tems, 36–41, 1993.

[5] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, A. J. Wellings, “Fixed Prior-
ity Preemptive Scheduling: An Historical Perspective,” in Real-Time Systems, vol-
ume 8, pages 173–198, 1995.

[6] F. Balarin et al., Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach, Kluwer Academic Publishers, Boston, 1997.

[7] F. Balarin, L. Lavagno, P. Murthy, A. Sangiovanni-Vincentelli, “Scheduling for
Embedded Real-Time Systems,” in IEEE Design & Test of Computers, volume 15,
issue 1, pages 71–82, January–March 1998.

[8] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Paserone, A. Sangiovanni-Vin-
centelli, “Metropolis: An Integrated Electronic System Design Environment,”
Computer , volume 36, issue 4, pages 45–52, 2003.

[9] S. Baruah, “A General Model for Recurring Real-Time Tasks,” in Proceedings of
the IEEE Real-Time Symposium, pages 114–122, 1998.

[10] J. Berwanger, M. Peller, R. Griessbach, A New High Performance Data Bus Sys-
tem for Safety-Related Applications, http://www.byteflight.de, 2000.

[11] R. Bosch GmbH, CAN Specification Version 2.0, 1991.

420 29 Computing Platforms

[12] A. Burns, A. Wellings, Real-Time Systems and Programming Languages, Addison
Wesley, 2001.

[13] Echelon, LonWorks: The LonTalk Protocol Specification, http://www.eche-
lon.com, 2003.

[14] M. Eisenring, L. Thiele, E. Zilzler, “Conflicting Criteria in Embedded Systems
Design”, IEEE Design and Test of Computers, volume 17, number 2, pages 51–
59, 2000.

[15] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus Access Optimization for
Distributed Embedded Systems,” in IEEE Transactions on VLSI Systems, volume
8, number 5, pages 472–491, 2000.

[16] H. Ermedahl, H. Hansson, M. Sjödin, “Response-Time Guarantees in ATM Net-
works,” in Proceedings of the IEEE Real-Time Systems Symposium, pages 274–
284, 1997.

[17] FlexRay Requirements Specification, http://www.flexray-group.com/, 2002.
[18] G. Fohler, “Realizing Changes of Operational Modes with Pre Run-time Scheduled

Hard Real-Time Systems,” in Responsive Computer Systems, H. Kopetz and Y.
Kakuda, editors, pages 287–300, Springer Verlag, 1993.

[19] R. Gerber, D. Kang, S. Hong, M. Saksena, “End-to-End Design of Real-Time Sys-
tems,” in Formal Methods in Real-Time Computing, D. Mandrioli and C. Heit-
meyer, editors, John Wiley & Sons, 1996.

[20] J, J, Gutiérrez García, M. González Harbour, “Optimized Priority Assignment for
Tasks and Messages in Distributed Hard Real-Time Systems,” in Proceedings of
the 3rd Workshop on Parallel and Distributed Real-Time Systems, pages 124–132,
1995.

[21] K. Hoyme, K. Driscoll, “SAFEbus,” in IEEE Aerospace and Electronic Systems
Magazine, volume 8, number 3, pages 34–39, 1992.

[22] International Organization for Standardization, “Road vehicles—Controller area
network (CAN)—Part 4: Time-triggered communication”, ISO/DIS 11898-4,
2002.

[23] J. Jonsson, K. G. Shin, “Robust Adaptive Metrics for Deadline Assignment in Dis-
tributed Hard Real-Time Systems,” Real-Time Systems: The International Journal
of Time-Critical Computing Systems, Vol. 23, No. 3, pages 239–271, 2002.

[24] P. B. Jorgensen, J. Madsen, “Critical Path Driven Cosynthesis for Heterogeneous
Target Architectures,” in Proceedings of the International Workshop on Hard-
ware/Software Codesign, pages 15–19, 1997.

[25] B. Kienhuis, E. Deprettere, K. Vissers, P. Van Der Wolf, “An Approach for Quan-
titative Analysis of Application-Specific Dataflow Architectures,” in Proceedings
of the IEEE International Conference on Application-Specific Systems, Architec-
tures and Processors, pages 338 –349, 1997.

[26] K. Keutzer, S. Malik, A. R. Newton, “System-Level Design: Orthogonalization of
Concerns and Platform-Based Design,” in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, volume 19, number 12, December
2000.

[27] H. Kopez, R. Nossal, “The Cluster-Compiler—A Tool for the Design of Time
Triggered Real-Time Systems,” in Proceedings of the ACM SIGPLAN Workshop.
on Languages, Compilers, and Tools for Real-Time Systems, pages 108–116, 1995.

[28] H. Kopetz, Real-Time Systems-Design Principles for Distributed Embedded Ap-
plications, Kluwer Academic Publishers, 1997.

[29] H. Kopetz, “Automotive Electronics,” in Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems, pages 132–140, 1999.

 29.2 Distributed Embedded Real-Time Systems – Analysis and Exploration 421

[30] P. V. Knudsen, J. Madsen, “Integrating Communication Protocol Selection with
Hardware/Software Codesign,” in IEEE Transactions on CAD, volume 18, number
8, pages 1077–1095, 1999.

[31] K. Kuchcinski, “Embedded System Synthesis by Timing Constraint Solving,” in
Proceedings of the International Symposium on System Synthesis, pages 50–57,
1997.

[32] K. Kuchcinski, “Constraints Driven Design Space Exploration for Distributed Em-
bedded Systems,” in Journal of Systems Architecture, volume 47, issues 3–4, pages
241–261, 2001.

[33] Local Interconnect Network Protocol Specification, http://www.lin-subbus.org,
2003.

[34] C. L. Liu, J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment,” in Journal of the ACM, volume 20, number 1, pages 46–
61, 1973.

[35] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and Static Cyclic Sched-
uling for Distributed Automotive Control Applications,” in Proceedings of the 11th
Euromicro Conference on Real-Time Systems, pages 142–149, 1999.

[36] S. Malik, M. Martonosi, Y.S. Li, “Static Timing Analysis of Embedded Software,”
in Proceedings of the Design Automation Conference, pages 147–152, 1997.

[37] Matlab/Simulink, http://www.mathworks.com
[38] T. Meyerowitz, C. Pinello, A. Sangiovanni-Vincentelli, “A tool for describing and

evaluating hierarchical real-time bus scheduling policies”, Proceedings of the De-
sign Automation Conference, pages 312–317, 2003.

[39] P. S. Miner, “Analysis of the SPIDER Fault-Tolerance Protocols,” in Proceedings
of the 5th NASA Langley Formal Methods Workshop, 2000.

[40] J. C. Palencia, J. J. Gutiérrez García, M. González Harbour, “On the Schedulability
Analysis for Distributed Hard Real-Time Systems,” in Proceedings of the Euromi-
cro Conference on Real Time Systems, pages 136–143, 1997.

[41] J. C. Palencia, M. González Harbour, “Exploiting Precedence Relations in the
Schedulability Analysis of Distributed Real-Time Systems,” in Proceedings of the
20th IEEE Real-Time Systems Symposium, pages 328–339, 1999.

[42] TTP-Plan, http://www.tttech.com/
[43] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for Distributed Embedded Sys-

tems Based on Schedulability Analysis,” in Proceedings of the Design, Automation
and Test in Europe Conference, pages 567–574, 2000.

[44] P. Pop, P. Eles, T. Pop, Z. Peng, “An Approach to Incremental Design of Distrib-
uted Embedded Systems,” in Proceedings of the Design Automation Conference,
pages 450–455, 2001.

[45] T. Pop, P. Eles, Z. Peng, “Holistic Scheduling and Analysis of Mixed Time/ Event-
Triggered Distributed Embedded Systems,” in International Symposium on Hard-
ware/Software Codesign, pages 187–192, 2002.

[46] P. Pop, P. Eles, Z. Peng, “Schedulability Analysis and Optimization for the Syn-
thesis of Multi-Cluster Distributed Embedded Systems,” in Proceedings of the De-
sign Automation and Test in Europe Conference, pages 184–189, 2003.

[47] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Frame Packing for Multi-Cluster
Distributed Embedded Systems,” in Proceedings of the ACM SIGPLAN Conference
on Languages, Compilers and Tools for Embedded Systems, pages 113–122, 2003.

[48] S. Prakash, A. Parker, “SOS: Synthesis of Application-Specific Heterogeneous
Multiprocessor Systems,” in Journal of Parallel and Distributed Computers, vol-
ume 16, pages 338–351, 1992.

[49] Profibus International, PROFIBUS DP Specification, http://www.profibus.com/,
2003.

422 29 Computing Platforms

[50] A. Rajnák and M. Ramnefors, “The Volcano Communication Concept,” Conver-
gence Conference, 2002.

[51] RapidRMA, http://www.tripac.com
[52] C. R. Reevs, Modern Heuristic Techniques for Combinatorial Problems, Black-

well Scientific Publications, 1993.
[53] REVIC Software Cost Estimating Model, User’s Manual, V9.0–9.2, US Air Force

Analysis Agency, 1994.
[54] K. Richter, M. Jersak, R. Ernst, “A Formal Approach to MpSoC Performance

Verification,” in Computer, volume 36, issue 4, pages 60–67, 2003.
[55] RTA-OSEK Planner, http://www.livedevices.com
[56] J. Rushby, “Bus Architectures for Safety-Critical Embedded Systems,” Springer–

Verlag Lecture Notes in Computer Science, volume 2211, pages 306–323, 2001.
[57] SAE Vehicle Network for Multiplexing and Data Communications Standards

Committee, SAE J1850 Standard, 1994.
[58] A. Sangiovanni-Vincentelli, “Electronic-System Design in the Automobile Indus-

try”, in IEEE Micro, volume 23, issue 3, pages 8–18, 2003.
[59] Statemate, http://www.ilogix.com
[60] J. K. Strosnider, T. E. Marchok, “Responsive, Deterministic IEEE 802.5 Token

Ring Scheduling,” in Journal of Real-Time Systems, volume 1, issue 2, pages 133–
158, 1989.

[61] SystemBuild/MatrixX, http://www.ni.com/matrixx
[62] B. Tabbara, A. Tabbara, A. Sangiovanni-Vincentelli, Function/Architecture Opti-

mization and Co-Design of Embedded Systems, Kluwer Academic Publishers, 2000.
[63] L. Thiele, K. Strehl, D. Ziegengein, R. Ernst, J. Teich, “FunState—An Internal De-

sign Representation for Codesign,” in International Conference on Computer-
Aided Design, pages 558–565, 1999.

[64] K. Tindell, J. Clark, “Holistic Schedulability Analysis for Distributed Hard Real-
Time Systems,” in Microprocessing and Microprogramming, volume 40, pages
117–134, 1994.

[65] K. Tindell, Adding Time-Offsets to Schedulability Analysis, Technical Report Num-
ber YCS–94–221, Department of Computer Science, University of York, 1994.

[66] K. Tindell, A. Burns, A. J. Wellings, “Calculating Controller Area Network (CAN)
Message Response Times,” in Control Engineering Practice, volume 3, number 8,
pages 1163–1169, 1995.

[67] TimeWiz, http://www.timesys.com
[68] Virtual Component Co-design, http://www.cadence.com/
[69] Volcano Network Analyzer, http://www.volcanoautomotive.com/
[70] Y. Xie, W. Wolf, “Allocation and scheduling of conditional task graph in hard-

ware/software co-synthesis”, Proceedings of the Design, Automation and Test in
Europe Conference, pages 620–625, 2001.

[71] J. Xu, D. L. Parnas, “On Satisfying Timing Constraints in Hard-Real-Rime Sys-
tems,” in IEEE Transactions Software Engineering, volume 19, number 1, pages
70–84, 1993.

[72] J. Xu, D. L. Parnas, “Priority Scheduling Versus Pre-Run-Time Scheduling,” in
Journal of Real Time Systems, volume 18, issue 1, pages 7–24, 2000.

[73] T. Yen, W. Wolf, “Performance Estimation for Real-Time Distributed Embedded
Systems,” in IEEE Transactions on Parallel and Distributed Systems, volume 9,
number 11, pages 1125–1136, 1998.

[74] E. Zitzler, K. Deb, L. Thiele, “Comparison of Multi-Objective Evolutionary Algo-
rithms: Empirical Results”, Evolutionary Computation, 8(2), 173–195, 2000.

 29.3 Reconfigurable Hardware Platforms 423

29.3 Reconfigurable Hardware Platforms

Landscape

Classification of Reconfigurable Architectures
All reconfigurable processing elements consist of an array of logic blocks and an
interconnect structure. The logic blocks are used for computations and the intercon-
nect structure is used to connect the inputs and outputs of the logic blocks. Most re-
configurable computing systems couple a reconfigurable processing element to a host
system. This coupling is motivated by several reasons. First, for some operations
processors are much more efficient than reconfigurable elements. For example, float-
ing-point arithmetic is more efficiently implemented in processors than in fine-
grained reconfigurable elements. Second, the host processor acts as a controller for
the reconfigurable element. The host initiates and monitors the configuration process
as well as data transfers. Finally, host processors allow for an easy system integration
through their software layers, e.g., file systems and network interfaces.

Reconfigurable computing elements and systems have been classified according to
a multitude of parameters [1] [2] [3]. We will follow a simple classification with the
two parameters logic block granularity and host coupling.

Logic Block Granularity

Fine-grained logic blocks typically operate on bit-wide data types and employ
look-up tables as computing elements. Most commercial FPGAs are examples for
fine-grained reconfigurable architectures.
Medium-grained logic blocks typically operate on 2-bit and 4-bit data types and
employ sets of look-up tables or small bit-width ALUs (arithmetic and logic units)
as computing elements.
Coarse-grained logic blocks operate on byte-sized and word-sized operands and
employ ALUs as computing elements.

The logic block granularity is the prime design parameter of a reconfigurable comput-
ing element and determines many secondary parameters. The granularity decides on
the mapping efficiency for a specific application. An efficient mapping requires a
good match between the operations specified by the application and the operations
offered by the logic block. Naturally, applications with many bit-level data types and
operations map well to fine-grained logic blocks. Applications with many arithmetic
operations on byte- and word-sized data types map well to ALU-based logic blocks.
As a further consequence, coarse-grained elements require fewer bits than fine-
grained ones to determine their function. This is due to two facts. First, the look-up
tables in fine-grained logic blocks can be programmed to compute any function of
their inputs, whereas the ALUs in coarse-grained logic blocks offer a rather limited
set of meaningful arithmetic, logic, shift, and transfer operations. Therefore, coarse-
grained logic blocks need fewer bits to determine their operation. Additionally, fine-
grained elements require a much richer interconnect structure to utilize their logic
blocks. Consequently, fine-grained logic blocks spend also more bits than coarse-
grained ones to specify how the logic block connects to the interconnect structure of

424 29 Computing Platforms

the device. The configuration size effects two further parameters of a reconfigurable
element: the size of the configuration memory and the reconfiguration time. The con-
figuration memory adds to the total area of the reconfigurable element and hence to
the device cost. The reconfiguration time is the time required to write the configura-
tion memory.

Host Coupling: Reconfigurable systems are classified according to the tightness
of the coupling between the reconfigurable processing element and the host proc-
essor into attached reconfigurable processing units, reconfigurable coprocessors,
and reconfigurable functional units. The relative position of the processor core and
the reconfigurable element determines the amount of computation that can be effi-
ciently mapped to the reconfigurable element. Generally, a tighter coupling leads
to a lower communication latency which allows to map a relatively small portion
of code to the reconfigurable element. Loose couplings lead to higher communica-
tion latencies and require bigger amounts of computation to be assigned to the re-
configurable element. The different host couplings are shown in Figure 32.3 and
are defined as follows:
o Attached reconfigurable processing unit: The loosest method of coupling is to

connect the reconfigurable element with the processor via the processor’s
memory or I/O bus. Such systems can easily be built out of off-the-shelf com-
ponents, e.g., [4] [5]. The reconfigurable element and the processor can oper-
ate rather independently. Typically, tasks which implement a substantial
amount of computation are mapped to the reconfigurable processing element.

o Reconfigurable coprocessor: A tighter method of coupling is the coprocessor
approach that couples the reconfigurable element with the processor core, e.g.,
[6] [7] [8]. A coprocessor coupling requires special instructions that control the
coprocessor operation. Some instruction set architectures include generic co-
processor instructions that can be used to control the reconfigurable coproces-
sor. An alternative that requires more design effort is to extend the processor’s
instruction set with new instructions. The coprocessor coupling has the advan-
tage that the processor’s memory hierarchy provides a high memory bandwidth
to the reconfigurable element. For streaming applications, this bandwidth is
necessary to constantly feed the reconfigurable element with data. Typically,
functions and runtime-intensive inner loops of functions are mapped to the
reconfigurable processing element.

o Reconfigurable functional unit (RFU): The tightest coupling is achieved when
the functional units of a processor core are turned into reconfigurable ele-
ments, e.g., [9] [10]. This method of coupling reduces communication between
the processor core and the reconfigurable element to accesses to the common
register file. However, this approach requires a complete redesign of the proc-
essor core. The redesign effects the pipeline and the instruction set. Typically,
collections of a few instructions forming a new customized instruction are
mapped to the reconfigurable processing element.

Reconfigurable computing systems are built as board-level systems or as
systems integrated on a single chip. The early reconfigurable computers were
built as board-level systems and attached FPGAs to a PC or a workstation.
This classifies early reconfigurable computers as fine-grained attached systems

 29.3 Reconfigurable Hardware Platforms 425

[4] [5]. The next wave of reconfigurable computers included board-level sys-
tems that attached coarse-grained elements to PCs and workstations [11]. Cur-
rently, there is a strong commercial trend toward so-called (re)configurable
systems on a chip (CSoC). CSoCs are single chip systems that attach fine-
grained or coarse-grained reconfigurable elements to a host processor. Most
current rResearch efforts concentrate on fine-grained and coarse-grained re-
configurable coprocessors and reconfigurable functional units. These devices,
when fabricated, obviously integrate the reconfigurable processing element
and the processor core on a single chip.

CPU Memory
Caches

Attached Processing UnitCoprocessor

Workstation

Interface
I/O

RFU

Figure 32.3. Different couplings between host processor and processing element

Reconfigurable Elements
There exists a wide variety of reconfigurable computing elements. All reconfigurable
computing elements comprise an array of logic blocks and an interconnect structure.
Some reconfigurable elements have configurable logic blocks, i.e., the function exe-
cuted is determined by configuration data. Other reconfigurable elements have fixed
logic blocks and allow the configuration of the connections between them. Most re-
configurable elements, however, allow the configuration of both the logic blocks and
the interconnect. This section gives a brief survey of reconfigurable computing ele-
ments, divided into elements with fine-grained, medium-grained, and coarse-grained
logic blocks. These elements have realizations as stand-alone integrated circuits, are
integrated with processors on configurable systems on a chip, or form parts of recon-
figurable processors.

Fine-grained Reconfigurable Elements: FPGAs were introduced in the mid
1980s as a new way of implementing glue logic and were placed on the market at
the high-end of programmable logic devices (PLDs). Since then, a large variety of
FPGAs and complex programmable logic devices (CPLDs) evolved. In the mean-
time, FPGAs have found many uses other than implementing glue logic. FPGAs
are used for large-scale logic emulation and rapid prototyping systems, for ASIC
replacements, as building block of configurable systems on a chip, and for the
construction of custom computing machines.

426 29 Computing Platforms

There are many books and papers available on CPLD and FPGA technologies
and architectures, as well as on corresponding design methods and tools. For an
introduction to CPLD and FPGA architectures, we refer to [12] [13]. A more re-
cent overview over PLDs, CPLDs, and FPGAs can be found in [14]. A selection
of books focusing on FPGAs includes [15] [16] [17].

SRAM-based FPGAs are reprogrammable arbitrary often in-circuit which is the
central feature for their application in reconfigurable computing systems. Thus, all
SRAM-based FPGAs can be used for the construction of compile-time and run-
time reconfigurable systems.
Medium-grained Reconfigurable Elements: Medium-grained reconfigurable
elements operate on 2-bit and 4-bit data types rather than on single bits. The logic
blocks are either constructed from look-up tables or small ALUs. Usually, both
look-up tables and ALUs can be cascaded to implement operators for larger bit-
widths. Compared to fine-grained elements, medium-grained logic blocks imple-
ment arithmetic operations more efficiently. The number of operations a block can
perform is smaller which results in less configuration bits. The interconnect is or-
ganized in busses of the corresponding bit-width. In the following, we present two
selected medium-grained architectures.
Coarse-grained Reconfigurable Elements: Coarse-grained reconfigurable archi-
tectures are based on arrays of dedicated arithmetic and logic units (ALUs). Such
arrays are intended for operations on byte-sized and word-sized operands. These
operand types are common in computationally demanding areas such as multime-
dia and digital signal processing. In these areas, reconfigurable ALU arrays
achieve a much higher performance and require less silicon area than fine-grained
reconfigurable architectures. On the other hand, ALU arrays are not able to lever-
age optimizations in the operand sizes. If operations on few bits are required or the
operands do not match the ALU bit-widths, ALU arrays suffer area and speed
overheads. Coarse-grained reconfigurable elements are characterized as follows:
o The logic blocks are based on arithmetic-logic units (ALUs) that operate on

byte and multi-byte data types. Logic blocks further contain registers, multi-
plexers, and more specialized circuits such as barrel shifters. At the extreme
end of coarse granularity we find logic blocks that contain complete processor
cores with small register files and even instruction and data caches.

o The interconnect comprises byte and word-wide busses. Due to the high regu-
larity of digital signal processing applications, the interconnect structures of
coarse-grained elements are less flexible than the interconnects for fine-
grained elements. ALU arrays often use 2D-mesh interconnect structures that
provide nearest neighbor connections and, additionally, vertical and horizontal
array-wide global busses. Some systems are even simpler and restrict the rout-
ing to one dimension.

o For the instruction control of coarse-grained architectures there exist several
options. First, an array-wide context determines the function and interconnec-
tion of all ALUs. Second, each logic block has its own instruction memory
which allows for some independence between the blocks. In such a case, the
program counter can be implemented globally or locally. Global program
counters result in a single instruction, multiple data (SIMD) mode of execu-
tion. Local program counters enable multiple instructions, multiple data

 29.3 Reconfigurable Hardware Platforms 427

(MIMD) execution modes. Other sophisticated instruction control techniques
include distributed control where logic blocks can define the instructions of
other blocks, and wormhole routing techniques.

Reconfigurable Processors
Reconfigurable processors couple reconfigurable elements tightly with a processor
core and integrate both units on the same chip. In the last years, reconfigurable proc-
essors have become the subject of many research projects.

Processor core and reconfigurable unit are two computing elements with various
possible interactions. The architectural integration of these elements concerns the
coupling between core and reconfigurable unit, the way instructions are issued to the
reconfigurable unit, and the way operands are transferred from and to the reconfigur-
able unit. The design issues concerning the reconfigurable unit itself are the granular-
ity, the interconnect and the reconfiguration technique. The last issue is the program-
ming model for the reconfigurable processor.

Coupling: The relative position of the processor core and the reconfigurable unit
determines the type of applications that benefit most from the reconfigurable
processor. Generally, a tighter coupling leads to a smaller communication over-
head. Loose couplings thus require bigger amounts of computation assigned to the
reconfigurable unit. We differentiate between reconfigurable coprocessors and re-
configurable functional units (RFUs).
Instructions: Both RFU and coprocessor approaches require special instructions.
In most cases, the core’s instruction set is extend with a set of new instructions
that handle the reconfigurable units. Some processors have generic coprocessor
instructions that can be used to control the reconfigurable coprocessor. Both co-
processor and RFUs need two types of additional instructions: instructions that
start the reconfiguration process, and instructions that actually execute the recon-
figurable element’s operation. Reconfigurable coprocessors further require
instructions for data transfer and synchronization. Generally, synchronization is
required whenever two computing elements operate concurrently. The simplest
approach forces the processor core to stall until the execution of the reconfigurable
unit has completed. More advanced techniques allow for the concurrent operation
of processor core and reconfigurable coprocessor and achieve synchronization by
semaphore-like mechanisms. RFUs are deeply integrated into the processor pipe-
line and can thus operate concurrently to other functional units. The core’s control
logic synchronizes activities and schedules the accesses to the register file. RFUs
need thus no additional synchronization or data transfer instructions. RFUs are
presently gaining interest for embedded very-long-instruction-word (VLIW) archi-
tectures, where optimized compilers extract parallelism and schedule the custom-
ized functional units at compile time.
Operands: Most research prototypes for reconfigurable processors use RISC-style
processor cores with load/store architectures. Hence, the RFUs may only access
the core’s register file in order to read and write data. Coprocessors are not inte-
grated in the core’s pipeline. They see the same memory hierarchy as the core and
can thus use several techniques to read and write data. First, data may be trans-
ferred between the coprocessor and the core via special coprocessor registers.

428 29 Computing Platforms

Second, coprocessors can access caches, on-chip memories, and the external
memory interface. Third, to increase the overall memory bandwidth some ap-
proaches equip the reconfigurable units with dedicated memory ports. While this
certainly increases bandwidth, it potentially leads to data consistency problems.
Granularity: The granularity for both coprocessors and RFUs can be fine-
grained, medium-grained, or coarse-grained. Fine-grained arrays are well suited to
implement bit manipulation operations and random logic. Coarse-grained architec-
tures are better suited to implement regular arithmetic operations on byte and
word-sized data found in most multimedia applications. There is obviously a
trade-off involved as many real-world workloads contain both types of applica-
tions. Researchers currently investigate multi-granular elements that are well
suited to implement bit manipulation operands, but can also be efficiently ar-
ranged to suite byte operations.
Interconnect: All reconfigurable elements that are found in reconfigurable proc-
essors use simpler interconnect structures than the fine-grained FPGAs. Mostly, a
two-dimensional interconnect structure is used that connects each element to its
four neighbors horizontally and vertically. Additional busses may exist that con-
nect all elements in a row and in a column.
Reconfiguration: The actual reconfiguration process is performed either by the
processor core or by a dedicated configuration controller. The latter option allows
for concurrent core execution and reconfiguration and thus hides reconfiguration
time. Advanced techniques allow the reconfigurable unit to request and perform
its own reconfiguration. Reconfiguration time is an important parameter that is to
be minimized. The reconfiguration time depends on the configuration size and on
the location from where the configuration data has to be read. The clear goal is
single-cycle reconfiguration, i.e., the whole reconfigurable unit is reprogrammed
in a single clock cycle. This requires the configuration data to be stored on the
processor, near the reconfigurable elements. Multi-context reconfigurable proces-
sors are able to store several contexts on the chip. The simplest context fetching
mechanism is load on demand. This mechanism is used by single-context and
multi-context units when a configuration is required which is not present in the
context memory. For multi-context architectures there are more sophisticated
fetching mechanisms. The context memory can be used as a cache, where recently
used contexts are stored. Alternatively, a context can be prefetched concurrently to
the execution of a different context.
Programming Model: Programming models for reconfigurable processors have
not yet received sufficient attention. This will certainly have to change as the suc-
cess of reconfigurable processors strongly depends on reasonable programming
models that allow for the development of automated code generation tools. Most
programming environments for reconfigurable processors consist of two separate
tool flows, one for the software and one for the hardware. Functions that employ
the reconfigurable unit are manually constructed at the assembly language level
and and wrapped together with the configuration data into library functions that
are linked with the user code [18]. Recently, some projects began to touch issues
of compiling from high-level languages, e.g., [19]. The goal is to develop a com-
piler that automatically generates code and configurations from a general-purpose
programming language such as “C”. Such a compiler constructs a control flow

 29.3 Reconfigurable Hardware Platforms 429

graph from the source program and then decides which operations will go into the
reconfigurable unit. Generally, inner loops of programs are good candidates for
reconfigurable implementation. For general-purpose code this leads to several
problems. First, it is quite difficult to extract a set of operations with matching
granularity at a sufficient level of parallelism. Second, inner loops of general-
purpose programs often contain excess code, i.e., code that must be run on the
core such as exceptions, function calls, and system calls.

Configurable Systems on a Chip (CSoCs)
CSoCs combine CPU cores with caches, memories, I/O modules, and reconfigurable
elements on a single chip. During the last years, many commercial CSoCs have either
entered the market or have been announced. Configurable systems on a chip are also
sometimes denoted as system-on-a-programmable-chip (SoPC). We divide CSoCs
into two groups, CSoCs with hard CPU cores and CSoCs with soft CPU cores:

CSoCs with hard CPU cores include hard-wired or fixed CPUs on the chip. These
devices provide the same CPU performance than their non-hybrid counterparts.
The CPUs can not be configured and the coupling to the reconfigurable element is
predetermined. The reconfigurable element is attached to the CPU, usually by a
memory-mapped interface or some peripheral bus system.
CSoCs with soft CPU cores employ synthesizable CPUs. The advantage of soft
CPU cores is that they can be configured in a wide range of parameters. Typically,
the configuration subsumes the instruction set, the number of functional units, the
size of the register file, and the size of the caches. The configured soft cores are
synthesized together with other system blocks either to ASIC targets or to FPGA
targets. The latter variant allows for the greatest flexibility. Hence, soft CPU cores
that target FPGAs are used for rapid prototyping of other CSoCs and reconfigur-
able processors. A CPU synthesized to an FPGA runs at a lower speed than a cor-
responding CPU synthesized to an ASIC or a dedicated CPU.

Assessment

Fine-Grained Reconfigurable Elements
Most current runtime reconfigurable systems are built of SRAM-based FPGAs. These
systems reconfigure FPGAs during an application’s runtime and rely on the FPGA’s
fast and partial reconfiguration capabilities:

Fast Reconfiguration: The reconfiguration time is the time required to write all the
SRAM configuration cells of an FPGA. This time depends on the structure and
number of logic blocks, richness and flexibility of the interconnect, and on the
time to transfer the configuration data to the FPGA device. While early FPGAs
had rather slow configuration ports, modern FPGAs provide higher bandwidth in-
terfaces. An example is the SelectMap interface of the Xilinx Virtex FPGA series
that provides an 8-bit parallel reconfiguration port running at 50 MHz [20]. Most
current FPGAs have reconfiguration times in the range of a few ms to some hun-
dred ms.
Partial Reconfiguration: Another way to keep reconfiguration time low is to re-
configure only the parts of the FPGA needed to accommodate the new function.

430 29 Computing Platforms

Most currently available FPGAs do not support partial reconfiguration. An excep-
tion is the Xilinx Virtex series that provides a limited form of partial reconfigura-
bility. Virtex devices can be reconfigured column-wise.

Currently, all commercially available FPGAs are single-context devices that store
only the context in use on the chip. Multi-context FPGAs can store several contexts
on the chip. Instead of a single programmable cell per configuration point, multi-
context devices provide for several planes of configuration cells. The main benefit of
a multi-context FPGA is that it allows for fast, single-cycle context switches. Com-
pared to single-context FPGAs, multi-context FPGAs better sustain their functional
densities and are thus more flexible. On the other hand, multi-context devices require
more silicon area than their single-context counterparts to store the contexts.

The three main issues in designing multi-context devices are number of contexts,
context control, and context loading mechanisms. The question of the number of
contexts and, specifically, whether a multi-context or a single-context device is
preferrable, depends strongly on the application. There are two key observations:
First, the description of an operation is usually much smaller than the active circuitry
required to perform the operation. Data taken from a multicontext prototype [21]
indicates a difference of one order of magnitude. This observation basically under-
lines the known fact that computation in time requires less area than computation in
space. Second, many applications do not require that all logic elements perform an
evaluation every cycle. The design problem of deciding on the number of contexts is
basically an issue of balancing silicon area between active logic (LUTs) and context
memory. In [21], DeHon presents an extensive investigation of application classes for
which it is more efficient to switch between several contexts and have lesser logic
blocks than to map the complete application to space.

The simplest context control mechanism is to have a single device-wide context se-
lector that is controlled from a host processor. Using this mechanism, the reconfigura-
tion of a multi-context device is identical to the reconfiguration of single-context
device. The only but important difference lies in the single-cycle reconfiguration time.
However, multi-context devices allow for more advanced mechanisms. The recon-
figurable array can be divided into several regions each having an own context selec-
tor. This results in several control threads per device. A further technique is to control
the context from inside the reconfigurable array, i.e., the result of some operation
could determine the next context for the array. Multiple execution threads and self-
controlled reconfiguration are not yet that well investigated for fine-grained recon-
figurable elements.

There are several design decisions according to the handling of the context memo-
ries. The context memories of multi-context architectures can be operated either as
memories or as caches. Context caches use some replacement strategy, usually least
recently used (LRU). Further, the context memories are either loaded on demand or
prefetched. By properly prefetching the contexts, reconfiguration times can be hidden.

Multi-context FPGAs are a natural extension to traditional FPGAs. Although
FPGA manufacturers such as Xilinx produced engineering quantities of multi-context
devices, they did not turn this technology into products [22]. Up to now, there are no
commercially available multi-context FPGAs. In the following, we list a selection of

 29.3 Reconfigurable Hardware Platforms 431

multi-context devices that have been developed and prototyped in academic and in-
dustrial research laboratories:

Dynamically Programmable Gate Array (DPGA): The DPGA architecture [23]
[24], devoloped at the M.I.T., USA, is a proof-of-concept for multi-context
FPGAs. The DPGA device consists of a number of subarrays. A subarray is
formed by a 4 x 4 collection of logic blocks. The DPGA logic block contains one
4-LUT. The interconnect splits into intra- and inter-subarray routing resources. A
DPGA prototype with 9 subarrays has been fabricated in a 1 u CMOS process
with 3 metal layers. The prototype contains a 128-bit DRAM per array element.
The DRAM provides four contexts for both the look-up table and the interconnec-
tion network. A 2-bit chip-wide context selector controls the active context.
Dynamically Reconfigurable Logic Engine (DRLE): The Dynamically Recon-
figurable Logic Engine (DRLE) [25] [22], developed at NEC, Japan, is a multi-
context device for numerically intensive algorithms that operate on small bit-
widths. The DRLE consists of an 4 x 12 array of blocks (LBs) where each block in
turn is composed out of 4 x 4 so-called unified cells (UC), a reconfiguration con-
troller (RC), a global bus switch, and bus connectors (BC). The basic computa-
tional elements in a UC are the memory columns, which contain eight memory
cells, two read ports, and one write port. Each memory cell stores one configura-
tion. A unified cell can be configured in logic mode, memory mode, or switch
mode. Thus, the device allows to trade-off computational capacity for interconnect
capacity. The unified cells are connected to a set of local and global busses. The
minimum unit of reconfiguration is the logic block (LB) which contains a recon-
figuration controller. The reconfiguration can be controlled externally or inter-
nally. NEC has presented a prototype DRLE in 0.25 u CMOS with 5.1 M transis-
tors that stores eight contexts on the device. The context switch time is reported
with 4.6 ns.

Medium-Grained Reconfigurable Elements
In the following, we present a selection of medium-grained reconfigurable architec-
tures.

Garp: The Garp architecture [6], developed at UC Berkeley, USA, couples a
MIPS-II core with a reconfigurable array as a coprocessor. The bit-width of the
logic block’s basic data type is two bits. A logic block can perform a number of
operations on up to four 2-bit inputs. Additionally, the logic blocks have special
carry inputs and outputs to implement efficient arithmetic functions on larger bit-
widths. A Garp block contains two 2-bit registers and several multiplexers that
connect the block to the routing structure. A peculiarity of Garp is that the regis-
ters in a logic block can be read and written from an external controller via mem-
ory busses.
CHESS: The CHESS architecture [26] is an array of 4-bit ALUs. A CHESS ALU
has 16 instructions and can be cascaded for operations on byte and word-sized op-
erands. The ALU instructions can either be static or dynamic. Static ALU instruc-
tions are part of the array’s configuration. Dynamic instructions are signals gener-
ated by the user logic that connect to the instruction input of an ALU. CHESS uses
a hierarchical two-dimensional interconnect, similar to fine-grained reconfigurable

432 29 Computing Platforms

elements. The entire routing structure is based on 4-bit busses. Each ALU is at-
tached to an adjacent switch-box that can operate in two modes. In the standard
routing mode, a switch-box implements crosspoints that connect horizontally and
vertically running busses. Alternatively, the configuration points of a switch-box
can be used as RAM structure. The switch-boxes contain also registers to facilitate
deep pipelines. Additionally, CHESS contains a number of embedded RAM
blocks.

Coarse-Grained Reconfigurable Elements
In the following, we present a selection of coarse-grained reconfigurable architec-
tures.

RaPiD: The RaPiD (Reconfigurable Pipelined Datapath) architecture [6], devel-
oped at the University of Washington, USA, is a one-dimensional array of cells. A
cell comprises an integer multiplier, two integer ALUs, six registers, and three
small local memories. The registers, the RAM, and the ALUs operate on 16-bit
data types. The multiplier performs a 16 x 16 to 32 multiplication and outputs the
32-bit result as two 16-bit words. The ALUs can be cascaded for double-precision
operations. The RAMs allow for one write and one read per clock cycle. All rout-
ing structures are 16-bit busses. Some of the routing channels are segmented. A
RaPiD array is constructed by replicating identical cells from left to right, forming
a linear computing pipeline. RaPiD targets highly repetitive, computationally-
intensive tasks since deep, application-specific computation pipelines can be con-
figured in RaPiD. Typical application areas are multimedia and digital signal proc-
essing.
KressArray: The KressArray architecture [27], developed in the Xputer project at
the University of Kaiserslautern, Germany, consists of a 3 x 3 mesh of reconfigur-
able DataPath Units (rDPUs). An rDPU contains a 32-bit ALU, a register file, and
a set of multiplexers. The rDPUs are reconfigurable in the sense that a configura-
tion word defines the ALU operation, the settings of the internal multiplexers that
connect the ALU with the register file and the communication ports, and the mode
of the local rDPU interconnections. The rDPUs are arranged in a NEWS (north,
east, west, south) network where every rDPU is connected to its four neighbors.
The NEWS network forms the local interconnect and contains 32-bit duplex con-
nections. Additionally, there exists a global network which connects all nine
rDPUs. The KressArray targets embedded applications which show a significant
amount of parallelism, e.g., image processing.

Reconfigurable Coprocessors
In this section, we discuss reconfigurable computing elements that are integrated as
coprocessors with standard processor cores on-chip.

NAPA: The National Adaptive Processing Architecture (NAPA) [7], developed
by National Semiconductor, USA, couples a 32-bit RISC core (CompactRISC)
with a reconfigurable array of fine-grained logic elements, called Adaptive Logic
Processor (ALP). The processor’s instruction set is supplemented with array-
specific instructions. The ALP accesses the same memory space as the processor.
Additionally, the ALP has exclusive access to a set of configurable I/O pins and

 29.3 Reconfigurable Hardware Platforms 433

dedicated memory blocks. This increased flexibility in interfacing and memory al-
location has been identified to be especially important for embedded systems.
However, it also leads to problems of consistency and synchronization. Two pro-
gramming modes are considered depending on the synchronization between the
main processor and the ALP. In the first mode, the main processor initiates the
ALP operation and suspends afterwards. Upon completion, the ALP reactivates
the main processor by an interrupt. In the second mode, the main processor is free
to perform any computation after having initiated the ALP. The execution threads
of the main processor and the ALP rejoin through standard synchronization
mechanisms such as status flags and interrupts.
Garp: (other aspects are also described above under “Medium-grained Recon-
figurable Elements”) The Garp architecture [6], developed at UC Berkeley, USA,
couples a MIPS-II core with a reconfigurable array as a coprocessor. For data
transfers, the reconfigurable array accesses the standard memory hierarchy of the
main processor via the data cache. Configurations for the array are loaded from
memory via a dedicated 128-bit bus. The reconfigurable array is composed of
rows of 24 medium-grained logic elements that operate on 2-bit data. The host
processor’s instruction set is extended to handle the reconfigurable array. This ex-
tension includes instructions for data transfer, loading and executing configura-
tions, and synchronization. In the Garp architecture, the array execution is always
controlled by the host processor. The array can be partially reconfigured and sev-
eral configurations can be cached on-chip. Simulation results for three applica-
tions are reported: Data Encryption Standard (DES), image dithering, and a sort-
ing algorithm. In this simulation, a 133 MHz Garp architecture achieves speedups
from 2 to 24 over a 167 MHz UltraSPARC. The best results are achieved for DES,
which maps well onto the medium-grained reconfigurable elements.

Experiments with the Garp architecture revealed two main limitations. The first
limitation is a lack of memory in the reconfigurable array to store intermediate
data. Since the only memory resources in the reconfigurable array are the flip-
flops inside the logic elements, intermediate data has to be written to the data
cache. The limited bandwidth of the busses forms a bottleneck. Due to the caching
mechanism, accesses to intermediate data may cause misses and stall array execu-
tion. To reduce such effects for data streaming applications, Garp integrates mem-
ory queues on the chip. Further, data consistency must be ensured and concurrent
accesses of the core and the reconfigurable array to the cache must be resolved.
The second limitation is the rather long configuration loading time of about 50 us
for the entire 32-row array. Even if the array is configured from the configuration
cache, the reconfiguration lasts several clock cycles.

Reconfigurable Functional Units
This section discusses reconfigurable elements that are fully integrated into a proces-
sor’s execution pipeline as reconfigurable functional units (RFUs).

Chimaera: The Chimaera architecture [10], developed at Northwestern Univer-
sity, USA, integrates an array of fine-grained reconfigurable functional units into a
processor’s datapath. Each column of the array corresponds to one bit of the proc-
essor’s data word. Several rows of the array form one functional unit. The array is

434 29 Computing Platforms

treated like a cache that stores reconfigurable functional units or, in other words,
reconfigurable instructions. Recently executed instructions or instructions pre-
dicted to be needed soon are kept in the reconfigurable array. During instruction
decoding, the processor determines whether a dedicated reconfigurable functional
unit is to be used. If the corresponding unit is not present in the array, the cach-
ing/prefetch control logic stalls the processor and loads the proper instruction from
the memory into the array. The caching logic also determines which reconfigur-
able instruction is overwritten by the instruction being loaded. A peculiarity of
Chimaera is that the reconfigurable array contains neither state-holding elements
nor pipelining latches.
OneChip: The OneChip architecture [9], developed at the University of Toronto,
Canada, couples fine-grained reconfigurable functional units to a RISC processor
pipeline. The RFU operates concurrently to the pipeline’s execution phase and
has, contrary to other RFU approaches, direct access to memory. The OneChip
RFU can execute functions that are much larger than typical processor instruc-
tions. However, as the RFU has its own memory interface, problems of data con-
sistency can arise. The RFU is composed of an RFU controller and a number of
FPGAs that implement reconfigurable instructions. The RFU controller contains
an instruction buffer, reservation stations (RFU-RS), a reconfiguration bits table
(RBT), and the memory interface. The reservation stations in the RFU controller
handle data dependencies between RFU instructions and regular CPU instructions.
The RFU controller is responsible for loading FPGA configurations and keeps the
currently loaded instructions in the reconfiguration bits table.

Configurable Systems on a Chip (CSoCs) – Hard CPU Cores
All hard CPU CSoCs integrate a standard processor core with an array of reconfigur-
able elements and memory on a chip. Vendors target both low performance and high
performance segments of the embedded market which is reflected by the used proces-
sor cores that range from modest 8-bit microcontrollers clocked at 40 MHz to low-
power 32-bit RISCs running at speeds of up to 300 MHz. Most currently available
hard CPU CSoCs base on fine-grained reconfigurable elements. Since these devices
are offered by FPGA vendors, they include commercial FPGA technology. Altera’s
devices build on APEX20KE series, Atmel builds on the AT40K FPGA series, and
Xilinx builds on the Virtex-II technology. The logic capacities of the CSoCs varies in
a wide range, with the densest devices featuring up to 4M gates. An exception is
Chameleon Systems’ CS2000 (meanwhile, the company left the market) which em-
ploys a coarse-grained reconfigurable array. The CS2000 contains up to 84 32-bit
datapath units (DPUs) of which each includes a 32-bit arithmetic-logic unit (ALU).

Triscend E5 and A7: Triscend’s CSoC platform consists of a processor core, the
Configurable System Logic (CSL) matrix, Configurable System Interconnect
(CSI) bus, CSI socket, SRAM, peripherals, and modules for test and control func-
tions. Triscend’s concept allows to integrate any processor core into the platform
and to scale the size of the CSL matrix, the number of programmable I/O pins
(PIOs), and the SRAM. Triscend offers two product families: the E5 based on an
8-bit 8032 microcontroller, and the A7 based on a 32-bit ARM7TDMI RISC core.
Triscend’s CSL matrix is arranged in an array of so called CSL banks. Number

 29.3 Reconfigurable Hardware Platforms 435

and arrangement of these banks vary and range from 2x1 to 5x5 arrays. Each bank
consists of 8 columns by 16 rows of logic blocks, called CSL cells, totaling 128
cells per bank. A CSL cell consists of a flip-flop plus a look-up table (LUT) and is
capable of performing various logic, arithmetic, or memory operations. The cells
are surrounded by programmable interconnects which allow a signal originating
from one cell to communicate with one or more cells, even those in other banks.
Furthermore, the CSL matrix offers several programmable I/O (PIO) pins which
can be configured to interface to the microcontroller or external devices.

Configurable Systems on a Chip (CSoCs) – Soft CPU Cores
Soft CPU cores are synthesized to ASIC or FPGA technology. This allows for con-
figuration and customization of the core. Cores that are synthesized to ASIC technol-
ogy show higher performance than FPGA cores. FPGA cores, however, can be cus-
tomized to a greater extend. These cores can use hardware-assisted custom instruc-
tions in a flexible way and thus utilize trade-offs between speed and area. Soft CPU
cores mapped to FPGA are especially important for rapid prototyping of reconfigur-
able processors and CSoCs. In the following paragraphs, we list two soft cores
(XTensa and ARC cores) that target ASIC and FPGA technology, and two examples
for FPGA-optimized soft cores (Nios and MicroBlaze).

Tensilica XTensa: The Tensilica XTensa is a configurable low-power 32-bit
RISC-like architecture that runs up to 200 MHz [28]. Among the configurable ar-
chitectural parameters are hardware units that support applications from digital
signal processing. Examples are a 16-bit hardware multiplier and a 16-bit DSP
unit that contains a 16 bit multiplier chained with a 40-bit accumulator.
ARC Cores: The ARC cores family bases on a customizable 32-bit RISC core
[29] with a four-stage execution pipeline. The customization includes the instruc-
tion set, the register file, condition codes, instruction/data caches, scratchpad
memory, I/O busses, and DSP extensions. The DSP extensions include three dif-
ferent types of multiply-accumulate (MAC) instructions, saturating addition, and
subtraction. The size of the on-chip memory ranges from 512 bytes to 16 KB. Fur-
ther optional modules are address-generation units that support autoincrement,
autodecrement, circular, and bit-reverse addressing.
Altera Nios: The Nios CPU is a five-stage pipelined RISC processor [30]. Nios
uses a 16-bit instruction format but supports both 16-bit and 32-bit data bus
widths. A key feature of Nios is that additional hardware can be used to increase
the performance. Nios allows for two levels to use additional hardware: CPU op-
tions and custom instructions. CPU options are configurable hardware building
blocks, e.g., hardware multipliers. A custom instruction is a complex sequence of
operations that has been reduced to a single instruction implemented in hardware.
Xilinx MicroBlaze: The Xilinx MicroBlaze is a 32-bit RISC processor core run-
ning at 150 MHz in a Xilinx FPGA [31]. The MicroBlaze processor uses a variant
of a Harvard architecture, where separated instruction and data busses access in-
ternal and external memories. To connect peripheral and custom modules, the Mi-
croBlaze offers a bus interface, called CoreConnect. CoreConnect includes a local
processor bus and an on-chip peripheral bus.

436 29 Computing Platforms

Trends

Reconfigurable Elements
FPGAs and CPLDs (complex programmable logic devices) are one of the fastest
growing segments of the semiconductor industry. FPGAs are general-purpose devices
and thus fabricated in extraordinarily high volumes. This allows FPGAs to benefit
from the latest semiconductor technologies. As a consequence, the densities and
speeds of FPGAs have been improving rapidly and will continue to do so. For exam-
ple, in 1997 the most densest devices delivered 100-200 Kgates. In 2002, devices with
densities of 10 Mgates are on the market. Looking at the last few years, following
trends in FPGAs can be observed that are especially important for the domain of re-
configurable computing:

Heterogeneous architectures: Heterogeneous FPGA architectures employ differ-
ent types of logic blocks. Additionally to the basic reconfigurable logic cells, het-
erogeneous FPGAs contain blocks specialized to specific functions for which the
logic cells are not efficient. Examples for specialized blocks are embedded RAM
blocks and embedded multipliers. Memory elements are required to store fre-
quently used data and variables in the user logic. Most FPGAs allow to use the
look-up tables as RAM elements. By this, custom memory structures with variable
bit widths can be constructed. Building larger blocks of memory with LUTs is,
however, inefficient. Therefore, more and more FPGA architectures include dedi-
cated memory blocks. Examples are the Xilinx Virtex and Altera FLEX10K.
While these memory blocks are less flexible than LUT-based RAMs, they do en-
able some form of customization. The embedded memory blocks in the Altera
FLEX10K series, for example, provides a given number of wires to the memory
and allows the designer to trade-off between the number of address lines and the
data bit-width. Multiplication is another function that is difficult to efficiently
achieve with traditional FPGA’s logic blocks. Thus, a current trend is to embed
custom multipliers into the FPGA array. An example is the Xilinx Virtex-II archi-
tecture that contains up to 168 18 x 18 multipliers.
Reconfiguration mechanisms: Advanced reconfiguration mechanisms, i.e., fast
reconfiguration and partial reconfiguration, are of utmost importance for recon-
figurable computing systems. In the mid 1990s, the availability of the Xilinx
XC6200 chip fueled many research efforts in reconfigurable computing. Today,
the most widely used FPGA series for reconfigurable computing research are the
Xilinx Virtex, Virtex-E, and Virtex-II. With some restrictions, these devices are
partially reconfigurable. Currently, there are indications for a continued support
and even for an extension of these features in future. For example, the Xilinx
Virtex-II architecture allows to access the configuration port from on-chip user
logic. This capability opens up the way to self-controlled, i.e., autonomous, recon-
figuration.

Reconfigurable Processors
In the last years, many research projects have been started that investigate reconfigur-
able processors. Most of these projects target general-purpose computing and try to
extend a general-purpose processor with reconfigurable logic or reconfigurable ALU

 29.3 Reconfigurable Hardware Platforms 437

arrays. Issues that are being investigated include the granularity of the reconfigurable
element, the coupling between the reconfigurable element and the processor core, and
reconfiguration mechanisms.

Most reconfigurable processors that have been presented so far have been designed
with a specific hardware architecture in mind. Although researchers pointed to poten-
tial application domains, the specific design decisions have almost never been prop-
erly justified. In the design space that is spanned by processing performance, power
consumption, and silicon area, these processors form single design points. What is
needed in the future are quantitative analyses of trade-offs and design alternatives as
well as design space explorations.

Reconfigurable elements are less flexible than general-purpose processors. Thus,
reconfigurable processors are likely to be more successful in the embedded systems
area than in the general-purpose domain. In embedded systems, the number and char-
acteristics of applications are limited which facilitates the selection of design parame-
ters for reconfigurable processors. The software layers for reconfigurable processors,
i.e., compilers and operating systems, have not yet been sufficiently investigated.
Most configurations for reconfigurable processors are either hand-crafted or are syn-
thesized from structural hardware description languages. Although researchers have
investigated compilation from high-level languages such as “C” for quite a while,
compilers for hybrid processors have not yet proven successful.

Configurable Systems on a Chip
During the last few years, configurable systems on a chip have strongly gained impor-
tance. Of special interest to reconfigurable computing are hybrid processors that com-
bine processor cores with reconfigurable logic on a chip.

Today, a large number of soft CPU cores are available that can be synthesized to
FPGAs. These CPUs range from low-end 8-bit microcontrollers to 32-bit RISC proc-
essors running at 150 MHz. FPGA vendors promote to replace microprocessors with
soft CPUs in embedded systems design. Although soft CPUs run slower and require
more silicon area than their dedicated counterparts, they show a number of benefits.
Many embedded products employ very old microprocessors for which large software
bases exist. The emulation of such microprocessors in FPGAs prevents the designer
from a complete system redesign in case the microprocessor is discontinued. Further,
soft CPUs can be integrated with other system blocks on one FPGA. This allows for
single chip systems or system with fewer chips which reduces design complexity. In
research, soft CPUs will be widely used for prototyping reconfigurable processors.
They also form an ideal testbed for experimenting with multiprocessor systems.

CSoCs with hard CPUs are slowly emerging on the market. Depending on the per-
formance of the hard CPU, these devices target several application domains. The
Triscend E5, for example, contains a low-end 8-bit microcontroller that can run sim-
ple control functions. The reconfigurable logic on this chip can be used for interfacing
and preprocessing tasks. At the high-end, we find devices such as the Xilinx Virtex-II
Pro series. These chips contain up to four PowerPC 405 cores plus 8 Mgates logic in
Virtex-II technology and a set of high-speed interfaces. These multiprocessors em-
bedded in high-performance and high-density reconfigurable logic are suitable for
implementing high-end network processors and systems.

438 29 Computing Platforms

Reconfigurable Architectures in Molecular Electronics
A totally new line of research in reconfigurable architectures is molecular electronic
nanotechnology, a promising technology and potential candidate for the post-silicon
era. It is believed that CMOS technology will soon run into its saturation due to tech-
nical and economical reasons. However, CMOS technology is still far from the physi-
cal limits of computation. To get closer to these limits we have to move to the nano-
scale regime. A number of electronic nanotechnologies are currently being investi-
gated that take advantage of quantum-mechanical effects of nanoscale devices, in-
cluding single-electron transistors, nanowire transistors, quantum dots, quantum cellu-
lar automata, resonant tunelling devices, and reconfigurable switches. Among the
most promising technologies are molecular electronic systems such as chemically
assembled electronic nanotechnology (CAEN) [32]. CAEN uses the principles of self-
alignment and self-assembly to construct electronic circuits. CAEN combined with
nanoscale wiring technologies, such as carbon nanotubes and metal nanowires, seems
to be a likely candidate for the post-silicon era. The CAEN self-assembly fabrication
process is fundamentally non-deterministic and shows high defect densities. As a
consequence, CAEN devices will have to be highly-regular structured and will require
reconfiguration to dynamically map computations to non-defect parts of the device.

Molecular electronic nanotechnology poses many research challenges, from the
construction of basic computing elements up to the programming model. Many pro-
posals, such as the nanoFabric [33] or the NanoArrays [34], organize CAEN devices
into arrays of molecular electronics and interconnects consisting of local and global
nanoscale wires. The support system for the CAEN arrays, consisting of power sup-
ply, clock, configuration resources, and I/O, is implemented in CMOS. These archi-
tectures are similar to commercial fine-grained FPGAs. For this reason, researchers
believe that similar techniques and methods can be applied to both FPGAs and CAEN
devices.

One research issue is the role of static and dynamic reconfiguration in electronic
nanotechnology. Based on a self-testing phase, CAEN devices will reconfigure the
computations to non-defect CAEN blocks on the chip. It is an open question how this
reconfiguration can be efficiently done and whether it effects only nanowires or also
logic blocks. Another issue is whether reconfiguration should be used only statically
as a defect-tolerance technique or also dynamically to optimally adapt the computa-
tion structure to the application under execution. Finally, models of computation for
massively parallel nanoscale devices must be developed. Recently proposed ap-
proaches include the so-called split-phase abstract machine [33] and an execution
model that has been termed computation cache [35].

References

[1] K. Compton and S. Hauck, Reconfigurable Computing: A Survey of Systems and
Software, ACM Computing Surveys, (34)2: 171-210, 2002.

[2] T. Miyazaki, Reconfigurable Systems: A Survey, Proceedings of the Asian and
South Pacific Design Automation Conference (ASP-DAC), pages 447- 452, 1998.

[3] B. Radunovic and V. Milutinovic, A Survey of Reconfigurable Computing Archi-
tectures, Field-Programmable Logic and Applications (FPL), pages 376-385.

 29.3 Reconfigurable Hardware Platforms 439

[4] J.M. Arnold and D.A. Buell and E.G Davis, Splash 2, Proceedings of the Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 316-
322, 1992.

[5] J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati and P. Boucard, Pro-
grammable Active Memories: Reconfigurable Systems Come of Age, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, (4)1: 56-69, 1996.

[6] J.R.Hauser and J. Wawrzynek, Garp: A MIPS Processor with a Reconfigurable
Coprocessor, Proceedings IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 12-21, 1997.

[7] C.R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J.M. Arnold and M.
Gokhale, The NAPA Adaptive Processing Architecture, Proceedings IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM), pages 28-37,
1998.

[8] T. Miyamori and K. Olukotun, REMARC: Reconfigurable Multimedia Array Co-
processor, IEICE Transactions on Information and Systems, (E82-D)2:389-397,
1999.

[9] R.D. Wittig and P. Chow, OneChip: An FPGA Processor With Reconfigurable
Logic, Proceedings IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 126-135, 1996.

[10] S. Hauck, T.W. Fry, M.M. Hosler and J.P. Kao, The Chimaera Reconfigurable
Functional Unit, Proceedings IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 87-96, 1997.

[11] C. Ebeling, D.C. Cronquist and P. Franklin, RaPiD – Reconfigurable Pipelined
Datapath, Field-Programmable Logic (FPL), pages 126-135, 1996.

[12] S.D Brown, Field-Programmable Devices: Technology, Applications, Tools, Stan
Baker Associates, 1995.

[13] S. Brown and J. Rose, FPGA and CPLD Architectures: A Tutorial, IEEE Design &
Test of Computers, pages 42-57, Summer 1996.

[14] A.K. Sharma, Programmable Logic Handbook, McGraw-Hill, 1998.
[15] S.M. Trimberger, Field-Programmable Gate Array Technology, Kluwer Academic

Publishers, 1994.
[16] J.V. Oldfield R.C. Dorf, Field-Programmable Gate Arrays, JohnWiley & Sons,

1995.
[17] P.K. Chan and S. Mourad, Digital Design Using Field Programmable Gate Arrays,

Prentice Hall, 1994.
[18] T. Miyamori K. Olukotun, A Quantitative Analysis of Reconfigurable Coproces-

sors for Multimedia Applications, Proceedings IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), pages 2-11, 1998.

[19] T.J.Callahan, J.R. Hauser and J. Wawrzynek, The Garp Architecture and C Com-
piler, IEEE Computer, (33)4:62-69, April 2000.

[20] Xilinx Inc., Virtex-II 1.5V Field Programmable Gate Arrays: Advance Product
Specification, 2001.

[21] A. DeHon, Reconfigurable Architectures for General-Purpose Computing, Massa-
chusetts Institute of Technology, Artificial Intelligence Laboratory, PhD Thesis,
1996.

[22] A. Cataldo, ISSCC: NEC takes leap into programmable logic, EE Times, February
15, 1999.

[23] A. DeHon, DPGA Utilization and Application, Proceedings ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA), pages 115-121,
1996.

440 29 Computing Platforms

[24] A. DeHon, DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st
Century, Proceedings IEEE Workshop on FPGAs for Custom Computing Ma-
chines (FCCM), pages 31-39, 1994.

[25] T. Fujii et al., A Dynamically Reconfigurable Logic Engine with Multi-
context/Multi-mode Unified-cell Architecture, IEEE International Solid-State Cir-
cuits Conference (ISSCC), pages 364-365, 1999.

[26] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin and B. Hutchings, A Recon-
figurable Arithmetic Array for Multimedia Applications, Proceedings
ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA), pages 135-143, 1999.

[27] R. W. Hartenstein, M. Herz, T. Hoffmann and U. Nageldinger, On Reconfigurable
Co-Processing Units, Parallel and Distributed Processing, Proceedings of
IPPS/SPDP’98 Workshops, pages 67-72, 1998.

[28] G. Ezer, XTensa with User Defined DSP Coprocessor Microarchitectures, Pro-
ceedings International Conference on Computer Design (ICCD), pages 335-342,
2000.

[29] ARC International, Customizing a Soft Microprocessor Core, 2002.
[30] Altera Corporation, Nios 2.0 CPU Data Sheet, 2002.
[31] Xilinx, Inc., MicroBlaze Hardware Reference Guide, 2002.
[32] E. Collier et al., Electronically Configurable Molecular-based Logic Gates, Sci-

ence, 285: 391-393, 1999.
[33] C. Goldstein and M. Budiu, NanoFabrics: Spatial Computing Using Molecular

Electronics, Proceedings International Symposium on Computer Architecture
(ISCA), 2001.

[34] A. DeHon, Array-Based Architecture for Molecular Electronics, Proceedings of
the First Workshop on Non-Silicon Computation (NSC), 2002.

[35] S. Swanson and M. Oskin, Towards a Universal Building Block of Molecular and
Silicon Computation, Proceedings of the First Workshop on Non-Silicon Computa-
tion (NSC), 2002.

29.4 Software Integration – Automotive Applications

Landscape

Component integration is one of the tough challenges in embedded system design.
Complex hardware-software architectures are a necessary result to reach design goals
but significantly increase design risk. Embedded system designers search for conser-
vative design styles and reliable techniques for interfacing and verification.

Hardware and Software Heterogeneity
With growing embedded system complexity more and more parts of a system are
reused or supplied, often from external sources. These parts range from single hard-
ware components or software processes to hardware-software (HW/SW) subsystems.
They must cooperate and share resources with newly developed parts such that the
design constraints are met. This, simply speaking, is the integration task. Ideally, this
should be a plug-and-play procedure which does not happen in practice. Reasons are
incompatible interfaces and communication standards but also specialization. Take a
signal processing program that has been adapted to a specific DSP (Digital Signal
Processor) architecture by carefully rewriting the source code using special functions
or subword parallelism, optimizing loops, data transport, and memory access. Reusing

 29.4 Software Integration – Automotive Applications 441

such a DSP program either means rewriting that code or reusing the whole DSP archi-
tecture or part of it turning the original software integration problem into a hardware-
software integration problem. A crypto algorithm that runs on an application specific
instruction set processor (ASIP) is another example. DSP and ASIP architectures are
great to reach the performance and power consumption goals but they make portabil-
ity and, thus, reuse harder. Particularly complicated are some of the specialized I/O
and weakly programmable timer units, such as the TPU.

Unfortunately, compilers that could automatically adapt the code are not yet avail-
able – the designer is already happy if assembly coding can be avoided. You may
continue the list with hardware accelerators, specialized memory architectures, buses,
etc.. Architectural variety and adaptation seem inevitable to reach demanding design
goals for competitive systems. The revival of ASIPs is driven by this observation. So,
we will have to live with heterogeneous embedded system architectures and their
corresponding integration problems. This holds for SoC (Systems-on-Chip) as well as
for larger distributed embedded systems.

Software Integration – Automotive Perspective
On the other hand, there is a tendency towards subsystems integration. Traditionally,
the automotive industry is used to a business model where the supplier provides the
electronic control unit together with the software implementing a specific automotive
function, such as engine control, dash board, window motors, antilock breaks (ABS),
adaptive cruise control (ACC), etc.. Integration means that the zoo of often more than
50 control units is hooked up to automotive buses which have to carry the communi-
cation load. This is an increasingly difficult task due to distributed automotive func-
tions such as ACC. There are three reasons to abandon that business model.

To reduce the number of control units, the software shall be integrated on fewer
control units
Distributed networked functions using many different control units
The common goals of modularity, scalability, re-usability and especially portabil-
ity of software functions between different control units and cars.

These goals lead to an integration problem of different software modules on the indi-
vidual control units. This integration problem is one of the aspects addressed in the
AUTOSAR development partnership (http://www.autosar.org). In this international
partnership, car manufacturers and first level suppliers define the future automotive
system architecture as well as the software architecture and interfaces for the different
control units. For the individual control units of the different domains, the integration
problem can be mapped to the execution of different software functions using com-
mon resources like processing time, memory and shared variables on one control unit.
This scenario requires a real-time operating system (RTOS), in the automotive envi-
ronment following the OSEK standard (http://www.osek-vdx.org). The RTOS sched-
ules the software functions and ensures consistency of the shared variables using
messages. Of course, access to shared variables, message exchange as well as execu-
tion time and memory usage of the software functions need to be fixed in formal
agreements to ensure system correctness. Such a formal software integration scenario
for the powertrain domain has been proposed in [4]. In this approach, one of the pri-
mary concerns is the clear and coherent definition of a design process that identifies

442 29 Computing Platforms

and assigns legal responsibilities that can be mapped to contracts. This is a basic re-
quirement for a certifiable design process.

Besides hardware/software platform issues that are treated in this chapter, there is
always the problem of functional correctness. The latter is approached in a platform
independent modular decomposition and formal interface definition which shall im-
prove system test. The related system function modelling and system function test is
another field of top interest in AUTOSAR. One needs agreements on functions and
interfaces between the software modules like exchanged variable lists and well-
defined development processes as well as sophisticated testing against the functional
specifications.

We summarize that the main integration tools in automotive platforms are the
communication, and possibly memory, infrastructure as well as the basic software, i.e.
the real-time operating system (RTOS) and communication software providing sup-
port for resource sharing and interfacing as well as application programmer interface
(API) software that increases portability.

The application in the automotive industry is just one example. The same software
integration challenges manifest themselves in telecommunication applications, on
home platforms, or in mobile communication systems. The basic concepts are trans-
ferable and the presented methodology can be applied in different domains. In the
following, the problems and concepts shall be generalized.

Assessment

Integration Challenges
In general, we can identify three main types of design tasks in embedded system inte-
gration,

component and subsystem interfacing,
system verification, and
system optimization with design space exploration.

The first two tasks are general design problems, while the latter one depends on the
cost and optimization pressure of an application. This roadmap chapter looks at the
first two issues which are also a prerequisite to system optimization and design space
exploration.

Interfacing is well developed at the RTOS level. There are software-software
communication primitives such as queues (pipes) for message passing, shared vari-
ables, and semaphores for synchronization. These communication primitives separate
computation from communication. The communication primitives are mapped to
platform dependent functions. This way, software can be ported more easily exchang-
ing the implementation of communication primitives. In contrast, the hardware de-
scription languages in use today (VHDL and Verilog) only support communication
via electric signals. Porting hardware components to a new design requires hardware
process adaptation. HW/SW communication uses drivers that, again, must be adapted
to the hardware protocol. Using similar communication primitives on both sides
would make hardware adaptation and driver development much easier. Therefore,
newer hardware description languages, such as SpecC (a C language extension –
http://www.SpecC.org) and SystemC (a C++ class library – http://www.SystemC.org)

 29.4 Software Integration – Automotive Applications 443

extend hardware communication to abstract primitives comparable to RTOS commu-
nication. Using such primitives, the hardware component function can be separated
from its communication with other system components, similar to RTOS primitives.
Integration can, therefore, focus on implementing the communication primitives
which might be reused for different components to be integrated. This development of
new languages is still ongoing, but standards and first tools are out with support from
major EDA vendors.

Interfacing is necessary but not sufficient. The fact that the parts properly exchange
values and messages does not imply correctness. This is a matter of semantics and
target architecture performance. Both must be checked in system verification. Func-
tion verification focuses on the system semantics which should be implementation
independent while performance verification shall validate hardware parameters, proc-
essor resource sharing and communication performance in order to detect perform-
ance pitfalls such as transient overloads, or memory overflows.

Typically, both function and performance verification use prototyping or simula-
tion (“virtual” prototyping). Prototyping uses a different target architecture at least for
parts of a design. For such parts, prototyping only allows function verification. More-
over, prototyping is expensive in terms of development time, and there are limitations
concerning available parts or non-reachable environment conditions (just think of
modelling a specific engine failure or car accident). So, for this article, we will focus
on simulation.

M2IP2M3

M1

DSPIP1

HWCPUSens

BUS A

Subsystem 1

Subsystem 2

M1 CPU

min execution time
high bus load

max execution time
low bus load

P1

BUS ABUS A

Figure 32.4. Effect of Extra-functional Dependencies on Integration

444 29 Computing Platforms

While function verification of an embedded system may use untimed simulation,
performance verification relates to timing and therefore requires timed simulation, i.e.
simulation where events have a time label. Because timed simulation needs far more
computation time, performance verification is a bottleneck. Therefore, abstract timing
models for components reducing computation time receive much attention. Such
models range from so called “cycle-accurate” models which model the system behav-
iour clock cycle by clock cycle, to networks of abstract state machines, such as in the
CADENCE VCC simulator (http://www.cadence.com/).

It is, however, not sufficient to just develop faster simulation models and simula-
tors. Consider the example in Figure 32.4. A supplier has provided subsystem 1 con-
sisting of a sensor (“Sens”) which sends signals to a microcontroller CPU running a
system of processes with preemptive scheduling (i.e. scheduling where the execution
of one process can be interrupted for the execution of another process), one of them is
P1. This subsystem uses a bus A two times, to read the sensor data and to write the
data to a hardware component which could be a peripheral device generating output
signals periodically. The sensor signal is buffered in the CPU memory M1. The sup-
plier provides the working subsystem and simulation patterns stimulating the worst
case CPU load situation including the worst case execution time (WCET) of P1. The
integrator decides to share bus A with a DSP subsystem 2. Subsystem 2 consists of an
IP (intellectual property) component that generates periodic output data (e.g. a filter
or Digital-to-Analog Converter) and a DSP processor running a fixed periodic sched-
ule. A buffer is inserted at the DSP input to resynchronize the data stream. This inte-
gration task is typical. The integrator is now rightfully worried about the distortion
that subsystem 1 traffic injects to subsystem 2 possibly leading to extended end-to-
end system response times and buffer under or overflow at the DSP input. The inte-
grator has no idea of the internal subsystem function, only the worst case simulation
patterns are available. Now, compare the bus load. Figure 32.4 demonstrates that the
highest transient bus load leading to the worst distortion of the subsystem 2 traffic is
caused by the best case execution time (BCET) of P1 which was not a corner case in
subsystem design. So, it is likely that this system corner case will not be covered in
simulation and the system might fail.

This example shows a fundamental performance simulation problem. Simulation
patterns from function simulation are not sufficient, since they do not check for the
extra-functional dependencies of the two functionally unrelated subsystems. The
subsystem corner cases are not sufficient as they do not match the system corner cases.
The system integrator cannot generate new corner cases since he/she is not aware
what the corresponding worst case subsystem behaviour might be. To make things
even more complicated, communication of subsystem 1 in the example is not only
distorted by the DSP subsystem but also by its own sensor-to-CPU traffic. Unfortu-
nately, the typical bus standards with arbitration priorities introduce such extra-
functional dependencies as described above.

Unlike standard software, such uncertain behaviour is intolerable in embedded sys-
tem design especially when life critical functions are involved. Firing an airbag 10ms
late takes roughly half of the way from the driver’s head to the steering wheel and
there are many more of such functions in a car. But even if lives are not involved,
even less frequent system failures can make products unmarketable as people are
typically not willing to accept an embedded system with the quality level of PC soft-
ware.

 29.4 Software Integration – Automotive Applications 445

Conservative Design
One possible answer is to use integration techniques and strategies that avoid extra-
functional dependencies. The TDMA (Time Division Multiple Access) protocol as-
signs a fixed time slot to each logic communication channel, i.e. Sens-CPU, CPU-
HW, IP-DSP, and remains unused even if the communication is not active. This way,
each logic communication channel receives a fixed share of the overall bandwidth
irrespective of the other subsystems. The discrete time slots introduce jitter, but this
jitter can be bounded and may already be considered in component design. This con-
servative technique is adopted both on the chip level, where it is, e.g., used by the
Sonics Micronetworks, and in larger scale systems such as in the TTP architecture for
safety critical automotive and aerospace applications (http://www.ttagroup.org). The
TDMA technique can be applied to processor scheduling and it can be extended all
the way to software development, where the elegantly simple mathematical formula-
tion describing TDMA performance can be used for a system wide performance
analysis and control, such as in the Giotto tool of UC Berkeley [2].

However, conservative design with TDMA comes at a performance (and power)
price. If short response times are required, or if the system reacts to non periodic and
burst events, or if the load varies depending on system scenarios, then the system
must be significantly overdesigned. The problem is that even a small change in the
conservative strategy dilutes the conservative properties. In, e.g., a round-robin strat-
egy which assigns unused slots to the next process or communication in line, we see
the same extra-functional dependencies, even though round-robin at least guarantees
minimum performance that is equivalent to TDMA.

Performance Analysis
Instead of conservative design, one might resort to a more formal performance analy-
sis. Statistical approaches do not seem adequate given the complex deterministic
communication patterns leading. They do not capture very specific overload condi-
tions and either be risky or lead to overly conservative design.

Today, most advanced embedded system engineers are familiar with formal meth-
ods developed for real-time computing, at least with rate-monotonic scheduling and
analysis (RMS and RMA) [7]. RMA shows the principle of such formal methods.
RMA abstracts from individual process activations (as used in simulation) to activa-
tion patterns. Based on these activation patterns and process worst case execution
times (WCETs), it derives schedulability and worst case response times. There is a
host of work in the real-time computing community on schedulability and response
time tests using activation pattern and WCET as input. In contrast to the static priority
assignment in RMS, another approach treats task scheduling under dynamically as-
signed priorities such as earliest deadline first (EDF) [15]. The basic ideas behind
both RMS and EDF have been heavily extended to cover sporadic tasks [14] or more
complex task activation with jitter and burst [19], arbitrary priority [1] and deadline
assignments [6].The worst case execution times are typically simulated or measured.
Recently there was major progress in formal program analysis with first commercial
tools available modelling program execution (http://www.absint.com). There is a
chapter in this roadmap dedicated to process WCET.

Cache interference introduces dependencies between process executions. As
caches, today, are even used in critical real-time systems, such as automotive engine
controllers, cache related inter-process dependencies require attention. In automotive

446 29 Computing Platforms

control units, large sets of small, periodically executed processes with very few, if
any, loops show significant cache related overhead. This has not sufficiently been
investigated, so far. Current approaches either analyze cache related preemption delay
[5][8] for simplified execution models that do not match the complexity of automo-
tive engine controllers or suggest cache locking to simplify cache access strategies
[11].There are still other open issues, such as best case execution time analysis (see
Figure 32.4) but we may expect formal analysis solutions in the near future which
could replace or complement measurement or simulation, provided that there is
enough investment into the EDA technology and processor models.

If such formal methods are available, why is there a need for conservative design?
The main limitation is that these methods do not easily scale to larger heterogeneous
embedded systems such as Figure 32.4. They cover one processor or bus or at most a
subsystem with homogeneous scheduling [3][13]. There are proposals combining few
different scheduling strategies, e.g. RMS on a processor and TDMA on the bus. These
are called holistic approaches and were introduced by Tindell [16]. A very good re-
cent example that shows the power of this “holistic” approach is the work in [9],
which is based on an automotive case study [10]. EDF task scheduling and TDMA
bus-protocols have been considered in [15]. In general, it appears more efficient to
identify solutions that encompass the whole system than to consider local scheduling
individually.

On the other hand, there is an apparent scalability problem when considering the
huge number of potential subsystem combinations that require adapted holistic sched-
uling. Not surprisingly, a general coherent approach covering, e.g., Figure 32.4 is not
known to the author.

EMIF EMIF

M2DSPIP2M3IP1

HWM1CPUSens

sporadic

EMIF EMIF

sporadic

EMIF

burst

EMIF

sporadic

C1

C3

periodic periodic

BUS A
C2

EMIF

Figure 32.5. Global Performance Analysis

 29.4 Software Integration – Automotive Applications 447

If we take Figure 32.4 again, then we see that we could partition the system into lo-
cally scheduled communicating components grouped around bus A which has its own
resource arbitration protocol. In principle, these components send and receive mes-
sages which can be combined to message streams. Figure 32.5 shows Figure 32.4
highlighting these message streams. With some relatively simple math, we can trans-
form the message streams to activation patterns such that the analysis results of the
sending component are propagated to the analysis algorithm of the next component.
This also works for buses. These transformations are called Event Model Interface
(EMIF). We continue propagation and analysis until we have reached the output.
Components can be analyzed if all input streams are available. This way, we turn
global performance analysis into an event flow analysis problem. Loops in the flow,
such as between the CPU and bus A (bidirectional flow) are solved by iteration. Even-
tually, we can also calculate the required buffer size at the DSP input. For more de-
tails, the interested reader is referred to [12].

Event streams can also be modelled as distribution functions that capture upper
and/or lower bounds of event counts versus time. This is a more general model that is
combined with new approximate analysis algorithms. Following the same principle of
local analysis and event propagation, this approach has successfully been used to
analyze network processor architectures [17], [18].

We can summarize that flow based analysis has been applied to first practical ex-
amples from telecom, automotive and multi-media even though expert knowledge is
still necessary and no easy-to-use tool is available yet.

Trends

Given the development of embedded system complexity it seems that simulation
based performance verification is slowly running out of steam. This is what worries
people in safety critical applications today and, with growing system complexity, will
be a key problem for any integrator. Conservative techniques alone are no general
solution for power consumption, cost and performance reasons. Formal methods as an
alternative to simulation based performance verification have many benefits as an
alternative to simulation based performance verification, but must be extended to
global analysis methods adequate to heterogeneous embedded systems. It appears that
the real medium to long term alternative is conservative design versus analytical per-
formance verification. Conservative techniques would be used where sound perform-
ance verification methods are not applicable or are for whatever reason inefficient
(e.g. too wide bounds due to abstract formal models).

Timed simulation will continue to play a big role, and appears inevitable when
continuous time models are included to simulate the embedded system together with
its physical environment. Combinations are possible [20]. But, given the advances in
analytical methods, we should reconsider if it is useful to put most energy in improv-
ing timed event driven simulation or if we should invest more effort into formal meth-
ods for performance analysis of complex architectures.

Systems integration is a top embedded system design issue. Platform performance
verification is a key problem of systems integration. There are many hidden perform-
ance dependencies and pitfalls that are not reflected in the system function. The ef-
fects grow with platform complexity. Performance verification is currently primarily

448 29 Computing Platforms

based on timed simulation. This approach is risky and time consuming, and it does
not scale to larger systems. There is a good chance that embedded systems integration
failures will become a major thread to the European industry if there is no investment
in appropriate solutions.

We foresee two developments that approach integration problems from different
directions, conservative design and formal performance analysis. Conservative design
reduces extra-functional subsystem dependencies and supports independent subsys-
tem development and integration. It can be used to reduce platform dependency by
assigning fixed and implementation independent time slots to all processing and
communication. Conservative design leads to overdesign that comes at a significant
performance, cost and, possibly, power consumption price. It can, however, be the
only viable choice where highly reliable design is required.

An alternative is a formal performance analysis that includes heterogeneous archi-
tectures as described in this chapter. There is major progress in that direction which
enables system wide performance analysis. It has the potential to enable highly com-
petitive and cost effective yet reliable software integration and optimization. This is
currently demonstrated in several applications and has already reached industrial
practice, e.g. in software integration for automotive powertrain control.

Formal performance analysis will not replace but complement simulation. Appro-
priate commercial tools, models and interface standards will be needed to reach a
wider user base in the European embedded system design community. The automo-
tive AUTOSAR consortium is a good example of a suitable standardization platform.

Formal architecture modelling and analysis techniques should be included in the
engineering curriculum in order to raise an understanding for integration problems
and for formal approaches, both for conservative design and for performance analysis.
Standard university covers rarely go beyond classical real-time basics which is inap-
propriate to current system complexity. This is a challenge for the development of
new courses.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time
Scheduling: The Deadline Monotonic Approach. Proceedings of the 8th IEEE
Workshop on Real-Time Operating Systems, pages 133-137, 1991.

[2] Th. Henzinger, Ch. Kirsch, R. Majumdar, and S. Matic. Time-safety checking for
embedded programs. Proceedings of the Second International Workshop on Em-
bedded Software (EMSOFT), Lecture Notes in Computer Science 2491, Springer-
Verlag, 2002, pp. 76-92.

[3] K .Jeffay and S. Goddard. A theory of rate-based execution. In Proceedings Real-
TimeSystems Symposiom, Phoenix, Arizona, 1999.

[4] M. Jersak, K. Richter, R. Racu, J. Staschulat, R. Ernst, J.C. Braam und F. Wolf,
“Formal methods for integration of automotive software”, Embedded Software for
SOC, Kluwer Academic Publisher, August 2003.

[5] C.-G. Lee, K. Lee, J. Hahn, Y-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M.
Lee, C. S. Kim, “Bounding Cache-related preemption delay for real-time systems”,
In IEEE Transactions on software engineering, Vol 27, No. 9, pages 805-826, Sept.
2001.

[6] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary dead-
lines. In Proceedings Real-Time Systems Symposiom, pages 201-209, 1990.

 29.4 Software Integration – Automotive Applications 449

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46-61, 1973.

[8] H. S. Negi, T. Mitra, and A. Roychoudhury, “Accurate estimation of cache-related
preemption delay”, Proceedings of the 1st IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign & system synthesis, pages 201-206, 2003,

[9] P. Pop, P. Eles, and Z. Peng. Bus access optimization for distributed embedded
systems based on schedulability analysis. In Proc. Design, Automation and and
Test in Europe (DATE 2000), Paris, France, 2000.

[10] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed time/event-
triggered distributed embedded systems. Proceedings of the International Sympo-
sium on Hardware/Software Codesign (CODES02), pp.187-192, Estes Park (CO),
USA, 2002.

[11] I. Puaut, “Cache analysis vs static cache locking for schedulability analysis in mul-
titasking real-time system”, Proc. of 2nd International Workshop on worst-case
execution time analysis, Vienna, Austria, June 2002.

[12] K. Richter, M. Jersak, R. Ernst. A Formal Approach to MpSoC Performance Veri-
fication, IEEE Computer, April 2002, or http://www.spi-project.org.

[13] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-monotonic scheduling
theory: A framework for developing real-time systems. Proceedings of the IEEE,
82(1):68-82, January 1994.

[14] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard real-time
systems. Journal of Real-Time Systems, 1(1):27-60, 1989.

[15] J. Stankovic, M. Spuri, K. Ramamritham, andG. Buttazzo. DEADLINE
SCHEDULING FOR REAL-TIME SYSTEMS – EDF and Related Algorithms. Klu-
wer Academic Publishers, Boston, Massachusetts, USA, 1998.

[16] K. W. Tindell. An extendible approach for analysing fixed priority hard real-time
systems. Journal of Real-Time Systems, 6(2):133-152, Mar 1994.

[17] L. Thiele, S. Chakraborty, M. Gries, S. Künzli: Design Space Exploration of Net-
work Processor Architectures. First Workshop on Network Processors at the 8th
International Symposium on High-Performance Computer Architecture (HPCA8),
Cambridge MA, USA, pages 30-41, February, 2002.

[18] L. Thiele, S. Chakraborty, and M. Naedele. Real-time Calculus For Scheduling
Hard Real-Time Systems. Proceedings of International Symposium on Circuits and
Systems (ISCAS 2000), pp. 101-104, Geneva, Switzerland, vol. 4, March 2000.

[19] K. Tindell and J. Clark. Holistic schedulability analysis for distributed real- time
systems. Microprocessing and Microprogramming – Euromicro Journal (Special
Issue on Parallel Embedded Real-Time Systems), 40:117–134, 1994.

[20] S. Chakrabortya, S. Künzli, L. Thiele, A. Herkersdorf, P. Sagmeister. Performance
evaluation of network processor architectures: Combining simulation with analyti-
cal estimation. Computer Networks 41 (2003) 641–665.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 450 – 478, 2005.
© Springer-Verlag Berlin Heidelberg 2005

30 Low Power Engineering

Aspects of low power engineering are also covered in section 26.1.

30.1 Power-Aware and Energy Efficient Middleware

Landscape

Resource usage in embedded system platforms depends on application workload
characteristics, desired quality of service and environmental conditions. In general,
system workload is highly non-stationary due to the heterogeneous nature of informa-
tion content. Quality of service depends on user requirements, which may change
over time. In addition, both can be affected by environmental conditions such as net-
work congestion and wireless link quality. For instance, consider a video streaming
application based on a video capture embedded device that grabs, encodes and trans-
mits a video stream through a wireless network to a remote video decoding and play-
back device. , the decoder may experience a variable input data rate due to channel
quality variations such as noise level and fading. User tuneable network parameters,
such as transmission power and code rate, lead to variations in error probability and
latency affecting the PSNR (Peak Signal to Noise Ratio) as well as the perceived
quality of the video sequence.

Power aware approaches in this context aim at reducing the power consumption of
embedded systems either by controlling algorithmic and network parameters or by
appropriately configuring resource power states to adapt to workload characteristics,
network conditions and quality of service requirements. Power optimization policies
may non-uniformly affect different parts of the system. Hence, effective techniques
should be aware of the power consumption of all components of a wearable device,
and ensure adequate orchestration of power management actions. For example, quan-
tization in MPEG4 encoding algorithms may be tuned to significantly reduce commu-
nication energy (spent by the network interface card) with little loss in visual quality.
On the other hand, the impact in computational energy (spent by the processor) has
been shown to be very small [Zhao02]

System power can be reduced through power state configuration of processor and
devices. In general-purpose architectures such as those used in modern mobile de-
vices, resources are redundant and as they must accommodate the peak of computa-
tional, memory and I/O requirements. For this reason, resources can be put in low-
power modes characterized by lower performance adapting to the workload and the
required QoS. For instance, processor speed and voltage can be scaled down if appli-
cations provide information on their requirements, such as processor utilization
[Yuan01]. Idle resources can be put in non-operational sleep states.

Applying a power optimization policy means making power related decisions
which affects the utilization of hardware resources. Some policies try to adapt re-
source utilization by exploiting information about the workload, system state (e.g.
battery level, wireless channel conditions) and required QoS, so that the power con-

 30.1 Power-Aware and Energy Efficient Middleware 451

sumption is minimized. Closed loop policies may be adopted as they exploit output
information to adjust power-related parameters. For instance, PSNR feedback can be
used to avoid strong variations in video quality.

Interaction with the user is also possible. In an energy constrained environment, a
user can decide to trade off quality of service with power to increase battery lifetime
and thus service duration. As an example, consider a video telephone application. The
user may decide to lower the image quality to extend battery lifetime and conversa-
tion duration. Algorithms that allows to gradually trade off quality of ser-
vice/performance for energy can be defined as energy scalable [Sinha02]. Not all the
algorithms are energy scalable and different algorithms have different energy-quality
behaviour. Algorithms can be modified to achieve better energy scalability [Sinha00,
Sinha02, Bhardwaj01].

In an application-centric view, decisions depend only on the single application,
with the additional option of exploiting information from the surrounding environ-
ment, represented by local or remote entities interacting with application, like network
conditions or the state of a remote content provider. In this case techniques are said to
be collaborative. For instance, a remote server may provide workload information to
aid a dynamic processor voltage scaling (DVS) algorithm [Chung02] or perform en-
ergy efficient traffic reshaping to save power spent by a wireless network interface
(WNIC) [Acquaviva03].

It is important to notice that application-centric techniques are applicable only in
application-specific systems. OS-collaborative techniques are mandatory in a multi-
processing environment to perform explicit management of shared system resources
like processor, network interfaces, video displays. For instance, scaling the processor
speed affects all the applications running on the system. As a consequence, the scaling
decision cannot be made by a single application but must be coordinated by the oper-
ating system. In this case applications may give information about their resource us-
age or quality of service requirements to an under-laying power manager acting at the
OS-level [Yuan01a, Min02].

The state of the art in the area of power aware middleware is surveyed in the As-
sessment section, moving from an application-centric view to more general, OS-
collaborative techniques. As a preliminary step, the key concept of energy-scalability
is introduced. Energy-scalability is a highly desirable characteristic for applications in
an energy-aware environment, since it is an indicator of the potential for smoothly
trading off quality of service for power savings. In other words, if the application
workload is highly energy scalable, the power management middleware layer has
ample opportunities for saving power in a robust fashion (i.e., under a wide spectrum
of environmental conditions) without severely compromising quality of service.

Assessment

Application Scalability
The concept of scalability is first introduced with examples taken from the multime-
dia domain. Then relationship between energy and power consumption is analysed by
introdcing a quantitative technique for assessing energy scalability, namely, Energy –
Quality curves (E – Q). Finally, it is discussed how E – Q behaviour can be improved.

452 30 Low Power Engineering

Many embedded applications provide services that must reach several users char-
acterized by diverse local resources (display size, storage and processing capabilities,
interconnection bandwidth), often located in a highly mobile scenario, where envi-
ronmental conditions are strongly variable. A high adaptation capability is required in
such a context. Adaptability is obtained by exploiting the concept of scalability. An
application of this concept can be found for example in encoding-transmission-
decoding applications. The data stream is packetized according to the content of the
data, in order to enable fast transmission of low-resolution but critical information,
followed by progressive transmission of additional details carried by additional data
packets. The described mechanism provides means for recovering the audio-visual
information at its highest quality under the imposed system resource constraints.

Different scalability options can be available depending on the algorithm character-
istics and implementations like spatial resolution, quality level and temporal resolu-
tion of video and audio sequences. This enables a variety of trade-offs between QoS
and resource costs such as memory size, processing requirements, power consump-
tion.

As a complex application example, MPEG-4 supports scalability. MPEG4 is an
ISO/IEC standard being developed by MPEG (Moving Picture Experts Group). While
MPEG-1 standard was mainly targeted to CD-ROM applications, and the MPEG-2
for digital TV and HDTV, with higher quality as well as bandwidth requirements
(2Mb/s – 30Mb/s), the MPEG-4 standard primarily focuses on interactivity, higher
compression, universal accessibility and portability of video content., with rates be-
tween 5 –64Kb/s for mobile applications and up to 2Mb/s for TV/film applications.

MPEG-4 supports scalable coding, the technique allowing access or transmission
of Video Objects (VO’s) at various spatial and temporal resolutions. This allows to
support receivers with different bandwidth or to provide a layered video bit stream
amenable to prioritised transmission. Receivers can choose not to reconstruct the full
resolution VOs by decoding subsets of the layered bit stream to display the VOs at
lower spatial or temporal resolution or with lower quality [Zhao02]. Both spatial and
temporal scalability are supported by MPEG-4. For the sake of illustration, we focus
on temporal scalability.

Temporal scalability involves partitioning the video object planes (VOPs) that can
be defined as the VO in a determined time instant. VOPs are partitioned into layers,
where the lower layer is coded by itself to provide the basic temporal rate and the
enhancement layer is coded with temporal prediction w.r.t. the lower layer. Similar to
spatial scalability, temporal scalability has an additional advantage in that it provides
resilience to transmission errors. Object based temporal scalability can also be ex-
ploited to allow control of picture quality by controlling temporal rate of each video
object under the constraint of a given bit-budget [Zhao02].

Energy Scalability
The scalability property of an application allows for adaptation of service levels to the
characteristics of hardware devices. These characteristics can be intended as computa-
tional and bandwidth capabilities, but also energy requirements. Hence, scalability
can be exploited to achieve a good trade-off between battery lifetime and quality of
service: energy consumption can be reduced at the cost of a degradation of quality.

 30.1 Power-Aware and Energy Efficient Middleware 453

It is important to notice that, not all algorithms scale well w.r.t. energy. This obser-
vation leads to the concept of energy scalability, that has been introduced in [Sinha02]
as the properties of algorithms to trade off computational accuracy (or quality, Q)
with energy requirement (E). More precisely, an algorithm is said to be energy scal-
able if, when the available computational energy is reduced, the impact on quality
gradually reduces. The concept can be extended to the total system energy. Algo-
rithms evidencing this property have a good E – Q behaviour. The E – Q behaviour of
an application can be modified to increase energy scalability through algorithmic
transformations. Clearly, energy overhead due to these transformations must be small
w.r.t. total energy consumption.

The formalization of the concept of desirable E – Q behaviour can be easily intro-
duced through the E-Q graph, which represents the function Q(E), as shown in the
figure below. Here Q represents some quality metric (e.g. PNSR, mean square error,
etc.) as a function of the system energy. Consider two algorithms (I and II) that per-
forms the same function: II would be more scalable compared to I if QII(E) > QI(E),
E. The desired E – Q behaviour described above can be easily expressed through the
Q(E) function. In fact, we would like a curve maximally concave downwards (with
respect to the energy axis). This is not always obtainable globally (i.e. across 0 E
Emax), however, on an average case, for a given energy availability, E, we would like
the obtainable quality Q(E) to be as high as possible.

Energy (E)

Quality (Q)

Quality
Distribution

QII

QI System I

System II

E Emax,I Emax,II

Figure 33.1. Energy Scalability

Energy Controllability and Observability
Most power optimisation strategies are aimed at trading off quality of service for
computational or communication power by tuning power – related parameters. Com-
putational power is saved by reducing the number of operations to be performed,
while communication power is reduced by acting on the bit rate. The rationale behind
these techniques is to adapt to characteristics of the workload to reduce the quality
penalty caused by parameter tuning. In essence, they try to act on those parameters

454 30 Low Power Engineering

that show good energy scalability. If an application is designed for good energy scal-
ability, the power control middleware is given the potential to achieve substantial
power savings without degrading quality of service metrics beyond acceptable levels.
Currently, many applications in the embedded multimedia domain are developed
taking scalability into the due consideration (refer to the MPEG4 example above).
However, two key additional requirements must be met to obtain significant power
savings; namely a good degree of energy controllability of hardware components and
sufficient observability on resource requirements on the application side

To understand the notion of energy controllability, observe that resource power
management requires hardware knobs allowing reconfiguration via software. For
example, processor frequency and voltage can be adjusted to save system energy.
Recent processors for embedded systems have been designed in a power-conscious
way. As a result, several today’s cores support different software-tuneable frequency
and voltage levels. Moreover, peripherals are often characterized by multiple power
states. For example, wireless network interfaces can be configured in power save
mode and their transmission energy can be modulated upon software commands.
Recent studies showed that also LCD displays are power manageable [Gatti02]
[Choi02]. In an abstract sense a power manageable device can be seen as a state ma-
chine, where states correspond to different modes of operation with different power-
performance characteristics. Transitions in the state machine are under external con-
trol and have a cost both in terms of time and power. Ideally, a components should
provide a large number of power states with negligible transition costs (i.e., the com-
ponent is highly power-controllable). In practice this goal is never fully achieved, and
power management decisions should take transition cost into account.

Application observability is the other side of the coin. The power management
middleware critically requires information on workload and quality of service re-
quirements of applications to take acceptable power management decisions. As a
limiting case, it is easy to observe that in absence of any quality of service require-
ments, minimum power is trivially obtained by shutting down the system. Many ap-
proaches have been proposed to increase the quantity and timeliness of workload and
QoS information for the power management middleware. These techniques are sur-
veyed and categorized next, starting from standalone approaches, focusing on a sin-
gle-application context, and moving to cooperative (synergistic) approaches suitable
to multi-task environments.

Standalone Power Management
Power management techniques can be classified based on the quantity they try to
adapt to and the software or hardware knobs they exploit to achieve adaptation. Adap-
tation can be performed on workload (image size, resolution, video/audio content),
network conditions (distance range, fading, multipath), user terminal characteristics
(battery level, display size, processing capabilities), required QoS. Once established
an adaptation parameter, achieving power efficiency through adaptation is not
straightforward because of: 1) the intrinsic difficulty to choose an adaptation step (it is
obviously not possible to continuously look at the adaptation parameter), 2) a fine
tuning of the regulation variable is not always possible, and 3) the effects of the regu-
lation on power consumption may be contrasting. To clarify the last point, let us con-
sider the case of a compression algorithm. Improving communication energy – effi-

 30.1 Power-Aware and Energy Efficient Middleware 455

ciency by reducing the amount of data to be transmitted requires more computational
energy spent by the processor to perform the compression task. The total energy bal-
ance must be evaluated in this case if we are interested in increasing the battery life-
time of a mobile device.

Workload adaptation is usually exploited to achieve a better usage of communica-
tion or computational resources while matching some constraints on the output
(bandwidth or QoS requirements). For instance, several adaptive source coding algo-
rithms look at the variable nature of input data (image and audio characteristics, re-
quired QoS) to reduce the amount of processing (which saves computational power),
or to reduce the bit rate (which saves communication power) while keeping the re-
quired QoS level. Two key ideas in this area are: (1) use application-provided work-
load information to operate the hardware resources in the least power consuming
state allowed by the workload, (2) exploit application-level buffering for reducing the
QoS degradation produced by power state transitions.

In order to reduce CPU power, applications can exploit speed/voltage scaling ca-
pabilities of modern microprocessors. Clock speed reduction by a factor of s allows
scaling down voltage as well thus leading to energy reduction by a factor of s3

[Chandrakasan92]. The minimum power consumption is achieved when voltage is
lowered so much that the operation speed is barely sufficient to meet the deadlines
imposed by QoS requirements (just in time computation). This must be done in a
workload adaptive way to avoid deadline misses impact quality. In the context of
MPEG audio streaming, Acquaviva et al. [Acquaviva01] showed that the sample rate
and bit rate information contained in the header of an MPEG stream can be exploited
to estimate the workload at the beginning of an audio streaming session. This is an
example of energy-aware application-level action. Workload information is forwarded
to the power management middleware to help precise setting of the CPU power state.
Similar approaches are described in [Simunic01, Delaney02].

It has also been observed that a speed setting approach with no voltage scaling can
also lead to consistent energy reductions [Acquaviva01]. This is in contrast with the
common assumption that speed-setting is effective only accompanied by an adequate
voltage-setting policy. Of course, if voltage is scaled with frequency, more power can
be saved, but the point here is that this is not a forced choice. Furthermore, even in
presence of speed and voltage setting, significant opportunities remain for shutdown-
based power management. In fact, in many cases the system or some of its compo-
nents becomes idle even if execution time is ideally stretched. Consider for instance
the case on an MPEG player. Even assuming that processor speed is set to the optimal
frequency that guarantees minimum power as well as acceptable audio quality, when
an audio stream terminates, the system becomes idle and it should be shut down to
prolong battery life.

More in general, idleness can be classified as implicit idleness and explicit idleness.
The first identifies CPU idleness dispersed among useful operations (mainly during
memory wait cycles on cache misses). This term varies with frequency: since memory
access time is fixed, adjusting the frequency involves variations in number of wait
states in a bus cycle. This happens when (as usual) the CPU is not the speed limiting
element. The second is due to coarsely clustered idle cycles. Explicit idleness is quite
common in practice. When the execution time is fixed, as in the case of real-time
constrained algorithms, making a computation faster involves the need of storing the

456 30 Low Power Engineering

results of computation in a buffer waiting for some event external at the CPU. During
that time, the CPU experience idleness, that can be eliminated without affecting the
algorithm effectiveness by increasing the time spent in useful operations, that is, by
lowering the CPU frequency. Explicit idleness can be reduced by putting the proces-
sor in a low-power state while waiting and restoring the running state when the exter-
nal event arrives (i.e. an external interrupt). The time and energy overhead needed to
shut down and wake up the CPU should be taken into account when taking a shut
down decision: even in this case, application hints can be extremely useful to decide
on the duration of an idle time.

To reduce power even more aggressively, applications can be modified to better
exploit clock scaling capabilities of the hardware, and to amortize the performance
overhead caused by power state transitions. As an example, we examine the approach
taken by Lu et al. They presented a design approach for a multimedia application that
require constant output rates and sporadic jobs that need prompt responses. The
method is based on splitting the application into stages and inserting data buffers
between them [Lu02]. Data buffering has three purposes: 1) to support constant out-
put rates; 2) to allow frequency scaling for energy reduction; and 3) to shorten the
response times of sporadic jobs.

The proposed technique is aimed at reducing power by dynamic frequency scaling
on processors that have only finite frequencies through data buffer insertion in multi-
media programs. Data are processed and stored in the buffers when processor runs at
higher frequency. Later, the processor runs at a lower frequency to reduce power and
data are taken from the buffer to maintain the same output rate. Before the buffers
become empty, the processor begins to run at a higher frequency again. Buffering can
also shorten the response time of a sporadic job, if there are enough data in the buff-
ers. In fact, the processor can handle a sporadic job without affecting the output rate
of the multimedia program.

Collaborative Power Management
Even if single applications can be designed to address low-power requirements, often
a stand-alone approach is not enough to satisfy tight power constraints imposed by
battery-operated devices. Collaborative techniques, middleware-centric techniques,
may be used in more aggressive power management techniques. In addition, collabo-
rative techniques are mandatory in some cases. Consider for example the approach
that perform dynamic voltage/clock processor scaling based on workload information.
Application workload information is completely unaware of other applications that
may be running on the same hardware platform. Applications often run in a multi-
processing environment, where hardware resources are shared among different proc-
esses. In such a context, resources management must be coordinated by the operating
system that knows the needs of all active application in the system.

Collaboration can be used also to enhance the adaptation by exploiting workload
knowledge provided by surrounding systems interacting with the device running the
application. In particular, often mobile devices communicate with a remote machine,
i.e. an application server. The remote server application can provide workload informa-
tion allowing for effective power management decision at the client side. In a multi-
client environment, the server can also implement a power aware scheduling strategy.
These kinds of techniques are well suitable for hot spot servers that must handle con-

 30.1 Power-Aware and Energy Efficient Middleware 457

nection with several clients providing them heterogeneous data streams. Collaborative
policies may target the reduction of both communication and computational power.

The operating system coordinates resource access (peripherals, CPU and memo-
ries) for all the applications. Since a multimedia workload translates in application
resource requirements, the OS can perform adaptation by monitoring the usage of
resources and by selectively configuring their power states. Current operating systems
implement simple policies based on timeout triggered by user interactions or on CPU
current utilization. Many energy-aware OS-based collaborative techniques have been
proposed in the recent past. They can be divided in three coarse classes, depending on
the amount of application-level knowledge they assume: (i) zero application knowl-
edge, (ii) run-time application knowledge, (iii) design-time application knowledge
(see [Benini00, Pouwelse01, Gruian02] for representative examples of each class).

Zero application knowledge techniques do not require any information flow be-
tween applications and operating system. In other words, the OS takes power man-
agement decisions by observing the state of system resources, and, possibly, of
autonomously collected system monitoring information. These approaches have the
key advantage of being completely independent from application-level support, but
they operate with very limited information, hence they either cause a measurable
performance degradation, or they must be extremely conservative (and generally they
save very little power). For this reason, zero-knowledge techniques are not suited for
real-time workloads, where deadline misses are either not tolerable or they seriously
compromise quality of service. Most of zero-knowledge techniques are based on
some workload prediction mechanism: they try to predict future workloads by collect-
ing statistics on past workloads. Power management decisions are then taken based on
predictions, and the quality of results strongly depends on prediction quality. Many
prediction techniques have been proposed, ranging from conservative timeout setting,
to stochastic parameter estimation to various forms of regression. A review of zero-
knowledge techniques can be found in [Benini00]. In the following, we describe in
some details a representative zero-knowledge approach.

Kumar et al. proposed a modification of an RTOS kernel to perform power-aware
scheduling of multimedia tasks that exploits the inherent tolerance of many multime-
dia applications to lost data samples due to factors like communication noise or net-
work congestion [Kumar01]. This tolerance is used as an immunity noise margin that
mitigates the effects of a wrong adaptation. In fact, the proposed strategy is based on a
dynamic voltage scaling technique that uses a history of the actual computation re-
quirements of the previous instances of a task to predict the computation required by
the next instance. The prediction may have an error that may results in an underesti-
mation that may lead to a deadline miss. The tolerance to a small percentage of
missed deadlines can be exploited to do an aggressive DVS.

Table 33.1. Power reduction obtained with the predictive policy

Row No
Power Reduction
Compared to Full

Power Mode

Power Reduction
Compared to Low Mode

without Prediction

Number of Deadline
Missed

I 95% 60% 33%
II 90% 30% 10%

458 30 Low Power Engineering

Results of the application of the prediction strategy on an MPEG player are shown in
Table 1. Power reduction achieved by two prediction strategies are shown. The num-
ber of frames missing their deadlines for the second strategy (row II) is much smaller
compared to those of the first strategy (row I). This enhancement has been obtained
by considering that I frames in MPEG are important parts of the sequence, so the
prediction has been restricted to when P frames are about to be decoded. I frames are
assumed to take always their worst case time to decode. Refer to [Kumar01] for a
more detailed explanation of the prediction strategies. This example demonstrates also
that better performance can be achieved when increasing the amount of application-
level information provided to the OS (in this case, the type of MPEG frames), i.e.,
when moving toward run-time application knowledge.

Run-time application knowledge approaches assume that applications explicitly
provide resource needs, which can be negotiated [Pouwelse01]. The middleware co-
ordinates the Processor/Power Resource Management (PPRM) and has four major
characteristics: (1) provides a power-aware resource reservation mechanism, where
admission control is based on the processor utilization and power availability; (2)
adjusts the speed and corresponding power consumption of the processor upon events,
triggered by the change of the system workload or power availability; (3) updates
reservation contracts of multimedia applications to maintain their resource require-
ments while adjusting the processor speed; and (4) notifies applications about the
change of resource status to enable them to adapt their behaviour and complete tasks
before power runs out.

Yuan and Nahrsted that propose a run-time application knowledge middleware
framework which will be used as a representative example [Yuan01a]. The architec-
ture of the middleware is shown in Figure 33.2. The operating system exports hard-
ware resource (such as processor and power) status to the middleware layer, which
receives resource request from applications. The middleware layer consists of three
major components: the Dynamic Soft Real-Time (DSRT) processor scheduler [Yavat-
kar95], the power manager and the coordinating PPRM framework.

APPLICATIONS

DSRT
SCHEDULER

COORDINATING
PPRM FRAMEWORK

POWER
MANAGER

OPERATING SYSTEM

Application
Layer

Middleware
Layer

OS
Layer

APPLICATIONS

DSRT
SCHEDULER

COORDINATING
PPRM FRAMEWORK

POWER
MANAGER

OPERATING SYSTEM

Application
Layer

Middleware
Layer

OS
Layer

APPLICATIONS

DSRT
SCHEDULER

COORDINATING
PPRM FRAMEWORK

POWER
MANAGER

OPERATING SYSTEM

Application
Layer

Middleware
Layer

OS
Layer

Figure 33.2. Middleware architecture of PPRM framework

The DSRT scheduler allows multimedia applications to reserve processor resource
and corresponding power resource, and monitors the system workload. The power
manager monitors the power availability (i.e., remaining battery lifetime) and the
processor power consumption. The coordinating PPRM framework (1) determines

 30.1 Power-Aware and Energy Efficient Middleware 459

polices on how to adjust reservations according to power availability, (2) uses the
corresponding polices to differentiate applications in case of low power availability,
(3) adjusts the processor speed to achieve minimum wasted energy, and (4) notifies
application, if it cannot extend the battery life and meet the processor resource re-
quirements of applications under low power availability.

The main characteristic of the DSRT scheduler is that it provides a power – aware
resource reservation mechanism that separates soft or adaptive real-time multimedia
applications from best effort applications, and statistically multiplexes processor re-
source between them. Each real-time application reserves a certain amount of proces-
sor resource, required capacity, CRE (as explained below), and the real-time work-
load is the sum of the required capacity of all admitted real-time applications in the
system. The best-effort workload is limited by the available unreserved processor
resource.

The other important component of this approach is the coordinating algorithm. It
dynamically adjusts the speed of the processor to meet the following goals: (1) Ensur-
ing enough power availability for all admitted multimedia applications (that is, the
battery can last for the maximum duration of all multimedia applications). (2) Allocat-
ing the required capacity of processor resource to each multimedia application under
high power availability. (2) Reducing the required capacity CRE to weight*CRE for
each multimedia application, and notifying applications under low power availability.
The processor is then run as slowly as possible to save energy while meeting the
above goals.

Meeting the processor/power resource requirement of an adaptive real-time applica-
tion means that (1) the required capacity of processor resource can be allocated to the
application; and (2) the power availability is enough for the duration of the applica-
tion. Note that a certain amount of processor resources is shared among all best-effort
applications to protect starvation for best-effort applications. In Figure 33.3, adapted
by [Yuan01a], is reported the utilization and the required capacity as a function of
time for the proposed example. Summarizing, authors show that a percentage of
39.5% of energy can be saved.

utilization
required capacity

20 40 60 12080 140100 160
0,2

0,3

0,4

0,5

0,6

0,7
utilization
required capacity
utilization
required capacity

20 40 60 12080 140100 160
0,2

0,3

0,4

0,5

0,6

0,7

Figure 33.3. Example of application of PPRM framework

460 30 Low Power Engineering

The presented technique represent a good evidence that when application provide
their resource requirements to power – aware OSes, better power efficiency can be
achieved with respect to predictive techniques.

Design-time application knowledge techniques assume a significant amount of
knowledge on application knowledge at design time (refer to [Gruian02] for an ex-
tensive review). A typical assumption is the knowledge of the worst case execution
time (WCET) of all tasks which can be run by a variable-voltage processor. In this
setting, it is possible to assign priorities to all tasks and to set the CPU frequency and
voltage to be used for each task. Typically, variations of well know real-time schedul-
ing and schedulability analysis algorithms are used (e.g. EDS, RMS), followed by a
voltage (and frequency) assignment step. The run-time of the voltage assignment
algorithm can be high because the decision is taken at design time. Hence, computa-
tionally intensive techniques have been proposed to solve the scheduling and voltage
assignment problem (which is NP-complete in all but some highly-simplified cases).
This is in sharp contrast with run-time application knowledge policies, which must be
run online with minimal performance impact.

Design time application knowledge techniques can benefit substantially from run-
time information collection. This is because many conservative design time decisions
can be refined when run-time information is available. For instance, design-time
scheduling and voltage assignment are based on WCET values for all tasks, and it is
well known that task runtime is often much shorter than the WCET. If a task runs in a
time shorter than the WCET, the schedule has now some slack, which can be turned
into power savings by immediately reducing the processor speed. Many slack recla-
mation strategies have been proposed, as outlined in [Gruian03]. Another hybrid de-
sign time and run time technique exploits intra-task compiler analysis to insert power
management commands in correspondence of control flow arcs in the application
[Shin02]. In this way, slowdown is subordinate to specific control-flow conditions
which cannot be detected at run time only.

Even though most of the publications on power management are concerned with
design-time techniques, their usefulness in practice is quite limited. This is because in
many practical cases, it is not possible to characterize the workload with the required
level of precision. Furthermore, processor voltage and frequency setting have an im-
pact on peripherals and memory systems which are generally not voltage scalable.
Execution time is ultimately determined by the interaction between voltage-scalable
components (CPUs) and non-voltage scalable components (memories, I/O subsys-
tems) Hence, the worst-case information required for design time analysis may be-
come very inaccurate in real systems.

Trends

The direction of evolution of energy-aware middleware are driven by the trends in
technology an applications. From the technological viewpoint, hardware platforms are
becoming increasingly programmable, parallel and highly integrated. In an effort to
keep power consumption under control, multiple dynamically adjustable voltages and
clock frequencies will be available on chip. Hence, the middleware will have an in-
creased level of control on power states of various subsystems. On the other hand, it

 30.1 Power-Aware and Energy Efficient Middleware 461

will be extremely hard to maintain a centralized orchestration of power management
decisions, because the various system components will be increasingly decoupled.

From an application-level viewpoint, the main trend is toward distributed applica-
tion architectures. At the system level, most applications involve interaction between
multiple actors (e.g. peer-to-peer, client sever), and the system state and workload can
be much better characterized in a distributed fashion, in contrast on focusing on single
components. Distributed techniques for power awareness appear therefore extremely
promising. Approaches of this type have recently been explored in the context of
wireless multimedia systems. These techniques are the first representative examples
of the above mentioned trend, and will be described in some detail.

Wireless Mobile devices are often used as playback clients connected by a wireless
link to a remote content provider (application server). The application server, based
on its knowledge of workload and traffic shape, may provide information to the cli-
ents to selectively shut down their network interfaces. The effectiveness of such an
approach has been recently explored in a wireless LAN environment [Acquaviva03].
In this work, authors present a power management infrastructure composed by couple
of power manager modules, local and remote. The local power manager provides an
application program interface to power related parameters of the system. In particular,
it can control WLAN power states (off, doze, active), CPU speed and power states
(active, idle, sleep). This interface can be exploited to implement a server controlled
power management strategy. The proposed technique exploits the server knowledge
of the workload, traffic conditions and feedback information from the client in order
to minimize WLAN power consumption. Two entities are defined: a server power
manager (server PM) and a client power manager (client PM). Both are implemented
as a part of the Linux OS and they provide the power control interface to the applica-
tions. Server PM uses the information obtained from the client and the network to
perform energy efficient traffic reshaping so that WLAN can be turned off. Client PM
communicates through a dedicated low-bandwidth link with the server PM and im-
plements the power controls by interfacing with the device drivers. It also provides a set
of APIs that client applications can use to provide extra information back to the server.

Figure 33.4. Example of application of the server assisted policy

The server PM achieves energy reduction at the wireless interface card of the client
by means of traffic reshaping and controlling power states of the card. It schedules the
transmission to the client in bursts in order to compensate for the client’s performance

462 30 Low Power Engineering

and energy overheads during the transitions between card’s on and off states. The
client’s WLAN card is switched off once the server has sent a burst of data that will
keep the client application busy until the next communication burst. Burst size and
delay between bursts must be pre-computed at the server. The goal is to have a delay
large enough to almost empty the client input buffer and small enough burst size to
avoid overflow while keeping the buffer sufficiently filled. An illustration of the shut-
off policy is shown in Figure 33.4. The horizontal axes represent the time. In the up-
per axis the network traffic is represented, while in the lower axis are represented the
power management decisions made by the server.

When the server decides to transmit (gray boxes) the WLAN is switched on, while
when the server stops the transmission the WLAN is switched off (down arrow in the
lower axis), thus discarding the broadcast traffic (down arrows in the upper axis).
Before beginning a new transmission time interval, the server wakes up the WLAN
(up arrow in the lower axis). The only parameters needed by the server to implement
this policy are the burst size and time between bursts, which determines the time the
card is in off state. The burst size has been established as the largest value as possible
to avoid overflow conditions in the access point (AP) buffer or the application buffer,
whichever the smaller. The burst delay can be computed by exploiting server’s
knowledge of frame composition, i.e. the number of packets needed to compose a
video frame. This number may be strongly variable depending on the characteristics
of the video sequence.

While this server-driven network interface power reduction technique is just a rep-
resentative example, it demonstrates the potential and the key characteristics of dis-
tributed power management. First, by collecting and communicating data across mul-
tiple devices, more complete information on workloads and their evolution over time
can be obtained. Second, energy-aware traffic re-shaping, which is possible only in a
distributed approach, can greatly enhance power management opportunities. Third,
complex power management decisions can be offloaded (possibly, in a dynamic fash-
ion) to less energy constrained system components. Opportunities abound, but several
challenges still remain open, and the evolution of distributed power management
middleware is still at a preliminary stage.

References

[Acquaviva01] A. Acquaviva, L. Benini, B. Riccò, “Software Controlled Processor Speed-
Setting for Low-Power Streaming Multimedia,” Transaction on CAD, Novem-
bre 2001.

[Acquaviva03] A. Acquaviva, T. Simunic, V. Deolalikar, S. Roy, “Remote Power Control of
Wireless Network Interfaces,” Proceedings of PATMOS, Turin, September
2003.

[Benini00] L. Benini, A. Bogliolo, and G. De Micheli. “A survey of design techniques for
system-level dynamic power management”. IEEE Trans. on VLSI Systems,
8(3):299--316, 2000.

[Yuan01a] W. Yuan, K. Nahrstedt, “A Middleware Framework Coordinating Proces-
sor/Power Resource Management for Multimedia Applications,” Proceedings of
IEEE GLOBECOM, November 2001.

[Lu02] Y.H. Lu, L. Benini, G. De Micheli, “Dynamic Frequency Scaling with Buffer
Insertion for Mixed Workloads,” IEEE Transaction on CAD, November 2002.

 30.1 Power-Aware and Energy Efficient Middleware 463

[Zhao02] J. Zhao, R. Chandramouli, N. Vijaykrishnan, M.J. Irwin, B. Kang, S. Soma-
sundaram, “Influence of MPEG-4 Parameters on System Energy,” Proceedings
of IEEE ASIC/SOC, 2002.

[Chung02] E.Y. Chung, L. Benini, G. De Micheli, “Contents Provider-Assisted Dynamic
Voltage Scaling for Low Energy Multimedia Applications,” Proceedings of
IEEE ISLPED, August 2002.

[Delaney02] B. Delaney, N. Jayant, M. Hans, T. Simunic, A. Acquaviva, “A low-power,
fixed-point, front-end feature extraction for a distributed speech recognition
system,” IEEE Proceedings of ICASSP, May 2002.

[Sinha02] A.Sinha, A. Wang, A. Chandrakasan, “Energy Scalable System Design,” IEEE
Transaction on VLSI, Vol 10, No. 2, April 2002.

[He97a] Z.L. He, K.K. Chan, C.Y. Tsui, M.L.Liou, “Low-Power Motion Estimation
Design Using Adaptive Pixel Truncation,” IEEE Proceedings of ISLPED, 1997.

[He97b] Z.L. He, M.L. Liou, “Reducing Hardware Complexity of Motion Estimation
Algorithms using Truncated Pixels,” Proceedings of IEEE ISCAS, June 1997.

[Yuan01b] W. Yuan, K. Nahrstedt, K. Kim, “R-EDF: A Reservation Based EDF Schedul-
ing Algorithm for Multiple Multimedia Task Classes,” IEEE Real-Time Tech-
nology and Applications Symposium, May 2001.

[Kumar01] P.Kumar, M. Srivastava, “Power Aware Multimedia Systems using Run-Time
Prediction,” Proceedings of IEEE VLSI Design, January 2001.

[Yavatkar95] R. Yavatkar, K. Laksman, “A CPU Scheduling Algorithm for Continuous Me-
dia Applications,” Workshop on Network and OS Support for Digital Audio
and Video, April 1995.

[Gatti02] F. Gatti, A. Acquaviva, L. Benini, B. Riccò, “Power Control Techniques for
TFT LCD Displays,” Procedings of ACM CASES, Grenoble, 2002.

[Gruian02] F. Gruian, “Energy-Centric Scheduling for Real-Time Systems”, Doctoral
Dissertation, Lund University, Faculty of technology, 2002.

[Min02] R. Min, A. Chandrakasan, “A Framework for Energy-Scalable Communication
in High Density Wireless Networks,” Proceedings of IEEE ISLPED, August
2002.

[Sinha00] A.Sinha, A. Wang, A. Chandrakasan, “Algorithmic Transforms for Efficient
Energy Scalable Computation,” Proceedings of IEEE ISLPED, August 2000.

[Simunic01] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, G. de Micheli, “Dynamic volt-
age scaling and power management for portable systems,” IEEE Proceedings of
DAC, June 2001.

[Chandrasena00] L. H. Chandrasena, M. J. Liebelt, “A comprehensive analysis of energy sav-
ings in dynamic supply voltage scaling systems using data dependent voltage
level selection,” Proceedings of IEEE International Conference on Multimedia
and Expo, July-August 2000.

[Pouwelse01] J. Pouwelse, K. Langendoen, H. Sips, “Energy priority scheduling for variable
voltage processors,” IEEE Proceedings of ISLPED, August 2001.

[Chandrakasan92] A. P. Chandrakasan, S. Sheng, R. W. Brodersen, “Low Power CMOS Digital
Design,” IEEE Journal of Solid State Circuits, Vol. 27 No. 4 , April 1992.

[Choi02] I. Choi, H. Shim, N. Chang, “Low-Power Color TFT LCD Display for Hand-
Held Embedded Systems,” IEEE Proceedings of ISLPED, August 2002.

[Qu00] G. Qu, M. Potkonjak, “Energy minimization with guaranteed quality of ser-
vice,” Proceedigns of IEEE ISLPED, July 2000.

464 30 Low Power Engineering

30.2 Memory Hierarchy and Low Power Embedded Processors

Memory aspects of low power embedded processors cover two aspects corresponding
to the two memory hierarchies in the processor: low power instruction memory and
low power data memory. Power estimation techniques of embedded processors show
that both parts are important to reduce the total processor power consumption. The
data memory consumes up to 43% of the total power and the instruction memory up
to 30% [15]. The section on data memory is partially based on [24].

Landscape

Data Memory Aspects
Code and Data Flow Transformations: It has been recognized quite early in
compiler theory (for an overview see [9]) and high-level synthesis that in front of
the memory organization related tasks, it is necessary to perform transformations
which optimize mainly the loop control flow. Otherwise, the memory organisation
will be heavily suboptimal with respect to power.

Interactive loop transformations: Most existing work focuses on the loop con-
trol flow. Work to support this crucial transformation task has been especially tar-
geted to interactive systems of which only few support sufficiently general loop
transformations. Very early work on this has started already at the end of the 70’s
[73] but that was only a classification of the possible loop transformations.

In the parallel compiler domain, interactive environments like Tiny [121],
Omega at U. Maryland [61], SUIF at Stanford [49], the Paradigm compiler 1 at
Univ. of Illinois [8] and the ParaScope Editor [78] at Univ. of Rice have been pre-
sented. Also non-singular transformations have been investigated in this context
[69]. These provide very powerful environments for interactive loop transforma-
tions as long as no other transformations are required.

Automated loop transformation steering: In addition, research has been per-
formed on (partly) automating the steering of these loop transformations. Many
transformations and methods to steer them have been proposed which increase the
parallelism, in several contexts. This has happened in the array synthesis commu-
nity (e.g. at Saarbrucken [111], mainly intended for interconnect reduction in prac-
tice, at Versailles [41] and E.N.S. Lyon [34] and at the Univ. of SW Louisiana
[103]) in the parallelizing compiler community (e.g. at Cornell [69], at Illinois
[84], at Stanford [5], at Santa Clara [102], and more individual efforts like [115]
and [28]) and finally also in the high-level synthesis community (at Univ. of Min-
nesota [92] and Univ. of Notre-Dame [94]). None of these approaches work glob-
ally across the entire system, which is required to obtain the largest impact for
multimedia algorithms.

Efficient parallelism is however partly coupled to locality of data access and
this has been incorporated in a number of approaches. Therefore, within the paral-
lel compiler community, work has been performed on improving data locality.
Most effort has been oriented to dealing with pseudo-scalars or signal streams to
be stored in local caches and register-files. Examples of this are the work at
INRIA [39] in register-file use, and at Rice for vector registers [4].

 30.2 Memory Hierarchy and Low Power Embedded Processors 465

Some approaches are dealing with array signals in loop nests. Examples are the
work on data and control-flow transformations for distributed shared-memory ma-
chines at the Univ. of Rochester [29], or heuristics to improve the cache hit ratio
and execution time at the Univ. of Amherst [79]. At Cornell, access normalisation
strategies for NUMA machines have been proposed [70]. Rice Univ. has also
looked at the actual memory bandwidth issues and the relation to loop fusion [37].
At E.N.S. Lyon the effect of several loop transformation on memory access has
been studied too [42]. A quite broad transformation framework including inter-
procedural analysis has been proposed in [77]. It is focused on parallelization on a
shared memory multiprocessor. The memory related optimizations are still per-
formed on a loop nest basis (so still “local”) but the loops in that loop nest may
span different procedures and a fusing preprocessing step tries to combine all
compatible loop nests that do not have dependencies blocking their fusing.

Some work is however also directly oriented to storage or transfer optimization
between the processor(s) and their memories to reduce the memory related cost
(mainly in terms of area and power). Very early work in the compiler community
has focused on loop fusion and distribution of the arrays over multiple pages in the
memories [1]. That was intended to numerical loop nests with limited indexing.

The work at Ecole des Mines de Paris [6] on data mapping is also relevant in
the context of multimedia applications. It tries to derive a good memory allocation
in addition to the transformation (affine scheduling and tiling) of loop nests on a
distributed memory MIMD processor. It does not support optimizations inside the
processor memory however, so the possibility to map signals in-place on top of
one another in the memory is not available. In the high-level and embedded sys-
tem-level synthesis community, also some other work has been done in this direc-
tion. An example is the research at U.C. Irvine on local loop transformations to
reduce the memory access in procedural descriptions [66]. In addition, at the Univ.
of Notre Dame, work has addressed multi-dimensional loop scheduling for buffer
reduction [95]. The link with the required compile- and run-time data dependence
analysis to avoid false dependencies leading to unnecessary memory accesses has
been addressed in [99]. Within the Phideo context at Philips and T.U. Eindhoven,
loop transformations on periodic streams have been applied to reduce an abstract
storage and transfer cost [119]. At Penn State [52] work on power oriented loop
transformations has started. In the same context, at Louisiana State Univ., improv-
ing data locality by unimodular transformations is addressed in [98].

At IMEC, contributions have been made to a global loop transformation steer-
ing methodology and automatable techniques, using a Polyhedral Dependency
Graph (PDG) model [23]. Later on a more accurate cost function [33] was added.
and a constraint-based exploration method [33] was presented. To provide feed-
back to the system designer or to the loop transformation and data reuse decision
steps, array-oriented memory size estimation techniques are required [65].
Platform Dependent Memory Issues: The memory interaction has been identi-
fied as a crucial bottleneck [96]. Still, the amount of effort at the compiler level to
address this bottleneck shows a focus on a number of areas while leaving big holes
in other (equally important) research issues. A summary about the different issues
is provided in [22, 83].

466 30 Low Power Engineering

Memory organization issues: Several papers have analyzed memory organiza-
tion issues in processors, like the number of memory ports in multipleinstruction
machines [81], or the processor and memory utilization [113]. This is however
only seldom resulting in a formalizable method to guide the memory organization
issues. Moreover, the few approaches are usually addressing the “foreground”
memory organization issues, i.e. how scalar data is organized in the local register
files.

Some approaches address the data organization in processors for programs with
loop nests. Examples include a quantitative approach based on life-time window
calculations to determine register allocation and cache usage at IRISA [19], a
study at McMaster Univ. for the optimization of multiple streams in heavily pipe-
lined data-path processors [76], and work at Rice on vector register allocation [4].

In a high-level or system synthesis context also several approaches have been
introduced. A multimedia stream caching oriented approach is proposed in [50].
Interleaved memory organizations for custom memories are addressed in [26].
Memory bank assignment is addressed in [86].

Recently, this area has been the focus of much more effort, due to the growing
importance of embedded software systems and their sensitivity to cost efficiency.
As a result, the pure performance oriented approaches that had been the main fo-
cus for many decades are now augmented also with cost-aware approaches. A nice
overview of the state-of-the-art related to the low power cost aspect can be found
in section 30.2 of [16].

At IMEC, formalized techniques have been proposed to decide on the exploita-
tion of the memory hierarchy [123]. Important considerations here are the distribu-
tion of the data (copies) over the hierarchy levels as these determine the access
frequency and the size of each resulting memory. Once the memory hierarchy is
defined globally, it can be further optimized by minimizing the storage bandwidth
[124] and optimizing the signal to memory assignment [116].

Data locality and cache organisation related issues: Data (re)placement policies
in caches have been studied for a long time, especially the theoretically optimal
ones [11]. Most of this work however requires a-priori knowledge of the data se-
quence and hardware overhead.

Also data locality optimizing algorithm transformations have been studied rela-
tively well already in the past, e.g. at Illinois/INRIA [43] and Stanford [120]. The
focus lies on the detection of spatial and temporal data reuse exploitation in a
given procedural code. Tiling (blocking) combined with some local (applied
within a single loop nest) uniform loop transformations are then used to improve
the locality. Partitioning or blocking strategies for loops to optimize the use of
caches have been studied in several flavors and contexts, in particular at HP [40]
and at Toronto [75]. The explicit analysis of caches is usually done by simulation
leading to traces (see e.g. [38]), but some analytical approaches to model the
sources of cache misses have been presented also [58]. This allows to more effi-
ciently steering the transformations. Also software approaches to analyze the spa-
tial cache alignment and its possible improvement have been proposed [122].

This has been extended and implemented in the SUIF compiler project at Stan-
ford [49] to deal with multiple levels of memory hierarchy but it still is based on

 30.2 Memory Hierarchy and Low Power Embedded Processors 467

conventional loop nest models. Multi-level caches have also been investigated in
[56]. The work at IRISA, Rennes [114] which distributes data over cache blocks is
relevant here too. It uses a temporal correlation based heuristic for this but relies
mostly on the hardware cache management still and is oriented mostly to scalars
(or indivisible array units). The effect of spatial locality is studied e.g. in [59]. Pre-
fetching (both in hardware and software) is also employed to achieve a better
cache performance (see e.g. [71]). Program and related data layout optimizations
based on a branch-and-bound search for the possible cache offsets (including
“padding”) have been proposed in [10].

Relevant work has also focused on the multimedia and communication applica-
tion domain related memory organization issues in an embedded processor con-
text. This is the case for especially U.C. Irvine. At U.C. Irvine, the focus has been
initially on [85]: distributing arrays over multiple memories with clique partition-
ing and bin packing [90], optimizing the main memory data layout for improved
caching based on padding and clustering signals in the main memory to partly re-
duce conflict misses [87], selecting an optimal data cache size based on conflict
miss estimates [88] and distributing data between the cache and a scratch-pad
memory based on life-time analysis to determine access conflicts in a loop context
[89]. All of this is starting from a given algorithm code and the array signals are
treated as indivisible units (i.e. similar as scalars but with a weight corresponding
to their size). More recently they have added reordering of the accesses to reduce
the misses [47]. This is based on accurate memory access models [46]. The explo-
ration of the effect of the cache size and associativity and the related code trans-
formations has been studied in [105].

In addition, there is a very large literature on code transformations which can
potentially optimize this cache behaviour for a given cache organization which is
usually restricted to one level of hardware caching (see other section). Architecture
level low-power or high-performance caching issues have been addressed in other
work also. Modified data caching architectures have been explored, such as victim
buffers [3]. Both for instructions and data these are actually successors of the origi-
nal idea of adding a small fully associative cache [57] to the memory hierarchy.

Instruction Memory Aspects
Although at a lower level of abstraction, data and instructions are essentially bits
stored in memories, a distinction between the two has proved useful for optimizations
at higher levels of abstraction. At such higher levels, different techniques are used to
optimize instruction memory and data memory. Several features of the platform are
found to heavily influence the interactions with the instruction memories. Many tech-
niques can be found in the literature that exploit these features in order to reduce
power consumption in instruction memories.

Code Compression: Smaller memories are known to be faster and consume less
power. Hence generating compact programs of the application has been desirable
for both performance and energy reasons. For a given instruction set architecture,
the techniques described in [14, 13, 25, 54] explicitly use some form of compres-
sion algorithm on the binary image to reduce the static code size. Additionally,
compile-time [35] and link-time optimization techniques exist to generate compact
code. Certain processors provide two instruction set, one normal and one reduced

468 30 Low Power Engineering

instruction set. Compiler techniques to exploit this dual instruction in order to pro-
duce compact code have been proposed [48].

Essentially, the bits in the program are the ones that ultimately cause switching
in the physical system. Hence, reducing the number of bits and the modifying the
way the bits cause the switching is one of the prime concerns to reduce energy.
Several instruction encoding schemes [74, 67, 27, 13, 14] have been applied to re-
duce the effective switching on the (instruction and address) buses. Some of these
techniques in addition to reduce to the effective switching also reduce the effective
memory size. An exhaustive survey of various code compaction techniques can be
found in [17].
Memory Organization: Power and performance of the system is heavily influ-
enced by the memory organization for a given memory access pattern. By adopt-
ing the memory organization to suit the access pattern, power can be reduced. Par-
titioning memories is an effective scheme to reduce power. Essentially, a block of
memory is partitioned into smaller blocks and accesses to these blocks are re-
stricted. Reduction in the number of accesses to memories reduces power con-
sumption. In a n-way set-associative cache, each way can be considered as a parti-
tion. By using some way-prediction schemes, accesses to different partitions can
be reduced. Several variants of this prediction scheme exist [2, 97, 21]. Alterna-
tively, the caches themselves are partitioned into multiple caches and similar pre-
diction schemes can be adopted [62, 53, 63]. In comparison with data memory ac-
cesses, instruction memory accesses have higher locality. This observation has led
to some prediction schemes specific to instruction memories [53]. This aspect of
high instruction locality has been used in direct mapped caches to reduce the
number of accesses to the tag memory [51].

Since memory accesses to larger memories consume more power, accesses can
be filtered through a smaller buffer or a cache. This idea of an L0 buffer was first
proposed in [57]. Since the locality of instructions is high the instruction accesses
can be restricted to this small buffer to a large extent, thus reducing power. This
scheme has proved to be very effective for many signal processing applications
which are dominated by small loops. Many variants of this scheme have been pro-
posed [64, 7, 109, 108, 110, 45, 31, 32, 44]. Most of these schemes are primarily
hardware controlled. However, recently software controlled buffers have shown to
be much more effective in embedded system domain [12, 118, 107, 91].

For a certain class of embedded processors, very long instruction word (VLIW)
processors, special cache designs exist. Flexible silo cache is one such design spe-
cifically designed for VLIW processors [30]. Similar to the L0 buffer, scheme for
general purpose embedded processors clustered L0 buffers are shown to be power
efficient for VLIW processors [55].
Software Transformations: Furthermore, the memory access pattern influences
the way the memory is organized. This access pattern can be changed by doing
transformations at the mapping level or at the source code level. Several tech-
niques exist to influence the memory access patterns through scheduling of opera-
tions [104, 20, 93]. Higher level loop transformations, like loop peeling and code
hoisting also exist to exploit the L0 buffer [106, 117]. Optimization techniques
based on high-level code transformations like function inlining, dead code re-
moval, loop splitting and function call insertion, have also been proposed [72].

 30.2 Memory Hierarchy and Low Power Embedded Processors 469

Assessment

In many different domains (compilation for parallel machines, high level synthesis,
etc.), techniques have been developed that can be reused in the context of data access
and storage optimization for low power embedded processors.

A low power data memory hierarchy has been a research issue much longer than
instruction memory hierarchy, and therefore it is much more mature. But since in
modern low power processors, e.g. VLIWs, the instruction part has become almost as
important as the data part, the former has been the subject of intense research re-
cently. Because behaviour of instructions and data memory is fundamentally differ-
ent, the data memory techniques cannot be applied directly to the instruction side of
the processor.

Figure 33.5. Memory optimization stages in an embedded system

Methodologies in this area tend to be split up in two stages: a platform-independent
stage followed by a memory platform-dependent one (Figure 33.5). The first of the
stages is nearly independent of the target architecture. The advantage of this stage is
therefore that it has to be executed only once during the complete design trajectory
irrespective of the number of mplementation platforms that is considered. The results
obtained by the platform independent stage can be further improved. That is done by
adapting the source code to the characteristics of the underlying (platform) memory
organization. Its advantage is mainly the possibility of exploring platform specific
trade-offs (e.g., speed versus power) that add crucial gains to the target cost function
(e.g., power). Loop and data flow transformations play an important role in the plat-
form independent optimizations.

470 30 Low Power Engineering

Trends

We foresee that in future low power embedded systems, the components will be i)
software controlled and ii) reconfigurable (either at design time, at run time or a com-
bination of both). Because the components are software controlled, their power con-
sumption can be optimized using characteristics of the running application without the
overhead of hardware detection of these characteristics. Configuration at design time
can lead to a certain optimal design for a certain application domain. Reconfiguration
at runtime can lead to efficient utilization for a certain application.

These two aspects will influence future research issues related to memories. Some
of the issues are as follows:

Design Space Exploration (DSE): Efficient exploration of the parameters that are
configurable and reconfigurable in the embedded systems. Questions to be an-
swered here are: What is the design space, and what is an efficient way to explore
it? Typically the design space is too big to explore it exhaustively. In systems with
multiple objectives (power, area, performance), the design time exploration results
can be expressed in Pareto curves. Each point in the curve is Pareto optimal with
respect to the objectives. At runtime the system can be reconfigured from one
Pareto optimal point to another depending on the runtime behaviour of the appli-
cation.
Platform: Related to the previous issue, there is a trend to go from one instruction
memory hierarchy and one data memory hierarchy, to a more hybrid approach
where memories of different types and sizes are connected to the other compo-
nents (e.g. computational engines) using a network on chip. The network on chip
will be adaptable to the needs of the application(s) running on the platform.
Concurrency: Support for execution of multiple threads in an SMT-like, low
power fashion. The execution of multiple tasks on a single processor with shared
memory will have significant impact on the data and instruction memory hierar-
chy. This will have to be investigated.
Runtime Management: Applications for embedded systems are showing more
and more dynamic aspects. One of these aspects is the use of dynamically allo-
cated data structures. Management of allocation is normally done in the operating
system (software), assisted by the hardware memory management unit. Foreseen
future research will include methodologies to efficient manage dynamic memory
completely in software.
Unified Methodologies: Currently there is not integrated flow that combines the
optimizations for data memory with those for instruction memory in an efficient
way. Recent work has shown that a trade-off can exist between data and instruc-
tion memory optimizations for low power.
Tool Support: For software controlled hardware, the compiler is responsible for
inserting the special control instruction in the program. Support for these hardware
features will need to be integrated in the current compilers. Additionally, the com-
piler also needs to be extended to take advantage of the configurable aspect of the
system.

Another major evolution in low power memory is the growing importance of
the leakage power. Leakage power can be avoided by shutting down parts of the

 30.2 Memory Hierarchy and Low Power Embedded Processors 471

memory that are not used. This way, however, the contents will be lost. Intermedi-
ate solutions exist that remain the contents, will still reducing the power consump-
tion (e.g. drowsy mode for caches). All future optimization methods for low
power need to take into account this power component.

References

[1] W.Abu-Sufah, D.Kuck, D.Lawrie, “On the performance enhancement of paging
systems through program analysis and transformations”, IEEE Trans. on Com-
puters, Vol.C-30, No.5, pp.341-355, May 1981.

[2] D. H. Albenosi. Selective cache ways: On-demand cache resource allocation.
Journal of Instruction-Level Paralleism, 2:1–6, 2000.

[3] G.Albera, I.Bahar, “Power/performance advantages of victim bu®er in highper-
formance processors”, IEEE Alessandro Volta Memorial Intnl. Wsh. on Low
Power Design (VOLTA), Como, Italy, pp.43-51, March 1999.

[4] R.Allen, K.Kennedy, “Vector register allocation,” IEEE Trans. on Computers,
Vol.41, No.10, pp.1290-1316, Oct. 1992.

[5] S.Amarasinghe, J.Anderson, M.Lam, and C.Tseng, “The SUIF compiler for scal-
able parallel machines”, in Proc. of the 7th SIAM Conf. on Parallel Proc. for Sci-
entific Computing, 1995.

[6] C.Ancourt, D.Barthou, C.Guettier, F.Irigoin, B.Jeannet, J.Jourdan, J.Mattioli,
“Automatic data mapping of signal processing applications”, Proc. Intnl. Conf. on
Applic.-Spec. Array Processors, Zurich, Switzerland, pp.350-362, July 1997.

[7] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta, A. Shridhar, K. Seki,
and K. Sasaki. Instruction bu®ering to reduce power in processors for signal proc-
essing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
5(4):417–424, December 1997.

[8] P.Banerjee, J.Chandy, M.Gupta, E.Hodges, J.Holm, A.Lain, D.Palermo,
S.Ramaswamy, E.Su, “The Paradigm compiler for distributed-memory multicom-
puters”, IEEE Computer Magazine, Vol.28, No.10, pp.37-47, Oct. 1995.

[9] U.Banerjee, R.Eigenmann, A.Nicolau, D.Padua, “Automatic program parallelisa-
tion”, Proc. of the IEEE, invited paper, Vol.81, No.2, pp.211-243, Feb. 1993.

[10] S.Bartolini, C.A.Prete, “A software strategy to improve cache performance”, IEEE
TC on Computer Architecture Newsletter, pp.35-40, Jan. 2001.

[11] L.A.Belady, “A study of replacement algorithms for a virtual-storage computer”,
IBM Systems J., Vol.5, No.6, pp.78-101, 1966.

[12] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis. Architectural and com-
piler support for energy reduction in the memory hierarchy of high performance
microprocessors. In Proc of International Symposium on Low Power Electronic
Design (ISLPED), August 1998.

[13] L. Benini, A. Macii, E. Macii, and M. Poncino. Selective instruction compression
for memory energy reduction in embedded systems. In Proc of International Sym-
posium on Low Power Electronic Design (ISLPED), August 1999.

[14] L. Benini, A. Macii, and A. Nannarelli. Cached-code compression for energy
minimization in embedded processors. In Proc of Interational Symposium on Low
Power Electronic Design (ISLPED), August 2001.

[15] L.Benini, D. Bruni, M. Chinosi,C. Silvano, V. Zaccaria, “A Power Modeling and
Estimation Framework for VLIW-Based Embedded System”, ST Journal of System
Research, Vol.3, No.1, pp.110-118, April 2002.

[16] L.Benini, G.De Micheli, “System-level power optimization techniques and tools”,
ACM Trans. on Design Automation for Embedded Systems (TODAES), Vol.5,
No.2, pp.115-192, April 2000.

472 30 Low Power Engineering

[17] A. Besd´ez, R. Ferenc, T. Gyimttthy, A. Dolenc, and K. Karsisto. Survey of code-
size reduction methods. ACM Computing Surveys (CSUR), 35(3):223–267, Sep-
tember 2003.

[18] S.Bhattacharyya, P.Murthy, E.Lee, “Optimal parenthesization of lexical orderings
for DSP block diagrams”, IEEE Wsh. on VLSI signal processing, Osaka, Japan,
Oct. 1995. Also in VLSI Signal Processing VIII, I.Kuroda, T.Nishitani, (eds.),
IEEE Press, New York, pp.177-186, 1995.

[19] F.Bodin, W.Jalby, D.Windheiser, C.Eisenbeis, “A quantitative algorithm for data
locality optimization”, Technical Report IRISA/INRIA, Rennes, France, 1992.

[20] A. Bona, M. Sami, D. Sciuto, V. Zaccaria, C. Silvano, and R. Zafalon. An instruc-
tion-level methodology for power estimation and optimization of embedded vliw
cores. In Proc of Design Automation and Test in Europe(DATE), March 2002.

[21] B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative cache. In
Proc of 2nd International Symposium on High Performance Computer Architec-
ture (HPCA), February 1996.

[22] F.Catthoor, “Energy-delay e±cient data storage and transfer architectures and
methodologies: current solutions and remaining problems”, special issue on “IEEE
CS Annual Wsh. on VLSI” (eds. A.Smailagic, R.Brodersen, H.De Man) in J. of
VLSI Signal Processing, Vol.21, No.3, Kluwer, Boston, pp.219-232, July 1999.

[23] F.Catthoor, S.Wuytack, E.De Greef, F.Balasa, L.Nachtergaele, A.Vandecappelle,
“Custom Memory Management Methodology – Exploration of Memory Organisa-
tion for Embedded Multimedia System Design”, ISBN 0-7923-8288-9, Kluwer
Acad. Publ., Boston, 1998.

[24] F.Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. G. Kjeldsberg, T. Van
Achteren, T. Omnes, “Data Access and Storage Management for Embedded Pro-
grammable Processors”, ISBN 0-7923-7689-7, Kluwer Acad. Publ., Boston, 2002.

[25] P. Centoducatte, G. Araujo, and R. Pannain. Compressed code execution on dsp
architectures. In Proc of International Symposium on System Synthesis (ISSS), No-
vember 1999.

[26] S.Chen, A.Postula, “Synthesis of custom interleaved memory systems”, IEEE
Trans. on VLSI Systems, Vol.8, No.1, pp.74-83, Feb. 2000.

[27] W.C. Cheng and M. Pedram. Power-aware bus encoding techniques for i/o and
data busses in an embedded system. Journal of Circuits, Systems, and Computers,
11(4):351–364, August 2002.

[28] W.Chin, J.Darlington, Y.Guo, “Parallelizing conditional recurrences”, Proc. Eu-
roPar Conf., Lyon, France, Aug. 1996. “Lecture notes in computer science” series,
Springer Verlag, pp.579-586, 1996.

[29] M.Cierniak, W.Li, “Unifying Data and Control Transformations for Distributed
Shared-Memory Machines”, Proc. of the SIGPLAN’95 Conf. on Programming
Language Design and Implementation, La Jolla, pp.205-217, Feb. 1995.

[30] T. M. Conte, S. Banerjia, S. Y. Larin, and K. N. Menezes. Instruction fetch
mechanisms for vliw architectures with compressed encodings. In Proc of 29th In-
ternational Symposium on Microarchitecture (MICRO), December 1996.

[31] S. Cotterell and F. Vahid. Synthesis of customized loop caches for core-based em-
bedded systems. In Proc of International Conference on Computer Aided Design
(ICCAD), November 2002.

[32] S. Cotterell and F. Vahid. Tuning of loop cache architectures to programs in em-
bedded system design. In Proc of International Symposium on System Synthesis
(ISSS), October 2002.

[33] K.Danckaert, F.Catthoor, H.De Man, “A preprocessing step for global loop trans-
formations for data transfer and storage optimization”, Proc. Intnl. Conf. on
Compilers, Arch. and Synth. for Emb. Sys., San Jose CA, pp.34-40, Nov. 2000.

 30.2 Memory Hierarchy and Low Power Embedded Processors 473

[34] A.Darte, T.Risset, Y.Robert, “Loop nest scheduling and transformations”, in Envi-
ronments and Tools for Parallel Scientific Computing, J.J.Dongarra et al. (eds.),
Advances in Parallel Computing 6, North Holland, Amsterdam, pp.309- 332, 1993.

[35] S. Debray, W. Evans, R. Muth, and B. D. Sutter. Compiler techniques for code
compaction. ACM Transactions on Programming Languages and Systems
(TOPLAS), 22(2):378–415, March 2000.

[36] C.Dezan, H.Le Verge, P.Quinton, and Y.Saouter, “The Alpha du CENTAUR ex-
periment”, in Algorithms and parallel VLSI architectures II, P.Quinton and
Y.Robert (eds.), Elsevier, Amsterdam, pp.325-334, 1992.

[37] C.Ding, K.Kennedy, “The memory bandwidth bottleneck and its amelioration by a
compiler”, Proc. Intnl. Parallel and Distr. Proc. Symp.(IPDPS) in Cancun, Mex-
ico, pp.181-189, May 2000.

[38] R.Doalla, B.Fraguela, E.Zapata, “Set associative cache behaviour optimization”,
Proc. EuroPar Conf., Toulouse, France, pp.229-238, Sep. 1999.

[39] C.Eisenbeis, W.Jalby, D.Windheiser, F.Bodin, “A Strategy for Array Management
in Local Memory”, Proc. of the 4th Wsh. on Languages and Compilers for Parallel
Computing, Aug. 1991.

[40] J.Z.Fang, M.Lu, “An iteration partition approach for cache or local memory thrash-
ing on parallel processing”, IEEE Trans. on Computers, Vol.C-42, No.5, pp.529-
546, May 1993.

[41] P.Feautrier, “Compiling for massively parallel architectures: a perspective”, Intnl.
Wsh. on Algorithms and Parallel VLSI Architectures, Leuven, Belgium, Aug.
1994. Also in “Algorithms and Parallel VLSI Architectures III” (eds. M.Moonen,
F.Catthoor), Elsevier, pp.259-270, 1995.

[42] A.Fraboulet, G.Huard, A.Mignotte, “Loop alignment for memory access optimisa-
tion”, Proc. 12th ACM/IEEE Intnl. Symp. on System-Level Synthesis (ISSS), San
Jose CA, pp.71-70, Dec. 1999.

[43] D.Gannon, W.Jalby, K.Gallivan, “Strategies for cache and local memory man-
agement by global program transformations”, J. of Parallel and Distributed Com-
puting, Vol.5, pp.568-586, 1988.

[44] A. Gordon-Ross and F. Vahid. Dynamic loop caching meets preloaded loop cach-
ing – a hybrid approach. In Proc of International Conference on Computer Design
(ICCD), September 2002.

[45] A. Gordon-Ross, S. Cotterell, and F. Vahid. Exploiting fixed programs in embed-
ded systems: A loop cache example. In Proc of IEEE Computer Architecture Let-
ters, Jan 2002.

[46] P.Grun, N.Dutt, and A.Nicolau, “Memory aware compilation through accurate tim-
ing extraction”, Proc. 37th ACM/IEEE Design Automation Conf., Los Angeles CA,
pp.316-321, June 2000.

[47] P.Grun, N.Dutt, and A.Nicolau, “MIST: an algorithm for memory miss tra±c man-
agement”, Proc. IEEE Intnl. Conf. on Comp. Aided Design, Santa Clara CA,
pp.431-437, Nov. 2000.

[48] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and A. Nicolau. An e±cient com-
piler technique for code size reduction using reduced bit-width isas. In Proc of De-
sign Automation Conference (DAC), March 2002.

[49] M.Hall, J.Anderson, S.Amarasinghe, B.Murphy, S.Liao, E.Bugnion, M.Lam,
“Maximizing multiprocessor performance with the SUIF compiler”, IEEE Com-
puter Magazine, Vol.30, No.12, pp.84-89, Dec. 1996.

[50] F.Harmsze, A.Timmer, J.van Meerbergen, “Memory arbitration and cache man-
agement in stream-based systems”, Proc. 3rd ACM/IEEE Design and Test in
Europe Conf. (DATE), Paris, France, pp.257-262, April 2000.

474 30 Low Power Engineering

[51] K. Inoue, V. G. Moshnyaga, and K. Murakami. A history-based i-cache for low-
energy multimedia applications. In Proc of ACM/IEEE International Symposium
on Low Power Electronics (ISLPED), August 2002.

[52] M.J.Irwin, M.Kandemir, N.Vijaykrishnan, A.Sivasubramaniam, “A holistic ap-
proach to system level energy optimisation”, Proc. IEEE Wsh. on Power and Tim-
ing Modeling, Optimization and Simulation (PATMOS), Goettingen, Germany,
pp.88-107, Oct. 2000.

[53] J. Irwin, M. D. May, H. L. Muller, and D. Page. Predictable instruction caching for
media processors. In Proc of Internation Conference on Application-Specific Sys-
tems, Architectures and processors (ASAP), July 2002.

[54] T. Ishihara and H. Yasuura. A power reduction technique with object code merg-
ing for application specific embedded processors. In Proc of Design Automation
and Test in Europe (DATE), March 2000.

[55] M. Jayapala, F. Barat, P. OpDeBeeck, F. Catthoor, G. Deconinck, and H. Corpo-
raal. A low energy clustered instruction memory hierarchy for long instruction
word processors. In Proc of 12th International Workshop on Power And Timing
Modeling, Optimization and Simulation (PATMOS), September 2002.

[56] M.Jimenez, J.Llaberia, A.Fernandez, E.Morancho, “A unified transformation tech-
nique for multi-level blocking” Proc. EuroPar Conf., Lyon, France, Aug. 1996.
“Lecture notes in computer science” series, Springer Verlag, pp.402-405, 1996.

[57] N.Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch bu®ers”, Proc. ACM Intnl. Symp. on Com-
puter Arch., pp.364-373, May 1990.

[58] M.Kamble, K.Ghose, “Analytical Energy Dissipation Models for Low Power
Caches”, Proc. IEEE Intnl. Symp. on Low Power Design, Monterey CA, pp.143-
148, Aug. 1997.

[59] M.Kampe, F.Dahlgren, “Exploration of spatial locality on emerging applications
and the consequences for cache performance”, Proc. Intnl. Parallel and Distr.
Proc. Symp.(IPDPS) in Cancun, Mexico, pp.163-170, May 2000.

[60] J.Kang, A.van der Werf, P.Lippens, “Mapping array communication onto FIFO
communication – towards an implementation”, Proc. 13th ACM/IEEE Intnl. Symp.
on System-Level Synthesis (ISSS), Madrid, Spain, pp.207-213, Sep. 2000.

[61] W.Kelly, W.Pugh, “Generating schedules and code within a unified reordering
transformation framework”, Technical Report UMIACS-TR-92-126, CS-TR-
2995, Institute for Advanced Computer Studies Dept. of Computer Science, Univ.
of Maryland, College Park, MD 20742, 1992.

[62] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, M. J. Irwin, and E.
Geethanjali. Power-aware partitioned cache architectures. In Proc of ACM/IEEE
International Symposium on Low Power Electronics (ISLPED), August 2001.

[63] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, and M. J. Irwin.
Partitioned instruction cache architecture for energy e±ciency. ACM Transactions
on Embedded Computing Systems(TECS), July 2002.

[64] J. Kin, M. Gupta, and W. H. Mangione-Smith. Filtering memory references to in-
crease energy e±ciency. IEEE Transactions on Computers, 49(1):1–15, January
2000.

[65] P.G.Kjeldsberg, “Storage requirement estimation and optimisation for datainten-
sive applications”, Doctoral dissertation, Norwegian Univ. of Science and Tech-
nology, Trondheim, Norway, March 2001.

[66] D.Kolson, A.Nicolau, N.Dutt, “Minimization of memory tra±c in high-level syn-
thesis”, Proc. 31st ACM/IEEE Design Automation Conf., San Diego, CA, pp.149-
154, June 1994.

 30.2 Memory Hierarchy and Low Power Embedded Processors 475

[67] H. Lekatsas, J. Henkel, and W. Wolf. Code compression for low power embedded
system design. In Proc of Design Automation Conference (DAC), June 2000.

[68] S.T.Leung, J.Zahorjan, “Restructuring arrays for e±cient parallel loop execution”,
Technical Report, Dep. of CSE, Univ. of Washington, Feb. 1994.

[69] W.Li, K.Pingali. “A singular loop transformation framework based on nonsingular
matrices”, Proc. 5th Annual Wsh. on Languages and Compilers for Parallelism,
New Haven CN, Aug. 1992.

[70] W.Li, K.Pingali. “Access normalization: loop restructuring for NUMA compilers”,
Proc. 5th Intnl. Conf. on Architectural Support for Prog. Lang. and Operating Sys-
tems (ASPLOS), April 1992.

[71] H.B.Lim, P-C.Yew, “Efficient integration of compiler-directed cache coherence
and data prefetching”, Proc. Intnl. Parallel and Distr. Proc. Symp.(IPDPS) in Can-
cun, Mexico, pp.331-339, May 2000.

[72] N. Liveris, N. D. Zervas, D. Soudris, and C. E. Goutis. A code transformation-
based methodology for improving i-cache performance of dsp applications, March
2002.

[73] D.B.Loveman, “Program improvement by source-to-source transformation”, J. of
the ACM, Vol.24, No.1, pp.121-145, 1977.

[74] M. Mahendale, S. D. Sherlekar, and G. Venkatesh. Extensions to programmable
dsp architectures for reduced power dissipation. In Proc of VLSI Design, January
1998.

[75] N.Manjiakian, T.Abdelrahman, “Array data layout for reduction of cache con-
flicts”, Intnl. Conf. on Parallel and Distributed Computing Systems, 1995.

[76] D.McCrackin, “Eliminating interlocks in deeply pipelined processors by delay en-
forced multistreaming”, IEEE Trans. on Computers, Vol.C-40, No.10, pp.1125-
1132, Oct. 1991.

[77] K.McKinley, “A compiler optimization algorithm for shared-memory multiproces-
sors”, IEEE Trans. on Parallel and Distributed Systems, Vol.9, No.8, pp.769-787,
Aug. 1998.

[78] K.McKinley, M.Hall, T.Harvey, K.Kennedy, N.McIntosh, J.Oldham, M.Paleczny,
and G.Roth, “Experiences using the ParaScope editor: an interactive parallel pro-
gramming tool”, in 4th ACM SIGPLAN Symp. on Principles and Practice of Paral-
lel Programming, San Diego, USA, May 1993.

[79] K.McKinley, S.Carr, C-W.Tseng, “Improving data locality with loop transforma-
tions”, ACM Trans. on Programming Languages and Systems, Vol.18, No.4,
pp.424-453, July 1996.

[80] P.Middelhoek, G.Mekenkamp, B.Molenkamp, T.Krol, “A transformational ap-
proach to VHDL and CDFG based high-level synthesis: a case study”, Proc. IEEE
Custom Integrated Circuits Conf., Santa Clara CA, pp.37-40, May 1995.

[81] S.M.Moon, K.Ebcioglu, “A study on the number of memory ports in multiple in-
struction issue machines”, Micro’26, pp.49-58, Nov. 1993.

[82] P.Murthy, S.Bhattacharyya, “A bu®er merging technique for reducing memory re-
quirements of synchronous dataflow specifications”, Proc. 12th ACM/IEEE Intnl.
Symp. on System-Level Synthesis (ISSS), San Jose CA, pp.78-84, Dec. 1999.

[83] L.Nachtergaele, V.Tiwari, N.Dutt, “System and architecture-level power reduction
of microprocessor-based communication and multi-media applications”, Proc.
IEEE Intnl. Conf. on Comp. Aided Design, Santa Clara CA, pp.569-573, Nov.
2000.

[84] D.A.Padua, M.J.Wolfe. “Advanced compiler optimizations for supercomputers”,
Communications of the ACM, Vol.29, No.12, pp.1184-1201, 1986.

[85] P.R.Panda, “Memory optimizations and exploration for embedded systems”, Doc-
toral Dissertation, U.C.Irvine, April 1998.

476 30 Low Power Engineering

[86] P.R.Panda, “Memory bank customization and assignment in behavioural synthe-
sis”, Proc. IEEE Intnl. Conf. Comp. Aided Design, Santa Clara CA, pp.477-481,
Nov. 1999.

[87] P.R.Panda, H.Nakamura, N.D.Dutt, A.Nicolau, “Augmenting loop tiling with data
alignment for improved cache performance”, IEEE Trans. on Computers, Vol.48,
No.2, pp.142-149, Feb. 1999.

[88] P.R.Panda, N.D.Dutt, A.Nicolau, “Data cache sizing for embedded processor ap-
plications”, Proc. 1st ACM/IEEE Design and Test in Europe Conf. (DATE), Paris,
France, pp.925-926, Feb. 1998.

[89] P.R.Panda, N.D.Dutt, A.Nicolau, “Local memory exploration and optimization in
embedded systems”, IEEE Trans. on Comp.-aided Design, Vol.CAD-18, No.1,
pp.3-13, Jan. 1999.

[90] P.Panda, N.Dutt, “Low power mapping of behavioural arrays to multiple memo-
ries”, Proc. IEEE Intnl. Symp. on Low Power Design, Monterey CA, pp.289-292,
Aug. 1996.

[91] S. Parameswaran and J. Henkel. I-copes: Fast instruction code placement for em-
bedded systems to improve performance and energy e±ciency. In Proc of Interna-
tion Conference on Computer Aided Design (ICCAD), November 2001.

[92] K.Parhi, “Algorithmic transformation techniques for concurrent processors”, Proc.
of the IEEE, Vol.77, No.12, pp.1879-1895, Dec. 1989.

[93] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Instruction scheduling
based on energy and performance constraints. In Proc of IEEE Computer Society
Annual Workshop on VLSI (WVLSI), April 2000.

[94] N.Passos, E.Sha, “Full parallelism of uniform nested loops by multi-dimensional
retiming”, Proc. Intnl. Conf. on Parallel Processing, Vol.2, pp.130-133, Aug.
1994.

[95] N.Passos, E.Sha, L-F.Chao, “Multi-dimensional interleaving for time-andmemory
design optimization”, Proc. IEEE Intnl. Conf. on Computer Design, Austin TX,
pp.440-445, Oct. 1995.

[96] D.Patterson, J.Hennessey, “Computer architecture : A quantitative approach”,
Morgan Kaufmann Publ., San Francisco, 1996.

[97] M. D. Powell and et al. Reducing set-associative cache energy via way-prediction
and selective direct-mapping. In Proc of 34th International Symposium on Mi-
croarchitecture (MICRO), November 2001.

[98] J.Ramanujam, J.Hong, M.Kandemir, A.Narayan, “Reducing memory requirements
of nested loops for embedded systems”, 38th ACM/IEEE Design Automation
Conf., Las Vegas NV, pp.359-364, June 2001.

[99] S.Ravi, G.Lakshminarayana, N.Jha, “Removal of memory access bottlenecks for
scheduling control-flow intensive behavioural descriptions”, Proc. IEEE Intnl.
Conf. Comp. Aided Design, Santa Clara CA, pp.577-584, Nov. 1998.

[100] J.Saltz, H.Berrymann, J.Wu, “Multiprocessors and runtime compilation”, Proc.
Intnl. Wsh. on Compilers for Parallel Computers, Paris, France, 1990.

[101] H.Samsom, L.Claesen, H.De Man, “SynGuide: an environment for doing interac-
tive correctness preserving transformations”, IEEE Wsh. on VLSI signal process-
ing, Veldhoven, The Netherlands, Oct. 1993. Also in VLSI Signal Processing VI,
L.Eggermont, P.Dewilde, E.Deprettere, J.van Meerbergen (eds.), IEEE Press, New
York, pp.269-277, 1993.

[102] W.Shang, E.Hodzic, Z.Chen, “On uniformization of a±ne dependence algorithms”,
IEEE Trans. on Computers, Vol.45, No.7, pp.827-839, July 1996.

 30.2 Memory Hierarchy and Low Power Embedded Processors 477

[103] W.Shang, M.O’Keefe, J.Fortes, “Generalized cycle shrinking”, presented at Wsh.
on “Algorithms and Parallel VLSI Architectures II”, Bonas, France, June 1991.
Also in Algorithms and parallel VLSI architectures II, P.Quinton and Y.Robert
(eds.), Elsevier, Amsterdam, pp.131-144, 1992.

[104] D. Shin and J. Kim. An operation rearrangement technique for low power vliw in-
struction fetch. In Proc of Workshop on Complexity-E®ective Design, 2000.

[105] W.T.Shiue, C.Chakrabarti, “Memory exploration for low power embedded sys-
tems”, Proc. 36th ACM/IEEE Design Automation Conf., New Orleans LA, pp.140-
145, June 1999.

[106] J. W. Sias, H. C. Hunter, and W. mei W. Hwu. Enhancing loop bu®ering of media
and telecommunications applications using low-overhead predication. In Proc of
34th Annual International Symposium on Microarchitecture (MICRO), December
2001.

[107] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. In Proc of Design Automation and
Test in Europe (DATE), March 2002.

[108] W. Tang, R. Gupta, and A. Nicolau. Design of a predictive filter cache for energy
savings in high performance processor architectures. In Proc of Internal Confer-
ence on Computer Design (ICCD), September 2001.

[109] W. Tang, R. Gupta, and A. Nicolau. Power savings in embedded processors
through decode filter cache. In Proc of Design Automation and Test in Europe
(DATE), March 2002.

[110] W. Tang, R. Gupta, and A. Nicolau. Reducing power with an l0 instruction cache
using history-based prediction. In Proc of Internal Workshop on Innovative Archi-
tecture for Future Generation High-Performance processors and Systems (IWIA),
January 2002.

[111] L.Thiele, “On the design of piecewise regular processor arrays”, Proc. IEEE Intnl.
Symp. on Circuits and Systems, Portland OR, pp.2239-2242, May 1989.

[112] D.E.Thomas, E.Dirkes, R.Walker, J.Rajan, J.Nestor, R.Blackburn, “The system ar-
chitect’s workbench”, Proc. 25th ACM/IEEE Design Automation Conf., San Fran-
cisco CA, pp.337-343, June 1988.

[113] E.Torrie, M.Martonosi, C-W.Tseng, M.Hall, “Characterizing the memory behav-
iour of compiler-parallelized applications”, IEEE Trans. on Parallel and Distrib-
uted Systems, Vol.7, No.12, pp.1224-1236, Dec. 1996.

[114] D.N.Truong, F.Bodin, A.Seznec, “Accurate data distribution into blocks may boost
cache performance”, IEEE TC on Computer Architecture Newsletter, special issue
on “Interaction between Compilers and Computer Architectures”, pp.55-57, June
1997.

[115] T.Tzen, L.Ni, “Dependence uniformization: a loop parallelization technique”,
IEEE Trans. on Parallel and Distributed Systems, Vol.4, No.5, pp.547-557, May
1993.

[116] A.Vandecappelle, M.Miranda, E.Brockmeyer, F.Catthoor, D.Verkest, “Global
Multimedia System Design Exploration using Accurate Memory Organization
Feedback” Proc. 36th ACM/IEEE Design Automation Conf., New Orleans LA,
pp.327-332, June 1999.

[117] T. Vander Aa, M. Jayapala, F. Barat, G. Deconinck, R. Lauwereins, F. Catthoor,
and H. Corporaal. Instruction bu®ering exploration for low energy vliws with in-
struction clusters. In Proc. of the Asian Pacific Design and Automation Conference
2004 (ASPDAC’2004), Yokohama, Japan, January 2004.

478 30 Low Power Engineering

[118] T. Vander Aa, M. Jayapala, F. Barat, G. Deconinck, R. Lauwereins, H. Corporaal,
and F. Catthoor. Instruction bu®ering exploration for low energy embedded proc-
essors. In Proc of 13th International Workshop on Power And Timing Modeling,
Optimization and Simulation (PATMOS), September 2003.

[119] W.Verhaegh, E.Aarts, P.Van Gorp, “Period assignment in multi-dimensional peri-
odic scheduling”, Proc. IEEE Intnl. Conf. Comp. Aided Design, Santa Clara CA,
pp.585-592, Nov. 1998.

[120] M.Wolf, M.Lam, “A data locality optimizing algorithm”, Proc. of the SIGPLAN’
91 Conf. on Programming Language Design and Implementation, Toronto ON,
Canada, pp.30-43, June 1991.

[121] M.Wolfe, “The Tiny loop restructuring tool”, Proc. of Intnl. Conf. on Parallel
Processing, pp.II.46-II.53, 1991.

[122] D.Wong, E.Davis, J.Young, “A software approach to avoiding spatial cache colli-
sions in parallel processor systems”, IEEE Trans. on Parallel and Distributed Sys-
tems, Vol.9, No.6, pp.601-608, June 1998.

[123] S.Wuytack, F.Catthoor, G.De Jong, B.Lin, H.De Man, “Flow Graph Balancing for
Minimizing the Required Memory Bandwidth”, Proc. 9th ACM/IEEE Intnl. Symp.
on System-Level Synthesis (ISSS), La Jolla CA, pp.127-132, Nov. 1996.

[124] S.Wuytack, F.Catthoor, G.De Jong, H.De Man, “Minimizing the Required Mem-
ory Bandwidth in VLSI System Realizations”, IEEE Trans. on VLSI Systems,
Vol.7, No.4, pp.433-441, Dec. 1999.

Index

.NET
II. 10, 10.2, 12.2, 13.3, 14.1, 15.1
III. 17.4, 22.1, 23, 23.1, 23.2, 23.3

109 Challenge
I. 4.1

A380
I. 3.2

AAA
I. 5

AADL (Avionics Architecture
Description Language):
II. 12.5, 14.3
See also: ADL

Ada
I. 4.3, 6, 6.1, 6.3, 7.1, 7.3
II. 14.3
III. 17.4, 21.1, 23.1, 25.1, 25.2,
25.3, 25.4, 26.5
IV. 29.1

Adaptive
See: Adaptive Embedded System,
Adaptive Real Time, QoS Adapta-
tion, Reconfigurable

Adaptive Embedded System
III. 17.2, 17.4

Adaptive Real Time
III. entire section
See also: Adaptive Scheduling,
Soft Real Time

Adaptive Scheduling
III. 20.4
See also: Load Adaptation

ADL: (Architecture Description
Language)
I. 6.3
II. 10.2, 12.1, 12.3, 12.5, 14,
14.2, 14.3, 15.1
See also: AADL, Meta-H

AEE Project
I. 3.1

Aeronautics
I. 3.2, 4.2, 5, 6

Aerospace
I. 9.1, 9.2
II. 12.5
III. 21.1, 21.3, 24.4
IV. 28.2, 29.1, 29.4

AIL Language
I. 3.1, 5

aiT WCET Analyser
I. 7.3
III. 21.1
IV. 29.2

Analysis
See: Fault Analysis, Schedulabil-
ity Analysis, Static Analysis

APEX
III. 21.1, 21.2, 21.3

Application Areas
See: Aeronautics, Aerospace,
Automation, Automotive, Avion-
ics, Consumer Electronics, Con-
trol, Multimedia, Space, Tele-
communications, Transport, Wire-
less Communication

Architecture
See: Hardware Architecture, Jini,
Reconfigurable Architecture,
Software Architecture

ARINC
I. 3.2
III. 21.1, 21.2, 21.3, 21.4, 24.1

ASIC
I. 2.2, 3.1, 3.2, 5
IV. 27, 29.2, 29.3

480 Index

Assembly Language
I. 6.3

Automation (equipment, home, indus-
trial, office)
I. 3.4
II. 12.2, 12.6, 14.2
III. 17.3, 17.4, 19.2, 24.3, 24.4,
25.1
IV. 28.2

Automotive
I. 3.1, 4.1, 4.2, 4.3, 5, 6.2, 8, 9.1
II. 12.1
III. 21.1, 24.1, 24.3
IV. 27.1, 27.3, 28.1, 29.2, 29.4
See also: EAST-EEA Project

Availability
I. 3.2, 4.1
II. 10.4, 12.2, 12.4, 12.6, 13.6,
14.1, 14.5
III. 22.3, 25.1

Avionics
I. 3.2, 4.3, 7.3, 9.2
II. 12.5, 12.6, 14.1, 14.3
III. 21.1, 21.2, 23.1, 24.1
IV. 29.1, 29.2

AXYS
I. 5, 6.3

Bane
I. 7.3

Bluetooth
III. 18, 24.1, 24.3

C
I. 3.1, 4.3, 5, 6.3, 7.2, 7.3, 7.4,
9.2
II. 14.2, 14.3, 15.1
III. 17.4, 19.3, 25.1
IV. 28.2, 29.1, 29.3

C++
I. 3.1, 4.3, 5, 7.2, 7.4
II. 13.2
III. 17.4, 25.1, 25.2
IV. 29.1, 29.4

C#
II. 14.1
III. 17.4, 25.4

CAN
I. 3.1, 3.2, 8
II. 12.1, 13.5, 17.1
IV. 28.1, 29.2
See also: TTCAN

CCM (Corba Component Model)
II. 10.2, 14.1
III. 22.1, 22.4

Certification
I. 1.4, 3.2, 4.1, 6.2, 7.3
II. 11.4, 14.2
III. 24.3, 24.4

Code Generation
I. 1.4, 2.2, 3.1, 4.2, 4.3, 5, 6.2,
6.3, 7.2, 9.2
II. 11.3, 12.1, 14.1, 14.2, 14.3,
15.1
III. 17.4, 23.2, 25.1
IV. 29.1, 29.2, 29.3

COM
II. 10.4, 12.2, 14.1, 14.2, 14.5
IV. 28.1

COM+
II. 14.1

Compilation
See: Code Generation, Retarge-
table compilers

Component Infrastructure
III. 22.1, 22.3

Component
See: Component-Based Design

Component-Based Design
II. entire section
See also: CCM (Corba Component
Model), COM, COM+, Component
Infrastructure, Contracts, Corba,
COTS, DCOM, EJB (Enterprise
Java Beans), Java Beans, Jini,
Koala, Meta-H, .NET, OMG, OPC,
PECOS Component Model, Ptole-
my II NET, RT-Corba, Rubus
Component Model, Scheduler
Composition, SOAP, System-C,
UML, VHDL

 Index 481

Computing Platform
IV. 29

Consumer Electronics
I. 3.3
II. 12.3
III. 17.3, 19.1, 24.1, 24.3

Contracts
II. 10.4, 13, 14.1
III. 20.4, 22.1, 22.2, 22.3
IV. 29.4, 30.1

Control
See: Control Theory, Traffic Con-
trol

Control Theory
III. 17.4, 20.1, 22.1, 22.3, 26.3
IV. 29.1
See also: Feedback Control

Corba
I. 4.3
II. 12.2, 13.2, 13.5, 13.6, 14.1,
14.5, 15.1
III. 17.4, 22.1, 23, 23.1, 23.2, 23.3
IV. 29.1
See also RT-Corba

COTS (Commercial-Off-The-Shelf)
II. 10.2, 12.3
III. 17.4, 23.1

CSMA
I. 8
III. 24.1

Data Flow
I. 8
II. 14.2, 14.3
IV. 29.1, 30.2

DCOM
II. 12.2, 14.1

Dependability
I. 1.4, 2.3, 3.1, 3.2, 4, 4.1, 6.3, 8,
9.1, 9.2
II. 11.3, 11.4, 12, 12.2, 12.5, 13.3
III. 17.3, 17.4, 22, 22.1, 22.3
See also: Availability, Maintain-
ability, Reliability, Safety, Security

Design Flow
I. 1.1, 1.4, 2.2, 3.1, 3.2, 4.2, 4.3,
5, 6.2, 6.3, 7.2, 7.3, 7.4, 8, 9.1, 9.2
IV. 29.1

Design
See: Design Space Exploration,
Platform-based Design

Design Space Exploration
I. 1.5, 2.2
II. 10.2
IV. 27.4, 29.1, 29.2, 29.3, 29.4,
30.2

Design Tools
I. 2.2, 3.1
II. 14.5, 15.1
IV. 29.1
See also: Architecture, AXYS,
Design Flow, Matlab/Simulink,
Methods and Tools, Metropolis,
Modelica, OCASIM, Polychrony,
Polis/VCC Scilab, Sildex, Syn-
DEx, TTP, VaST, Virtio

Diagnosis
I. 1.4, 3.4
II. 13.7
III. 24.3, 24.4

Distributed Control
I. 3.4, 5, 9.1
III. 19.2, 21,
IV. 28.2, 29.3

Distributed Systems
I. 1.3, 1.4, 3.1, 3.4, 4.1, 4.3, 5,
6.2, 7.2, 7.4, 8, 9.1, 9.2
II. 12, 12.1, 12.2, 12.4, 12.5,
13.3, 13.5, 13.6, 14.1, 14.2, 14.3,
15.2
III. 17.4, 18, 19.2, 20.1, 21.1,
21.2, 21.4, 22.2, 22.3, 23, 23.1,
23.2, 23.3, 23.4, 24, 24.1, 24.2,
24.3, 24.4, 25.1, 25.2, 25.3, 25.4,
26.5
IV. 28.1, 28.2, 29.1, 29.2, 29.3,
29.4, 30.1, 30.2
See also: Distributed Control

482 Index

DO-178B
III. 25.1

Dynamic Priority Scheduling
III. 18, 20.1, 21.2, 25.1, 26.3
IV. 29.1

Dynamic Scheduling
II. 13.5, 14.1

EAST-EEA Project
II. 12.1
IV. 28.1, 29.3

eCos
III. 21.1

ECOSystem
III. 26.1

EDF (Earliest Deadline First)
III. 20.1, 22.1, 25.2, 26.1, 26.3,
26.4
IV. 29.1, 29.2, 29.4

Education
I. 3.1, 3.2, 4.2, 7.4
III. 19.1, 19.2
IV. 28.2

EJB (Enterprise Java Beans)
II. 10, 12.2, 14, 14.1, 15.1

Embedded Software
I. 1.4, 2.2, 3.2, 4.2, 5, 6.2, 6.3,
7.2, 7.3, 9.2
II. 12.5, 12.6
III. 19.1, 25,
IV. 27.3, 27.4, 28.2, 30.2

Energy
I. 1.4, 3.2, 3.4, 5, 6.3
II. 12.4
III. 17.1, 17.2, 17.4, 19.3, 20.1,
20.3, 20.4, 24.3, 24.4, 26.1
IV. 27.2, 27.4, 28.2, 29.1, 30.1,
30.2
See also: Power Awareness

Energy-Aware Scheduling
See: Power Awareness

Erlang Language
II. 12.4
III. 25.1

Error
I. 3.1, 3.2, 4.1, 7.3, 7.4, 8, 9.2
II. 13.1, 13.2, 13.6, 14.1, 14.3
III. 20.4, 21.1, 24.1, 24.2, 24.3,
24.4, 25.1, 26.3
IV. 28.2, 29.1, 30.1
See also: Fault

Error Containment
I. 1.4, 4.1
III. 24.4

Esterel
I. 4.3, 5, 6.2, 9.2
II. 12.4
III. 25.1
IV. 29.1

Ethernet
I. 3.2
III. 21.1, 24.1

Event-Based
I. 8
II. 14.1
III. 23.1, 23.2, 23.3

Event-Driven
I. 3.4
II. 12.2, 14.2, 14.3
III. 19.1, 19.2
IV. 29.1, 29.2, 29.4

Execution Platforms
IV. 26, 26,

Extra-Functional Properties
II. 10, 10.1, 10.2, 10.4, 11.1,
11.3, 11.4, 12.2, 12.3, 12.4, 12.5,
12.6, 12.7, 13.1, 13.6, 13.7, 14.1,
14.2, 14.3, 14.5, 15.3
See also: Functional Properties

Failure
I. 1.4, 3.2, 4.1, 4.3, 7.2, 8, 9.1,
9.2
II. 10.2, 13.6
III. 20.2, 21.1, 21.2, 21.3, 22.3,
22.4, 24.3, 24.4, 26.5
IV. 28.2, 29.4

Fault
I. 1.4, 3.1, 3.2, 4.1, 5, 6.2, 7.4, 8,
9.1

 Index 483

II. 12.5, 13.6, 14.3, 15.1
III. 20.1, 21.1, 21.3, 22.3, 23.3,
24.1, 24.2, 24.3, 24.4, 26.3, 26.4
IV. 28.1, 29.1, 29.2
See also: Error, Error Contain-
ment, Failure, Fault Analysis,
Fault Containment

Fault Analysis
I. 5

Fault Containment
I. 1.4, 3.2, 4.1

Feedback-based Scheduling
I. 9.2
III. 17.4, 20.1, 26.3
IV. 27.3, 28.1

Feedback-Control Scheduling
II. 14.3
III. 17.4, 20.1, 22.1, 24.3, 26.3
IV. 30.1

Feedback Control Theory
See: Feedback-Control Schedul-
ing

FieldBus
I. 3.2, 3.4, 8
II. 12.2

Fixed-Priority Scheduling
II. 14.1
III. 17.3, 19.2, 19.3, 20.1, 21.1,
21.2, 21.4, 24.1, 25.1, 25.2, 26.3
IV. 29.2

Flexible Scheduling
III. 17.4, 19.2, 20.1, 20.4, 21.1,
21.2, 21.3, 21.4, 25.1, 25.4, 26.3,
26.4

Flex-Ray
I. 3.1, 8

Flexware
I. 6.3, 8

Formal Methods
I. 1.4, 2.1, 3.4, 5, 7.1, 8
II. 14.3, 14.4
III. 20.3
IV. 29.1, 29.4

FPGA (Field Programmable Gate
Arrays)
I. 5
III. 25.1, 26.5
IV. 27, 28.2, 29.3

FT-COM
I. 5

Functional Properties
I. 3.3
II. 13.3, 13.4, 14.3
See also: Extra-Functional Proper-
ties

GALS (Globally Asynchronous Lo-
cally Synchronous)
I. 5, 9.2
II. 13.5

Hard Real Time:
I. entire section
II. 12.5, 13.5, 13.6, 14.2
III. 17.2, 19.2, 20.1, 22.1, 23.1,
26.3
IV. 29.2
See also: Distributed Systems

Hardware Architecture
I. 3.1
II. 13.5, 14.3
III. 19.1, 21.2
IV. 28.1, 29.2, 29.3
See also: HW/SW

Hardware Design
I. 2.2, 5
III. 19.1, 26.5
See also: HW/SW

Hardware Platform
I. 5, 7.3
II. 10.4, 12.2
III. 17.4, 21,
IV. 29.2, 29.3, 30.1
See also: HW/SW

Heterogeneity
IV. 29.4

Hood
I. 6, 6.1

484 Index

HW/SW
I. 3.1, 3.2, 3.3, 3.4
IV. 29.4
See also: Hardware Architecture,
Hardware Design, Hardware Plat-
form

IDL (Interface Description Language)
I. 4.1
II. 12.2, 13.2, 13.6, 14.1, 15.1,
16.2

IEC 61131
I. 3.4, 5
II. 12.2, 13.5, 14.2

IEEE 1394
III. 18, 24.1, 24.3

IEEE 802.11
III. 24.1, 24.3

Implementation
I. 1.4, 2.2, 3.1, 3.3, 3.4, 4.2, 5,
6.2, 6.3, 7.2, 7.3, 8, 9
II. 10.2, 10.4, 11.1, 13.2, 13.6,
13.7, 14.1, 15.2
III. 18, 22.1, 23.1, 23.3, 25.1,
25.4, 26.3, 26.5
IV. 29.1, 29.2, 29.3, 29.4

Integration Platforms
I. 3.1
II. 14

Interface
See: Component-Based Design,
Rich Interfaces

IrDA
III. 24.1, 24.3

ITRON
III. 21.1, 21.2
See also: Micro-ITRON

Java
I. 6.1
II. 13.3, 14.2, 14.3, 14.4
III. 17.4, 22.1, 23.1, 23.2, 23.3
See also: EJB, Java Beans,
JavaCard, Jini, RT-Java, RTSJ

Java Beans
II. 14.1, 15.1
See also: EJB

JavaCard
III. 21.1

Jini
III. 17.4, 23, 23.1, 23.2, 23.3

Kernel
III. 17, 17.5, 18, 19, 19.1, 19.4,
20, 20.2, 21.1, 21.3, 22.1, 22.3,
26.1
IV. 30.1
See also: RTOS (Real Time Oper-
ating System)

Koala
II. 10.2, 12.3, 14.2, 14.5

Lifecycle
I. 2.1, 2.2, 3.2, 9.1, 9.2
II. 14.1
III. 20.3
IV. 29.1

Linux
I. 5
II. 14.2, 14.3
III. 19.4, 21.1, 21.2, 21.3, 22.1,
23.1, 26.1
IV. 30.1
See also: RT-Linux

Load Adaptation
III. 21.3, 21.4
IV. 30.1

LonWorks
III. 24.1
IV. 29.2

Low Power
I. 4.2
III. 24.2, 24.4, 26.1
IV. 27.2, 27.4, 29.2, 30, 30.1, 30.2
See also: Power Awareness

Lustre
I. 6.2, 9.2
III. 25.1
IV. 29.1

 Index 485

Maintainability
I. 3.2, 4.1, 7.4, 8
II. 10.4, 11.1
III. 24.3, 25.1

Matlab/Simulink
I. 1.4, 3.2, 4.2, 5, 9.1
IV. 28.2, 29.1, 29.2

MDA (Model Driven Architecture)
II. 12.2, 12.4, 12.6, 13.7, 15.1,
15.3
III. 23.3

Memory Hierarchy
I. 6.3
IV. 29.3, 30.2

Memory Management
III. 18, 21, 21.1, 23.1, 25, 25.4
IV. 30.2

Meta-H
II. 10.4, 12.5, 13.5, 13.6, 14.3
IV. 29.1
See also: ADL

Meta-Model
I. 5
II. 14.3, 15.1
IV. 29.1

Methods and Tools
See: Programming Languages and
Tools

Metropolis
I. 5
II. 13.5, 14.3

Micro-ITRON
III. 21.1
See also: ITRON

Middleware
I. 4.1, 4.2, 8, 9
II. 14.1, 15.1
III. 17.2, 17.3, 17.4, 18, 22.1,
22.2, 22.3, 23, 26.1
IV. 30.1
See also: Power Awareness

MOBIES Project
I. 2.2, 3.5, 7.1

Mobile Communication
See: Wireless Communication

Model Checking
I. 5, 7.1, 7.2, 9.2

Modelica
I. 4.2

Modelling, Modelling Languages
I. 4, 4.2, 7.2
II. 13.4, 13.5, 14.3, 14.4, 15.1
III. 20.3, 21.5, 22.1, 22.3, 24.3
IV. 29.1, 29.2, 29.4
See also: ADL, AXYS, HDL,
Lustre, Matlab/Simulink, Me-
tropolis, Modelica, OCASIM, Po-
lis/VCC, Polychrony, Program-
ming Languages and Tools,
Scilab, SDL, Sildex, SUIF, Syn-
DEx, UML, VaST, Virtio

Multimedia
III. 17.4, 19.1, 20.3, 20.4, 21.3,
22.1, 23.1, 24.1, 24.2, 24.3, 26.2
IV. 29.3, 30.1, 30.2

Multiprocessor
II. 13.6
III. 20.1, 21.1, 21.2, 21.4, 25.1,
26.4
IV. 29.1, 29.2, 30.2

Networking QoS
III. 22.1, 22.2, 22.3

Networks
See: ARINC, Bluetooth, CAN
(Controller Area Network), IEEE
802.11, IrDA, LonWorks, Net-
working QoS, Sensor Networks,
TTCAN (Time-Triggered CAN),
WorldFIP

NoC (Network-on-Chip)
IV. 29.1
See also: SoC (System-on-Chip)

OCASIM
I. 3.2, 5

OCERA Project
II. 14.3

486 Index

OMEGA Project
II. 13.5, 15.1

OMG (Object Management Group)
I. 4.1
II. 12.4, 13.5, 14.1, 15.1
III. 17.4, 22.1, 23, 23.1, 23.2,
23.3, 23.4

OPC
II. 12.2

ORK
III. 21

OSEK
I. 3.1
II. 12.1
III. 21.1, 21.2, 21.3
IV. 28.1, 29.2, 29.4

PAG
I. 7.3

PARTS Project
III. 26.1

PECOS Component Model
II. 13.5, 14.2, 14.5

PECOS Project
II. 14.2

Performance
I. 3.1, 3.2, 5, 6.2, 7.2, 7.4, 9.1
II. 10.4, 12.4, 13.1, 13.5, 13.6,
14.1, 15.1, 15.3
III. 17.1, 17.2, 17.4, 19.1, 19.2,
20.1, 20.4, 21.1, 22.1, 26.1 26.3
IV. 28.1, 29.1, 29.2, 29.3, 29.4,
30.1, 30.2
See also: Performance

Platform Dependent
II. 13.5, 13.6, 13.7
IV. 29.4, 30.2

Platform Independent
II. 14.1, 15.1, 15.2, 15.3
III. 22.4
IV. 29.4, 30.2

Platform-based Design
I. 4, 2.2, 2.3, 5
IV. 29.2

Platforms
See: Computing Platform, Hard-
ware Platform, Platform-based
Design

PLC (Programmable Logic Control-
lers)
I. 3.4
II. 12.2, 14.2
IV. 28.2
See also: IEC 61131

Polis/VCC
I. 5
IV. 29.1, 29.2

Polychrony
I. 5, 6.2, 9.2

PolySpace Verifier
I. 7.3

POSIX
II. 13.5, 14.3
III. 17.2, 19.2, 21.1, 21.2, 21.3,
25.2
See also: RT-POSIX

Power Awareness
See: ECOSystem, Energy, Low
Power, PARTS Project

Power Management
See: Low Power

Preemptive Scheduling
III. 21.1, 21.2
IV. 29.2, 29.4

Probabilistic Execution Time Analysis
III. 19.1, 20.1, 26.4

Probabilistic Model
I. 7.4
III. 22.3, 24.3, 24.4, 26.4

Probabilistic Model Checker
I. 7.2

Probabilistic QoS
II. 13.6

Probabilistic Scheduling
III. 20.1

 Index 487

PROFIBUS
III. 24.1, 24.3
IV. 29.2

Programming Model
III. 23.1, 23.3
IV. 29.3

Programming Languages & Tools
I. 1.4, 3.2, 3.4, 6, 6.1, 6.2, 6.3
II. 13.3, 13.5, 13.6, 14.1, 14.2,
15.1
III. 17.4, 19.3, 21, 21.1, 25
IV. 29.1
See also: AAA, Ada, AIL, aiT
WCET Analyser, AVS, Assembly
Language, AXYS, C, C++, Corba,
Esterel, Hood, Java, Lustre, Matlab/
Simulink, Metropolis, Modelica,
Polychrony, RT-Java, Synchro-
nous Languages, RTSJ, Scade,
Scicos, Scilab, SDL, Signal,
Synccharts, SynDEx

Projects
See: AEE Project, EAST-EEA
Project, Integration Platforms,
Metropolis, OCERA Project,
OMEGA Project, PARTS Project,
PECOS Project, SafeAir Project,
SETTA Project

Property Specification
II. 12.4, 13.7

Protocol
I. 1.4, 2.4, 3.1, 3.3, 5, 6.3, 8, 9.1
II. 12.2, 12.6, 13.5, 13.7, 14.1
III. 17.3, 17.4, 18, 21.1, 21.2,
22.1, 22.3, 23.1, 23.2, 23.4, 24.1,
24.2, 24.3, 24.4
IV. 28.1, 29.1, 29.2, 29.4
See also: TTP (Time Triggered
Protocol), Transport Protocol,
SafeBus, Spider

Ptolemy-II
II. 13.2, 13.5, 14.3, 14.5
IV. 29.1

QoS (Quality of Service)
I. 3.3
II. 10.4, 12.6, 13.6, 14.5, 15.1
III. entire section
IV. 29.1, 30.1
See also: Networking QoS, QoS
Adaptation

QoS Adaptation
III. 20.6, 22.1, 24.3

QoS Contract
II. 13.6
III. 22.1

QoS Management/Middleware/Control
I. 3.3
II. 12.5, 13.6, 15.1
III. 17.2, 17.3, 17.4, 18, 19.1,
19.4, 20.1, 20.3, 21.2, 21.3, 22,
22.1, 22.3, 22.4, 23, 26.3

QoS Requirements Properties
II. 11.4, 12.4, 13.6, 14.1, 14.5,
15.1
III. 17.2, 17.3, 17.4, 22.1, 22.2,
22.3

Rail Transport
I. 4.1, 9.1
IV. 29.1

Reactive Systems
I. 4.3, 6.2, 7.4
II. 12.2, 13.6, 14.3
III. 25.1
IV. 29.1
See also: Synchronous Languages

Real Time
I. entire section
II. 11.3, 12, 12.1, 12.2, 12.4,
12.5, 13.5, 13.6, 14.1, 14.2, 14.3,
15, 15.1, 15.3
III. 17.2, 17.3, 17.4, 18, 19.1,
19.2, 19.4, 20, 20.3, 20.4, 22.1,
22.3, 22.4, 23, 24.3, 26.2, 26.3
IV. 30.1
See also: Adaptive Real Time,
Hard Real Time, Middleware,
Networks, Real Time Operating
Systems (RTOS), Soft Real Time

488 Index

Real Time Systems
II. 11.1, 11.4, 12.1, 12.2, 12.4,
12.5, 12.6, 13.1, 13.5, 13.6, 13.7,
14.1, 14.2, 14.3, 14.5, 15.1, 15.3
III. 17.2, 17.4, 18, 19.3, 20.1,
20.3, 21, 23, 25, 26.1, 26.3, 26.4,
26.5
IV. 29.1, 29.2, 29.4

Reconfigurable
I. 5
III. 24.2, 25.1, 25.4
IV. 29.3
See also: Reconfigurable Archi-
tecture, Reconfigurable Processor,
Reconfigurable SoC

Reconfigurable Architecture
IV. 29.3, 30.2

Reconfigurable Processor
IV. 29.3
See: FPGA

Reconfigurable SoC
III. 26.5
IV. 29.3

Reflective System
I. 4.1
II. 14.1
III. 17.4, 22.1

Reliability
I. 4.1, 7.4
II. 10.4, 12.1, 12.2, 12.5, 13.6,
14.3, 14.5, 17.3, 17.4, 18.1
IV. 28.1, 28.2

Resource Management/Reservation
I. 3.3, 4.1, 7.4
II. 10.2, 10.3, 10.4, 11.1, 11.3,
12, 12.1, 12.2, 12.6, 13.5, 13.6,
14.1, 14.2, 14.3, 14.5
IV. 28.1, 29.1, 29.2, 29.3, 30.1

Retargetable compilers
I. 6.3

Rich Interfaces
II. 10.2, 11.1, 12.1, 14.5

RMA (Rate-Monotonic Analysis)
II. 13.5, 14.1
IV. 29.4
See also: RMS (Rate Monotonic
Scheduling)

RMS (Rate Monotonic Scheduling)
III. 21.3
IV. 29.1, 29.4, 30.1
See also: RMA (Rate Monotonic
Analysis)

RT-Corba
II. 14.5, 15.1
III. 18, 19.2, 23, 23.1, 23.2

RTEMS
III. 21.1

RT-Java
I. 5
II. 13.5
III. 23.1, 25.1, 25.2, 25.3, 25.4
See also: Java, RTSJ

RT-Linux
I. 5
III. 21.1, 21.2, 21.3
See also: Linux

RTOS (Real Time Operating Systems)
II. 12.1, 12.2
III. 19.1, 19.4, 21, 22.2, 26.3
IV. 29.1, 29.4, 30.1
See also: APEX, ARINC, eCos,
ECOSystem, ITRON, Micro-
ITRON, JavaCard, Kernel, Linux,
OSEK, ORK, POSIX, RT-Linux,
RT-POSIX, RTEMS, Run-time,
Symbian OS, VxWorks

RT-POSIX
III. 21.1
See also: POSIX

RTSJ
III. 25.2
See also: Java

Rubus Component Model
II. 13.5, 14.2, 14.3, 14.5

 Index 489

Run-time
I. 6.2, 6.3
II. 12.3, 13.2, 13.6, 14.1
III. 18, 19.3, 20.1, 20.4, 21.1,
23.1, 26.1
IV. 29.1, 29.3, 30.1, 30.2

SafeAir Project
I. 2.2, 5, 6.3, 9.2
II. 12.5

SAFEbus
I. 3.2

Safety Critical
I. 1.2, 1.4, 3.1, 3.2, 3.4, 4.1, 5,
6.2, 7.2, 7.3, 9.1
II. 10.2, 11.3, 12.1, 12.4, 12.5,
12.6, 13.3, 14.2, 14.3, 14.5
III. 18, 20.2, 20.3, 21.1, 22.3,
24.1, 24.2, 24.4, 25.1
IV. 29.2, 29.4
See also: Fault

Scade
I. 3.2, 4.3, 5, 6.2, 9.2
II. 14.5

Schedulability Analysis
I. 3.3
II. 13.5, 13.7, 14.2, 14.3, 15.1,
15.3
III. 19.1, 19.2, 26.4
IV. 29.1, 29.2, 30.1

Scheduler Composition
III. 20.3, 20.4, 21.1

Scheduling
I. 3.1, 5, 6.2, 6.3, 9.1
II. 13.5, 14.1, 14.2, 14.5, 15.1
III. 17.2, 17.3, 17.4, 19.2, 19.3,
20, 21, 22, 24.1, 25, 26.1, 26.3,
26.4
IV. 29.1, 29.2, 29.4, 30.1, 30.2
See also: Adaptive Scheduling,
Dynamic Priority Scheduling,
Dynamic Scheduling, EDF (Ear-
liest Deadline First), Energy-
Aware Scheduling, Feedback-
based Scheduling, Fixed-Priority
Scheduling, Flexible Scheduling,

Preemptive Scheduling, Probabil-
istic Scheduling, RMA (Rate-
Monotonic Analysis), Schedula-
bility Analysis, Scheduler Com-
position, Scheduling Paradigms

Scicos
I. 4.2, 5

Scilab
I. 4.2

SDL
I. 7.4
II. 12.4, 13.4, 13.5, 13.6, 14.5,
15.1

Security
I. 3.1, 3.2, 4.1, 7.4
II. 11.3, 12.4, 13.6, 14.1, 14.3
III. 18, 19, 21.1, 22.1, 24.4
IV. 29.1

Sensor Networks
III. 24.1, 24.2, 24.3, 24.4
IV. 29.1

SETTA Project
I. 2.2, 9.1

Signal
I. 5, 6.2, 9.2
III. 25.1
IV. 29.1

Sildex
I. 5, 6.2, 9.2

Simulation
I. 1.4, 2.2, 3.1, 3.2, 3.3, 4.2, 4.3,
5, 7.2, 7.4, 9.1, 9.2
II. 12.5, 13.4, 14.3, 15
III. 19.1, 26.1
IV. 29.1, 29.2, 29.3, 29.4, 30.2

SOAP
II. 12.2, 15.2

SoC (System-On-Chip)
I. 5
III. 19.1, 26.5
IV. 29.1, 29.4
See also: NoC (Network-on-
Chip), Reconfigurable SoC

490 Index

Soft Real Time
I. 3.1, 4.1
II. 13.5, 13.6, 14.1
III. 17.2, 19.1, 20.1, 20.3, 21.1,
26.1
IV. 29.2, 30.1
See also: Adaptative Embedded
System, Adaptive Real Time

Software Architecture
I. 3.1, 3.3
II. 14.3, 15.2
III. 17.4, 22.1, 24.2
IV. 28.1, 29.4

Software Design
I. 1.4, 3.1, 5
III. 19.1
IV. 28.2, 29.2

Software Integration
IV. 29.4

Space
I. 4.3, 9.1
II. 12.5
III. 21.1, 24.4
IV. 28.2, 29.1, 29.4

SpecC
III. 19.4

Spider
IV. 29.2

Standards
I. 3.1, 3.4, 4.2, 4.3, 5, 7.2, 7.4
II. 10.2, 10.4, 12.1, 12.2, 12.3,
12.4, 12.5, 13.5, 14.1, 14.2, 15
III. 17.4, 21.1, 21.2, 21.3, 21.4,
23.1, 24.1, 25.1
IV. 29.4, 36.1
See also: AADL (Avionics Archi-
tecture Description Language),
Bluetooth, CSMA, Corba,
DO-178B, IEC 61131, IEEE
802.11, IEEE 1394, IrDA, Lon-
Works, MDA (Model Driven Ar-
chitecture), Protocol, RT-Corba,
UML, USB (Universal Serial
Bus), XML

Static Analysis
I. 5, 6.2, 7.1, 7.3
II. 10, 10.4
III. 22.3
See also: aiT WCET Analyser,
Bane, PAG, PolySpace Verifier

Symbian OS
III. 21.1

Synccharts
I. 6.2

Synchronous Languages
I. 1.4, 5, 6, 6.2, 8, 9.1, 9.2
II. 10.4, 12.1, 12.2, 12.4, 12.5,
13.1, 13.4, 13.5, 14.2, 14.3
III. 17.4, 20.3, 23.2, 24.2, 24.3,
25.1
IV. 29.1, 29.2
See also: Esterel, Lustre, Signal,
Scade

SynDEx
I. 5

System
See: Heterogeneity, Real Time,
Real Time Systems, RTOS, Safety
Critical

System Specification
I. 3.1, 3.3, 7.2, 9.2
II. 10.4, 12.2
III. 21.1, 22.3, 24.3

System-C
II. 14.4
IV. 29.1, 29.4

Task
I. 1.3, 3.3, 6.1, 8
II. 13.5, 14.2, 15.1
III. 17.2, 17.3, 17.4, 18, 19.2,
19.3, 20.1, 20.3, 20.4, 21.1, 22.3,
25.1, 26.1, 26.3, 26.4
IV. 29.2

Task Model
III. 17.3, 20.1, 20.4, 22.1, 22.3
IV. 29.2

 Index 491

Telecommunications
I. 1.3, 4.2, 7.4
II. 10.4, 12.4, 13.6, 14.1, 14.3
III. 17.4, 18, 19.4, 23.1, 24.1, 25.1
IV. 29.1, 29.4
See also: Mobile Communication

Testing
I. 1.2, 1.4, 2.2, 3.1, 3.2, 3.3, 4.1,
4.2, 4.3, 7.4, 9.2
II. 11.1, 13.6, 14.2
III. 20.1, 21.1
IV. 28.2, 29.2, 29.3

Time-Driven
IV. 29.2

Timing Analysis
I. 3.2, 5, 7.4
II. 13.5
III. 18, 21.1
IV. 29.2
See also: Probabilistic Execution
Time Analysis, WCET (Worst
Case Execution Time)

Timing Properties
I. 3.3, 5
II. 12.2, 13.5, 14.2, 14.3
IV. 29.2

Timing Requirements
I. 2.3, 3.1, 3.2, 3.3, 4, 4.1, 4.3,
7.4,
II. 10.2, 11.1, 11.2, 11.3, 11.4,
12.1, 12.2, 12.3, 12.5, 13.5, 13.6,
15.3
III. 17.3, 17.4, 19.1, 19.2, 19.4,
20.4, 21.2, 22, 23.1, 24.3, 25.1,
25.3, 26.1, 26.2, 26.3
IV. 30

Tools
I. 4, 5, 6, 7
See also: Design Tools, Pro-
gramming Languages and Tools

Traffic Control
I. 3.4
III. 17.2, 22.1, 25.1

Transport Protocol
I. 8
III. 22.1, 24.1

Transport
I. 3.2, I.9.1
See also: Automotive, Rail Trans-
port, Space

TTA (Time Triggered Architecture)
I. 1.4, 6.2, 8, 9.1
II. 12.1, 12.5, 13.5
See also: Time Driven

TTCAN
I. 8
II. 14.2
III. 24.1, 24.3
IV. 29.2

TTP (Time Triggered Protocol)
I. 3.1, 3.2, 5, 8, 9.1
II. 14.2, 14.5
III. 20.1, 24.1, 24.3
IV. 28.1, 29.2, 29.4
See also: TTPMatlink, TTPXX

TTPMatlink
I. 5

TTPXX
I. 5

UML
I. 1.4, 3.1, 4, 4.2, 4.3, 7.2, 7.4,
9.2
II. 10.4, 12.4, 12.5, 13.3, 13.4,
13.5, 14.5, 15, 15.1
III. 19.2, 22.2
IV. 29.1

USB (Universal Serial Bus)
III. 18, 24.1, 24.3

Validation
See: Analysis, Simulation, Test-
ing, Verification

VaST
I. 5

Verification
I. 1.4, 2.1, 2.2, 2.3, 3.4, 4.3, 5,
6.2, 7, 9.1, 9.2

492 Index

II. 10, 11.1, 11.2, 11.3, 11.4, 14
III. 20.3, 24.3
IV. 29.1, 29.2, 29.4
See also: Model Checking,
Validation

VHDL
II. 14.4
III. 26.5
IV. 29.1, 29.4

Virtio
I. 5

VxWorks
II. 14.1
III. 20.1, 21.1, 21.3

WCET (Worst Case Execution Time)
I. 2.2, 3.2, 4.1, 5, 7.3, 9.1
II. 13.5, 16.2
III. 21.1, 26.3, 26.4
IV. 29.4, 30.1

Wireless Communication
I. 5
III. 19.3, 21.1, 24
IV. 29.1, 29.4, 30.1

WorldFIP
III. 24.1, 24.3

XML
I. 3.2
II. 12.1, 14.1, 15.2
III. 22.1, 24.3

	Frontmatter
	Hard Real-Time Development Environments
	Executive Overview on Hard Real-Time Development Environments
	Hard Real-Time System Development
	Current Design Practice and Needs in Selected Industrial Sectors
	Tools for Requirements Capture and Exploration
	Tools for Architecture Design and Capture
	Tools for Programming, Code Generation, and Design
	Tools for Verification and Validation
	Middleware for Implementing Hard Real-Time Systems
	Review of Some Advanced Methodologies

	Component-Based Design and Integration Platforms
	Executive Overview on Component-Based Design and Integration Platforms
	Component-Based System Development
	Current Design Practice and Needs in Selected Industrial Sectors
	Components and Contracts
	Component Models and Integration Platforms: Landscape
	Standardization Efforts
	References

	Adaptive Real-Time Systems for Quality of Service Management
	Executive Overview on Adaptive Real-Time Systems for Quality of Service Management
	Adaptive Real-Time System Development
	Current Design Practice and Needs in Selected Industrial Sectors
	Real-Time Scheduling
	Real-Time Operating Systems
	QoS Management
	Real-Time Middleware
	Networks
	Programming Languages for Real-Time Systems
	Other Issues

	Execution Platforms
	Executive Overview on Execution Platforms
	Current Design Practice and Needs in Selected Sectors
	Computing Platforms
	Low Power Engineering

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

